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Fluid Dynamics

UNIT-1I: Pressure at a point of moving fluid, Euler equation of motion, Equations of
motion in cylindrical and shperical polar co-ordinates, Bernoulli equations, Impulsive
motion, Kelvin circulation theorem, Vorticity equation, Engery equation for
incompressible flow, Kinetic energy of irrotational flow, Kelvin minimum energy

theorem, Kinetic energy of infinite fluid, Uniqueness theorem.
2.1:. Pressure at a point of a Moving Fluid

Let Pbe a point in a ideal (inviscid) fluid moving with velocity §. We insert an

elementary rigid plane area oAinto this fluid at pointP . This plane area also moves

with the velocity ¢ of the local fluid at P.

If SF denotes the force exerted on one side of dAby the fluid particles on the other

side,

\ 4
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oA

figure 2.1

Then this force will act normal to SA.

Further, if we assume that glzlng% exists uniquely, then this limit is called the

(hydrodynamic) fluid pressure at point P and is denoted by p.
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Theorem:-Prove that the pressure p ata point P in a moving inviscid fluid
is same in all direction.

Proof:- Let qbe the velocity of the fluid. We consider an elementary tetrahedron
PQRSof the fluid at a point P of the moving fluid. Let the edges of the tetrahedron be
PQ=06, PR=4¢y, PS=¢dzat time t,where &X, dy, oz are taken along the co-ordinate
axes OX,0Y,OZ respectively. This tetrahedron is also moving with the velocity g of

the local fluid at P.

Let p be the pressure on the face QRS where area is 5. Suppose that <I,m,n > are the

d.c.’s of the normal to &5 drawn outward from the tetrahedron.

5X R

v

figure 2.2

Then,
| % =projection of the areads on yz —plane.

= area of face PRS (triangle)

1 oyoL
=—oL=—-
2 ¥ 2
Similarly, mJs = area of face PQS = % OLOX = —525)(
1 X
and, nds = area of face PQR:E5x5y=T§Y
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The total force exerted by the fluid, outside the tetrahedron, on the face QRSis
=—p&(IT +mj +nk)

=—p(I&i + m&] +n&kK)
=—§(5y52f + 25 + XYK)

Let p,,p,. p, be the pressures on the faces PRS, PQS, PRQ. The force exerted on

. . 1 o 1 ~ 1 f .
these faces by the exterior fuid are > p, oy ozi > py525x1,5 p,oXxYK respectively.
Thus, the total surface force on the tetrahedron is

= —g (8ySzl + K] + XYK) + % p, Yozl + % P, SLSX] + % D, XYk

%{(px )y +%(py ) +%(pz - p)ﬁxéﬁé} ®

In addition to surface force (fluid forces), the fluid may be subjected to body forces

which are due to external causes such as gravity. Let F be the mean body force per

unit mass within the tetrahedron.

1 .1 . .
Volume of the tetrahedron PQRSis gha“sl.e. gdxﬁy&,where his the perpendicular

from P on the face QRS.
. I
Thus, the total force acting on the tetrahedron PQRSis + 5 PFXy oz (2)

Where p is the mean density of the fluid.

From (1) & (2), the net force acting in the tetrahedron is

1 -1 . 1 A1 =
= E[(px = e =y = Pl - ll10s = p)5><5yk} M
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Now, the acceleration of the tetrahedron is [I;—? and the mass % poxdy oz of fluid

inside it is constant.

Thus, the equation of motion of the fluid contained in the tetrahedron is
1 ~ 1 » 1 ~1 =
=3 (Px — P)y i +§(py — P)3zoX| +§(pz — P)Sxyk +€/DF5><5>/52
1 - Dq =
== pFXdyor| — f =
5” MWZ(Dé) (f =ma)

o o 2 i 1 — l D_’
le. = [(px — pI&i +(py — p)mj +(p, — p)no“skJ +§pF6hs =§ph§s(3?]

on dividing by dsand letting the tetrahedron shrink to zero about P, in which case

h — 0, it follows that

p,—P=0,p,—p=0,p,—p=0
i.e. P=P, =P, =P ©)
Since the choice of axes is arbitrary, the relation (3) establishes that at any point P

Of a moving ideal fluid, the pressure p is same in all direction.

Equation of Motion

Euler’s Equation of Motion of an Ideal Fluid (Equation of Conservation of
Momentum).
To obtain Euler’s dynamical equation, we shall make use of Newton’s second law of

motion.Consider a region z of fluid bounded by a closed surface S which consists of
the same fluidparticle at all times. Let q be the velocity and p be the density of the

fluid.
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figure 2.3

Then pdz is an element of mass within S and it remains constant

The linear momentum of volume z is

M :qudf| mass x velocity = momentum
T

Rate of change of momentum is

dM  d (. dg

= _= == 1
gt ~atd 97 !dtpdr @
The fluid within 7 is acted upon by two types of forces.

The first type of forces are the surface forces which are due to the fluid exterior toz .

Since the fluid is ideal, the surface force is simply the pressure p directed along the

inward normal at all point of S.

The total surface force on S is

j p(-N)dS = —I pAdsS = I—Vpdr (ByGaussdiv.Theorem)  (2)
S S T

The second type of forces are the body forces which are due to some external agent.
Let F be the body force per unit mass acting on the fluid. Then Fpdzis the body

force on the element of mass ,odz and the total body force on the mass within z is

j Fodr ©)

57




By Newton’s second law of motion, we have

Rate of change of momentum =total force

:>'T[%pdr: !ﬁpdr —J;Vpdr

dd =
3I(d—?p—Fp+ijdT=0

Since dris arbitrary, we get %p ~Fp+Vp=0

dt yo,

(4)

which holds at every point of the fluid and is known as Euler’s dynamical equation

for an ideal fluid.

Remark.: The above method for obtaining the Euler’s equation of motion, is also

known as flux method.

Other Forms of Euler’s Equation of Motion.

(i) We know that

d D o0 _

—=— =" 4§V
dt Dt ot

Therefore equation (4) becomes

o ,._.. = 1
A @v)g=F-=vp
ot p

U
Il
(@)
=
=

o

But  (q.v)d= V(%qz} Exd,
Therefore, Euler’s equation becomes

a—q-l- V[%sz+fxq =F-

\Y%
at P

&
Yo,

Equation (6) is called Lamb’s hydrodynamical equation.
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(i) Cartesian Form

Let G = (u,v,w),F =(X,Y,Z)&Vp = P, %P, %P
X oy oz
Then equation (5) gives
u ou v au o 1dp 3
ot OX oz P OX
LA VLV .- > (7
ot X oz P oy
ow ow 10p
—+U—+V—+W—=Z———
ot oz p 0z
J
Equation (7) are the required equations in Cartesian form of Euler's equations.
(iii) Equation of Motion in Cylindrical Co-ordinates.(r, 4, z).
Here, g = (u,v,w),dr =(dr,rdé,dz)
v _(8_9 160 @j
or'r o0’ oz
Let F=(F,Fy,F,)
Also, the acceleration components in cylindrical co-ordinates are
dg_(du_v* dv uv dw
dt (dt r'dt r'dt
Thus, the equation of motion
9 _g —lv,o becomes
dt o,
du v?_ 1o A
dt r p or
v w_p 1% > ®)
dt r rpo 00
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dW:F 10p

dt p 0L
(iv) Equations of Motion in Spherical co-ordinates (r,4,y).

Here, g = (u,v,w), dr =(dr,rd@,rsin Ay)

vo_[® Lo 1 op
or 'r o0 rsind oy

Let F=(F.Fy.F,)

Also, the acceleration components in spherical co-ordinates are

ﬂ_[du vi+w dv w’cotd uv dw+vwcot6?J

- . +_1_
dt dt r dt r r dt r

Thus, the equation of motion take the form

du_view __ 13p \

dt r " opor

dv_w’cotd u __ 13p ©)
dt r r ’ rpob >
d_w+vwcot0=F _1dp

dt r Y poy Y,

Remark:- The two equations, the equation of continuity and the Euler’s equation of

motion, comprise the equations of motion of an ideal fluid. Thus the equations
op i
—+div =0
T (pd)
And o, (G.V)g=F —EVp
ot Yol
Are fundamental to any theoretical study of ideal fluid flow. These equations are

solved subject to the appropriate boundary and initial conditions dictated by the

physical characteristics of the flow.
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Lagrange’s Equation of Motion: Let initially a fluid element be at (a,b,c) at time
t=t, when its volume is dV, and density is p,. After time t, let the same fluid

element be at (x,y,z) when its volume is dV and density is p. The equation of

continuity is
A =p, @
Where J = M
d(a,b,c)

The components of acceleration are

o°x y_ﬂ ,Z._azz

X:_l ’ - T
ot? ot? ot?

Let the body force F be conservative so that we can express it in terms of a body

force potential function Qas
F=-VQ 2)
By Euler’s equation of motion,

W9_g _lyp- va-ly, 3
dt P P

Its Cartesian equivalent is

Px 00 1op )
ot? ox  p ox

Fy__@ 10 >
o> oy poy

(4)

We note that a,b,c,t are the independent variables and our object is to determine

X, Y,z in terms of a,b,c,t and so investigate completely the motion.
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To deduce equations containing only differentiations w.r.t. the independent variables

a,b,c,t we multiply the equations in (4) by ox/oa, dy/da, dz/0a and add to get

O’xox 0'yoy od'zor . oQ 1dp )

A o
ot ca ot° ca ot° oa da poa

Oxox dyoy oz o0 1op |
ot> ob  ot* ob ot ob ob pob

©)

Pxox Fyoy Froe__ @ 10
ot oc ot oc ot*oc o p éc J
This equation (5) together with equation (1) constitute Lagrange’s Hydrodynamical

Equations.

Example: A homogeneous incompressible liquid occupies a length 2l of a straight
tube of uniform small bore and is acted upon by a body force which is such that the
fluid is attracted to a fixed point of the tube, with a force varying as the distance from
the point. Discuss the motion and determine the velocity and pressure within the

liquid.

Solution. We note that the small bore of the tube permits us to ignore any variation of
velocity across any cross-section of the tube and to suppose that the flow is

unidirectional.

Let u be the velocity along the tube and p be the pressure at a general point P at

distance x from the centre of force O. Also, let h be the distance of the centre of

mass G of the fluid, as shown in the figure.
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figure 2.4

Equations of motion of the fluid are :
(i) Equation of Continuity
Here, g =(u,0,0)

Therefore, equation of continuity becomes
ou
—=0=u=u(t 1
= (t) @

(i) Euler’s Equation

In this case, it becomes a_u+ua_u= X _1% =—U _1o%
ot OX P OX P OX
ou 1op , .
= — =—ux——— |using (1 2
o =S ing @ )

Where — zxi is the body force per unit mass, x being a positive constant.
We observe that equation (2) can be written as

du 1dp
du__ _1dp 3
at 7 5 dx ®

Integrating w.r.t. x, we get
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du X
A

p
X— = —+C 4
dt 2 p+ @

Where C is a constant and at most can be a function of t only w.r.t. (x,y,2)
Let IT be the pressure at the free surfaces x =h—1, and x = h +1 of the liquid.

Then using these boundary conditions, equation (4) becomes

du 1 IT
h—N—=-=u(h-1)>-—+C
( )OIt 2#( ) p+

du 1 IT
h+)—=—-=uy(h+)*-==—=+C
(+)Olt 2u(+) p+

Which on subtraction give

du

T ©)

: . : . . : : dh
But in the fluid motion all fluid particles move with the same velocity uand u = ot

-~Equation (5) becomes

——=—4h (6)
Now, we solve the different equation (6), which can be written as

(D*+u)h=0
Here auxiliary equation is

D2+ u=0=> D = +(u) i

Therefore, the solution of (6) is

h= Acos((,u)%t+ ej

Where A&e are constants which can be determined from initial conditions.
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To Calculate Pressure:- We have from (3) &(5)

— X ———=F = —h
WA

31%:#@_)()
p dx

Integrating w.r.t. x, we get

B_ 0= )
p 2D

The boundary condition x=h—1, p=TIT gives

2
E—,ul—+D
yo, -2
2
i.e. D:E+,u|—
Yo, 2

Therefore, equation (7) becomes

p_ub-d'
P P

———[(h x)? -1

Example. Homogeneous liquid is in motion in a vertical plane, within a curved tube

of uniform small bore, under the action of gravity. Calculate the period of oscillation.

Solution. Let O be the lowest point of the tube, AB the equilibrium level of the liquid
and hthe height of ABaboveO. Let a& S be respectively the inclinations of the

tube to the horizontal at A& B & be the inclination of the tube at a distance salong
the tube form O. Let a&b denote the arc length of OA& OB respectively and suppose
that at time t,the liquid is displaced through a small distance z along the tube form

its equilibrium position.
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Due to the assumption of uniform small bore the flow is unidirectional along the tube.

AKY M
Zj
A
v\_y‘
0 a
e g
figure 2.5
Let the velocity be u(s,t)
. S ou
The equation of continuity gives o =10 @
= uis independent of s
Euler’s equation of motion becomes
a_u+u8_u :—gsinH—E@
ot 0s p 0S
Using equation (1), this gives
%sa—u:—gsinﬁ—ia—p
dt ot p 0S
ic. N __gsing_ 1P @)
dt p 0S
integrating it w.r.t. s, we find
s%:—gy—BJrC 3
dt P
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Where C may be a function of time t at the most

dy ds

7

dx
figure 2.6

The boundary conditions at free surface are
(i) p=Ifory=h+zsina,s=0M =a+zatM
(i) p=IIfory=h-zsinB,s=0M =—(b—z)atN

Using these boundary conditions in (3), we get

(a+ z)d—u:—g(h+zsina)—E+C
dt P

_b-2%Y - _gh—zsinp)-Dic
dt o,

Subtracting these we get

(a+b)%:—gz(sina+sin,3) (4)
Since
dt ~ dt dt?

Equation (4) becomes

d?z
(a+ b)W =—gz(sina +sin )
d?z
= W:—/JZ (5)
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_- gz(sina +sin f)

where
a+b

We observe that equation (5) represents the simple harmonic motion. It’s period T is

given by

1
T2 gy 8+0 ¢
Y7, g(sina +sin B)

Example: A sphere of radius R, whose centre is at rest, vibrates radically in an
infinite incompressible fluid of density p, which is at rest infinity. If the pressure at

infinity is IT, show that the pressure at the surface of the sphere at time t is

1 [d?R? (dRY
IT+— | =
2’0{ dt? (dtj}

If R=a(2+cosnt), show that, to prevent cavitation in the IT must not be less than

3pa’n’.

Solution. Here the motion of the fluid will take place in such a manner so that each
element of the fluid moves towards the centre. Hence the free surface should be
spherical. Thus the fluid velocity v’ will be radial and hence v’ will be function of r’
(the radial distance from the center of the sphere which is taken as origin), and time t

only. Let p be pressure distance r'. Let P be the pressure on the surface of the sphere

of radius and V be the velocity there, Then the equation of continuity is

r'’v'=R¥ =F(t) )
From (1), (Z = Fr,,(zt)

Again equation of motion is

& o 10p
+V —=-

° - 2
ot or' p or' @)
F't) o(1 , 1 op .

Or — || =V"* |=== using (2 3
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Integrating with respect to r’, (3) reduces to

F (zt) VI
r' 2 o,

When r'=o, then v'=0& p =T1 so that C =11
& p Vo

_F_(2t)_|_lv'2 — _H
r’ 2 P
1 F't) 1 .o
Or =[l+—-p|2—=+=V
P Zp[ r2 2 }

But p=P&Vv'=V when r'=R. Hence (4) gives

1 |2
P = n+5p[E{F'<t)}r-:R —VZ}

Also V =dR/dt. Hence using (1), we have

. d 2, 0 zdR] d (R dR?
F),. ,=—RV)=—|R"— |=—| —.——
F O} dt( ) dt( dt dt[Z dt

Rd?R? 1dR?2dR R d2R? (dRJZ
=— +— — = +R| —
2 dt2 2 dt dt 2 (t? dt

Using the above values of V and {F'(t)},._s,(5) reduces to
2p2 2 2
pened 2[R0 an] (o)
2" |R|2 dt dt dt

2p2 2
Or P:H+1p d F\; +(d—Rj
2 dt dt

(4)

©)

(6)

Second Part: From r?v'=const.,,we conclude that Vv'is maximum when r'is

minimum i.e. r'=R.Hence pressure is minimum on r'=R by using Bernoulli’s

theorem
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Given R =a(2+cosnt)
()

dR/dt =—ansin nt

drR> :
and . 2a’(2 + cosnt)(- nsin nt)
2
dth =—2a’n’(2 +cosnt)cosnt + 2a’n”sin’ nt

with the above values, (6) reduces to
P =11+ (3/2)pa’n’sin® nt — aznzp(Z cosnt +cos’ nt) (8)

From (7) R varies from 3ato a.Thus the sphere has the greatest radius 3a, there is a
possibility of a cavitation there because pressure would be minimum there. Hence the

minimum value of pressure P'(say) on the surface of the sphere is given by replacing

t=0ornt=2mzin (8) We thus obtain
P'=11-3pa’n’ (9)

To prevent cavitation in the fluid. P'givn by (9) must be positive i.e. IT must not be

less than 3pa°n’,

Example: Liquid is contained between two parallel planes, the free surface is a
circular cylinder of radius a whose axis is perpendicular to the planes. All the liquid
within a concentric circular cylinder of radius b is suddenly annihilated ; prove that if
ITbe the pressure at the outer surface, the initial pressure at any point on the liquid

logr—logb

distant r from the centre is IT )
loga—loghb

Solution. Here the motion of the liquid will take place in such a manner so that each

element of the liquid moves towards the axis of the cylinder v'will be radial and V'

will function of r'The radial distance from the cylinder |z|=b which is taken as
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origin) and time tonly. Let p be the pressure at a distance r'.Then the equation of

continuity is
r'v'=F(t)
From (1) v _FO
ot' r

The equation of motion is

o' oV 1 op
+V —=-"—

ot or p or'

or P, 2 (1) 1o
r’ or'\ 2 p or'

Integrating,
F'(t)log reive—_Pc
2 p
Initially when r'=0. then v'=0& p=P
F'(O)logr=—L+c
yo)

again , P=ITwhen r'=a and P=0when r'=>b

F'(0)loga=—+C and F'(0)logb=C
P

Solving (5) for F'(0)&C, we have

11 IT
C=-logh— F'(0)=- ,
pogad) " O ioga)
Putting these values in (4), we get
P I . ITlogb
= logr-——2——
p plog(a/b) plog(a/b)
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Pl logr'—logb -0 logr'—loghb (6)
log(a/b) loga—logb

For the required result, replace r'by rin (6)

Example: A spherical hollow of radius a initially exists in an infinite fluid, subject to
constant pressure at infinity. Show that the pressure that distance r' from the centre
when the radius of the cavity is I is to the pressure at infinity as

3r’rt+(@® —4r®)re—@ - r’)r:3rér

Solution: Let v'be the velocity at a distance r'at any time tand p be the pressure

there. Again, let v be the velocity of the inner surface of radius r.Then the equation of

continuity is

r’v'=F(t)=rv 1)

From (1) %: aly (2)

The equation of motion is

N v 1dp
— 4V —=
ot o por

or F (Zt)+i[lv-2j=_la_p Using (2)
r or'\ 2 p or'
Integrating,
_F'() L _1op
r' por'

Bernoulli’s Equation (Theorem)
For Steady Flow. We shall obtain a special form of Euler’s dynamical equation in

terms of pressure. The Euler’s dynamical equation is

aq_g 1 1
il iy
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Where §is velocity, Fis the body force, pand pare pressure and density

respectively.

F be conservative so that it can be expressed in terms of a body force potential

function Q as

F=-VQ (2)
: og
When the flow is steady, then = 0 (3)

Therefore, in case of steady motion with a conservative body force equation (1) on

using (2) &(3), gives

V(quj—qx‘:—vg—lw
2 p
dg o4 ...
c—=—+(q.V
dt ot (@v)d
dg &g 1., . =.q
or—= V| = - &—"=0
dt ot (qu e &%
:V(lqz+§2j+le:dxf (4)
2 P

Further, if we suppose that the liquid is barotropic i.e. (density is a function of

pressure p only), then we can write

lop_v(dr
pr vjp

Using this in (4), we get
ququ@}:qu )
2 p
Multiplying (5) scalarly by G and nothing that

G.(Gx &) = (Gxq).£ =0, we get
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11, dp

If Sis a unit vector along the streamline through general point of the fluid and s

measures distance along this stream line, then since$is parallel to d,therefore

equation (6) gives

+§ is parallel to §

9 1q2+9+j@ =0 G=ks
os| 2 o,

>

<

Ml
P

Hence along any particular streamline, we have

L s dp
-0 +Q+|—=C 7
S (7)

Where Cis constant which takes different values for different stremlines. Equation

(7)is known as Bernoulli’s equation. This result applies to steady flow of ideal

barotropic fluids in which the body forces are conservative.
Now, if §is a unit vector taken along a vortexline, then, similarly, we get

%q2 +Q+ J‘@ =C along any particular vortexline. (Here,we multiply scalarly by &)
Y2,

Remark.

(i) If Gx& =0 i.e. if &< are parallel, then streamlines and vortex lines coincide and

q is said to be Beltrami vector.

If £=0,the flow is irrotational

For both of these flow patterns,
1 G°+Q+ j@ =C
2 p
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where Cis same at all points of the fluid.

(if) For homogeneous incompressible fluids, p is constant and

So that if g is known, the pressure can be calculated.

For Unsteady Irrotational Flow.

Here also, we suppose that the body forces are conservative i.e. F=-VQ
For irrotational flow, §=-V¢=VxG=0
The equation of motion

aq

.1
v Gx(VxG)=F-=V
8t+ (qu gx(Vxq) pe p

In the present case becomes,

—V(%j+v(1 qzj =-VQ —EVp
ot 2 Jo,

=% (—*2 +Q+ I———j 0 | Barotropic fluid.

Integrating, we get

[ R 2)

Which is the required equation.

If the liquid is homogeneous, then I P_P andthe equation (2)become

p P
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Further, for study case,

% =0, f(t)=const.
ot

lqz +0+2 —const.
2 p

Example: A long straight pipe of length L has a slowly tapering circular cross section.
It is inclined so that its axis makes and angle « to the horizontal with its smaller
cross-section downwards. The radius of the pipe at its upper end is twice that of at its
lower end and water is pumped at a steady rate through the pipe to emerge at
atmospheric pressure. It the pumping pressure is twice the atmospheric pressure, show

that the fluid leaves the pipe with a speed U give by
U?= z—i{gLsin a +E}, where IT is atmospheric pressure.
Yo

Solution. The assumption that the pipe is slowly tapering means that any variation in
the velocity over any cross-section can be ignored. Let the velocity at the wider end of

the pipe be V and the emerging velocity be U (velocity at the lower end). The only
body force is that of gravity, so F =—gj and consequently Q= gy

“F=-vOm g =—vo=-E2j_ X2 K
OX oy 0z

=-0= o =Q=gy
oy
Bernoulli’s equation, P, %qz +Q=C | . For water p is const.
Yo,

Becomes B+1q2 +gy=C
p 2

Applying this equation of the two ends of the pipe, we get
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figure 2.6 y=Lsina

2_H+l\/2 +gLsina :EJF%UZ (2) | for lower end y=0

yo)

Let aand 2a be the radii of the lower and upper ends respectively, then by the

principle of conservation of mass
7(2a)*V = m’U

:>V=!
4

From (2) &(3), we obtain

1 (U? . 1
IM+=p| — [+gpLsina ==pU°
2/3(16] gpLsina = p

_, L UZ—U—2 =I1+gpLsina
22”7 16 P

= ;—gpuz =I1+gpLsina

= U?’= g{gLsin a+E}
15 o,

Hence the result.
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Example: A straight tube ABC, of small bore, is bent so as to make the angle ABC a

right angle and AB equal to BC. The end C s closed and the tube is placed with end
Aupwards and AB vertical, and is filled with liquid. If the end C be opened, prove
that the pressure at any point of the vertical tube is instantaneously diminished one-
half. Also find the instantaneous change of pressure at any point of the horizontal

tube, the pressure of the atmospheric being neglected.
Solution. Let AB=BC=a

When the liquid in AB has fallen through a distance z at time t,then let P be any

point in the vertical column such that

AM =z, BP=x, BM =a-z If u& p be the velocity and pressure at

P, then equation of motion is

Gl @l _ g LB | u=u(xt) 1)
ot OX p OX

and equation of continuity is

ou .
—=0 jie u=u(t
x i.e. u=uf(t)

Therefore, equation (1) becomes

ou 10op

—=-g-——

ot p OX
Integrating w.r.t. X, we get

ou 1
X—=—0gXx——p+C 2
= pp (2)
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figure 2.7
Using the boundary condition p=0at X=a—Z,we get
ou
C=(a-z)—+g(a-z
(a-2) - g(a-z)
Therefore, equation (2) becomes
ou

1 ou
X—=-0gX——p+(@-z)—+g(a-z
= g pp( )at g(a-z)

ie. E:—(x—a+z)(2t—u+gj (©))

Now, we take a point Qin BC,where BQ=x'and let u',p' be the velocity and

pressure at Q, then
P _(x'_a)(ﬁj | 2=0& g is not effecting @)
P ot

equating the pressure at B, when x=0,x'=0, we get

ou ou'
-2) — —a— From (3) & (4
(a Z)(at+gj i | (3) & (4)
ou .
=-a—_— | - u'=-u
ot
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Initially, when C is just opened, then z=0,t =0 and we have

&), (3).

ou -0 ou g
— | =—ie. |=| =—-= 5
j(atl_o 2 (atj 2 ©
Therefore, from equation (3), initially, the pressure at P is given by
ou
&=—(x—a>K—j +g} [ P= (P
P ot )
-9
=—(x-a
> (x-2)

=Py = %pg(a —X)
(6)
But when the end C is closed, the liquid is at rest and the hydrostatic pressure at P

p, = pgh = pg(a—Xx) | h=AP=a-x (7)
From (6) & (7), we get

1
Po =EP1

Thus, the pressure is diminished to one-half.

Now, form (4), initial pressure at Q is given by
P, . [ou , auj N
—=—(x-a)—| =Kx-a)—| =(@a-x)=
P ( )( ot jt_o ( )( ot )i { ) 2
1 1 1
= pozapg(a—x)

When the end C is closed, the initial pressure (hydrostatic) p,at Q (orBorC)is pga
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Therefore, instantaneous change in pressure
1 1 1 1 1
= [ = [y = ¥ pBE= = 2 pfl BT

Example: A sphere is at rest in an infinite mass of homogeneous liquid of density p,

the pressure at infinity being IT. Show that, if the radius R of the sphere varies in any
manner, the pressure at the surface of the sphere at any time is

H+£{ﬂR—2>+(dRﬂ

2| diz \dt

Solution. In the incompressible liquid, outside the sphere, the fluid velocity g will be

radial and thus will be a function of r, the radial distance from the centre of the

sphere (the origin), and time tonly.

The equation of continuity in spherical polar co-ordinates becomes

1d,,.,
F—r(r u)=0 @
0 =(,00),u=u(rt),V E(E,O,Oj
or

V.= r—lzg(rzu)
i.e. spherical symmetry
= r’u=const.= f(t)
On the surface of the sphere,
r=R,u=R
Therefore,
f(t)=R°R

and thus
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r‘u = R*R (2)

(A b
[
\ / R — o

figure 2.8

We observe that u — 0 as r — oo, as required

From (1), it is clear that curl G =0

— the motion is irrotational and G =-V¢

= y=-2_, —%=i2 | From (2)
or or r

= g=— 3

The pressure equation for irrotational non-steady fluid motion in the absence of body

forces is
p .1, 04
—+ g ——=CIt
et (t)
ie. Pl 2 _cp
p 2 ot

where C(t) is a function of time t.

Asr—aw, p>IT,u=f/r’-0,§—>0
So that =TT/ for all 5
o tha c(t) /o t (5)

Therefore, from (2),(3),(4) &(5), we get
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Bt )——[R RJ ©

r

But o _ 9 (ReR)= ER? + 2RR?
ot dt

At the surface of the sphere, we have r = R and equation (6) gives

P_IT, 1 orR2 4 RR?)-1Re
p p R 2
N P, og2yRR- 1R
p P 2
_ L3R 4 26R)
p 2
(7
Now,

). (/F - & fre)s (RF
— (2RR + 2R? )+ R?

= 2RR + 3R?

Therefore, from (7), we obtain

. {ﬂ&)(dﬁ”

27 Tar dt
Hence the result.

Example: An infinite mass of ideal incompressible fluid is subjected to a force zr~"?

per unit mass directed towards the origin. If initially the fluid is at rest and there is

cavity in the form of the sphere r =ain it, show that the cavity will be completely

filled after an interval of time 72°%%(10)"°.
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Solution. The motion is entirely radial and consequently irrotational and the present

case in the case of spherical symmetry. The equation of continuity is

%%(rzu): 0= r?u=const.= f(t) @

On the surface of the sphere, r=R, R=v(say)

Therefore,
r2f = f(t)=R2R
. st o . , dv 5
= f()=R°R+R2RR=R a+2Rv
= m:2v2+R%:2v2+R@d—R
R dt dt
dv
=2v  + Rv— 2
it (2)

The Euler’s equation of motion, in radial direction, using ¥ =u, is

ou uau:F_i@

ot or " por

73

au o f@E)) f(@)
But —==|—=2|= ,F =—
ot at[ rzj r? = H

So, we need to integrate the Euler’s equation

f(t)+g(1uz):1_2 P )
r2 = or2 r’® o\ p

Let us assume that the cavity has cavity radius R at time tand its velocity then isR =v

. Integrating (3) over the whole liquid (r = Rtor =o0) at time t, we obtain

[e'e] 0 0 0
(=0T L] 2L o
roJe L2 L 40 el
Since the fluid is at rest at infinity, u, =0. Also p, =0, pg =0 (cavity), thus we get
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f(r)_lVZZS,u 1

R 2 4 R

dv 3u 1
2RV —+3v =-"C
- dR 2 R¥

To make it exact, we multiply by R?so that

dv

2R% — +3v% = g
dR

2R"

d(R*v?) _ _3u R%?
dR 2

Integrating, we get

R3VZ — A_ 9_/'1 R5/3
10

When R=a, R=v=0,which gives A:i—gas/e’

| using (2)

(4)

Now, we take v =R <0 because as the cavity fills, R decrease with time.

Thus (4) gives

d_R__ 9_/1 12 a5/3_R5/3 12
dt 10 R®

Therefore,
9/,[ 1/2 0 R3/2
(E} t= _Ia (a5/3 _R% )1/2
_6a%® a2
3ma*®
10
Thus,
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t = 7a%*(1042) > Hence the result.

Impulsive Motion
Impulsive motion occurs in a fluid when there is rapid but finite charge in the fluid

velocity ¢ over a short interval & of time t, or a high pressure on a boundary acting
over timed&t, or the rapid variation in the velocity of a rigid body immersed in the

fluid. Such type of actions are termed as impulsive actions.

The situation of impulsive action is effectively modeled mathematically by letting the
body force or pressure approach to infinity while &t —0 in such a way that the

integral of body force or pressure over the time interval & remains finite in this limit.

It the flow is incompressible, infinitely rapid propagation of the effect of the
impulsive action takes place, so that an impulsive pressure is produced
instantaneously throughout the fluid. Here, we consider only the incompressible fluid

with constant density p.The impulsive body force I and impulsive pressure P are

defined as
— t+ot
| = Lt Fdt
a—0
P=Lt [ pdt 1
_ét—>0 t p ( )

We note that finite body forces such as gravity do not contribute to the impulsive

body force I.
To determine the equation of impulsive motion, we consider the Euler’s equation

Dq _ddg _oq

v)i=F-1v
Dtoltat(q)q pp

Integrating w.r.t. time t from to t + &t and taking limitas & — 0, we get

t+at Dq _ t+at aq t+ot
é’tL—>t0J‘t adtZ&L—}O t ot dt+étL—1:0J‘t (qV)dt

= [MEa- L Ltj Vpdt (2)

a—0 p A—0
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Assuming that fluid is accelerated impulsively at t=0 and since we expert a finite

change in G as a result of the impulsive, we get form (1) &(2)

VP €)

Q|

where §'&(q denote respectively the fluid velocity before and after the impulsive

action.
Thus, the equation of impulsive motion is

p(G'—G) = pl —VP 4
Which holds at each point of the fluid.

In Cartesian co-ordinates, (4) can be expressed as

1 1 a
plu-u) = pX -
OX

op

p(V'-v) = pY'——

oy

1 1 a
pw-w) = pz'- 2
0z

where
g=(u,v,w), g'=U,v,w),1T=(X,Y",2Z"
when there is no externally applied impulse, then T =0 and equation (4) becomes

—VP = p(d'-0) ®)

Further, if the motion is irrotational, then G=-V¢,G'=-V¢', where ¢ &¢' denote the

velocity potential just before and just after the impulsive action, then (5) becomes

P=p(¢'—9) (6)

Where we have ignored the constant of integration since an extra pressure, constant

throughout the liquid, would not effect the impulsive motion.
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Corollary. If the fluid is at rest prior to the impulsive action, then the velocity ¢

generated in the fluid by the impulse is given by

VP @)

Q|

| In(3), putg=0&G'=q
For this case, equation (5) can be put as

~VP=pq ®)
And equation (6) becomes

P=p¢ ©)

Equations (6) &(9) give the relation between impulsive pressure P and the velocity

potential ¢.

Remark. From the above discussion, we observe that, likewise, an irrotational motion

can be brought to rest by applying an impulsive pressure — p¢ throughout the fluid.

Example. A sphere of radius ais surrounded by an infinite liquid of density p, the

pressure at infinity being I1. The sphere is suddenly annihilated. Show that the

pressure at distance r from the centre immediately falls to 7{1—3} Show further that
r

if the liquid is brought to rest by impinging on a concentric sphere of radius %, the
impulsive pressure sustained by the surface of the sphere is /7T1pa*/6.

Solution. Let v'be the velocity at a distance r'from the centre of the sphere at any

time t & p be the pressure. The equation of continuity (case of spherical symmetry) is

1d

r_'ZE(rIZ V)=0 =r%v=1() )

Equation of motion is
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| No body force
ot or' por'
or f(? +v'ﬂ =_£8_p
r or' por'

integrating w.r.t. r', we get

—E-}-EVIZZ—B-FC
r- 2 Yo,
Since r'->co=p=ILVv'=0 sothat C=I1/p.
Thus L@.}.EV&:H

=5 ; ()

When, sphere is suddenly annihilated i.e. r'=a,v'=0, p=0,then

_%:n/p ie. f(t)=—2 ©

The velocity v'vanishes just after annihilation, so from (2) &(3), we get

Ma_n-p_an_p
or Yol r

Thus, the pressure at the time of annihilation (r'=r) is

all

L n-p= p=H(1—Ej
r r

Which proves the first result.

Now, let Pbe the impulsive pressure at a distance r', then from the relation
—VP = g, we get

dpP
e — N'=dP=—pv'dr
ar N = oV ar

From the equation of continuity, we have
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riv=r?v'= f(t) (4)
So dP =—pv(r?/r?)dr (5)

Where ris the radius of the inner surface and v is the velocity there, Integrating (5),

we get
P=pv(r?/r?)+C,
When r'-o,P=0sothat C,=0
Thus P=pv(r’/r?) (6)

Equation (6) determines the impulsive pressure P at a distance r'. The velocity v at

the inner surface of the sphere (p =0) is obtained from (2) as

_m+lvz :E (7)
r 2 yo)
2
From (4), f(t):M: QY yor 8 e VAT o
dt dt dt dr dt
d
= f(t)=rv—v+2v2
dr

Thus (7) becomes

VLA S S 1
dr 2 0
or w3 I
dr 2 P
= 2r3v?+3v2r2 __ Al | Multiplying by r?
r P

d(riv’)  2Il ,

dr Jo,

Integrating, we get
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2I1a°
3p

Since r=a,v=0so we find C, =

Therefore, r’v® =2—H(a —r?)
3p

The velocity v at the surface of the sphere r = a/2, on which the liquid strikes,

is V2:2_Ha3_(a/2)3:EE
3p (@/2f  3p

2
From relation (6), using r =a/2,we get P = plalla ©)
4 pr

Which determines the impulsive pressure at a distance r’ from the centre of the

sphere.

Thus, the impulsive pressure at the surface of the radius a/2 is given by

p-~ Ega_ =/ 7l1pa 6 Hence the result

Stream Function
When motion is the same in all planes parallel to xyplane (say) and there is no

velocity parallel to the z—axis i.e. when u,v are functions of x,y,tonly and w=0,

we may regard the motion as two-dimensional and consider only the cases confined to

the xy plane. When we speak of the flow across a curve in this plane, we shall mean
the flow across unit length of a cylinder whose trace on the Xy plane is the question,

the generators of the cylinder being parallel to the z—axis.

For a two-dimensional motion in Xy plane, q is a function of x,y,tonly and the

differential equation of the streamlines (lines of flow) are
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%=% i.e. vdx—udy=0 @

and the corresponding equation of continuity is

CLIRCLA, )
ox oy
We note that equation (2) is the condition of exactness of (1), it follows that (1) must

be an exact differential, dy (say). Thus
oy oy
vdx—udy=dy =—dx+—d
y=0ay ox oy y

so that

o o

V=

oy OX

This functiony is called the stream function or the current function or Lagrange’s

stream function.

Obviously, the streamlines are given by the solution of (1)i.e. dy =0i.e. w = const.

(For unsteady flow, streamlines are given by y = f (t)

Thus, the stream function is constant along a streamline.

From the above discussion, it is clear that the existence of stream function is merely a
consequence of the continuity and incompressibility of the fluid. The stream function
always exists in all types of two dimensional motion whether rotational or irrotational.
However, it should be noted again that velocity potential exists only for irrotational

motion whether two dimensional or three dimensional.
Physical Interpretation of Stream Function:-

Let P be a point on a curve Cin xy—plane. Let an element ds of the curve makes an

angle @ with x—axis.
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v

figure 2.9

The direction cosines of the normal at Pare (cos(90+6),cos6,0) i.e.

(~sin 6,c0s,0)

The flow across the curve C from right to left is

Il
O —y

]

Il Il Il
) Sy O —y O —y

]

g.Ads, where A=—sin @i +cos@ ], G=ui+v]

(-usin @+vcosH)ds

a—l//sin 9+a—l//c059 ds u :—a—'//,v:a—l//
oy OX oy OX

6—1//%+6—Wdes cosezﬁ,sinezﬂ
ox ds ox ds ds ds
(a—wdx+a—v/dy)

OX OX
dy =(ys —w,)

where y, &y are the values of y at the initial and final points of the curve. Thus,

the difference of the values of a stream function at any two points represents the flow

across that curve, joining the two points.
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Corollary. If we suppose that the curve C be the streamline, then no fluid crosses its

boundary, then
We—wa)=0=ws =y,
i.e.  is constant along c.
Relation Between (i.e. C-R equations): ¢ & i -

We know that the velocity potential ¢ is given by

G _vg—_| 00 09

A= (ax’ayJ

i.e. u:_%’\/:_%
OX oy

Also, the stream function y is given by

From (1) &(2), we get

%:6_1// and a¢—_al//
ox oy oy OX

Equation in (3) imply

Vip=0&V’y =0
i.e. p&y are harmonic functions.
again, from (3), we get

Vé=gradg=—G=—(Ui+V])
:_(_a_‘/’ha_‘/’jj
oy X
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=V!//><|2=gradl//><lz
ie. grad ¢ =(grady) xk =—k xgrady
i.e. Vé=Viyxk 4)

Again, from (3), we note that

oy _oy(_op
ox ox oyl oy

9poy 0409 _,
oX Ox oy oy

ie. VoV =0 )

Thus, for irrotational incompressible two-dimensional flow (steady or unsteady),

#(X,¥),w(x,y) are harmonic functions and the family of curves ¢ =const.

(equipotentials) and y = const. (streamlines) intersect orthogonally.

Exercise. Show that u=2cxy,v=c(a’*+x*—y?) are the velocity components of a

possible fluid motion. Determine the stream function and the streamlines.

Remark. We shall consider the study of two dimensional motion later on. At present

we continue discussing three dimensional irrotational flow of incompressible fluids.
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Three Dimensional Irrotational Flow
Acyclic and Cyclic Irrotational Motion: An irrotational motion is called acyclic if

the velocity potential ¢ is a single valued function i.e. when at every field point, a

unique velocity potential exists, otherwise the irrotational motion is said to be cyclic.

Clearly, only acyclic irrotational motion is possible in a simply connected region.

For a possible fluid motion, even if ¢ is multivalued at a particular point, the velocity
at that point must be single-valued. Hence if we obtain two different values of ¢,

these values can only differ by a constant.

At present, we restrict ourself to acylic irrotational motion for which we prove a

number of results related to ¢.
Mean Value of Velocity Potential Over Spherical Surfaces:
Theorem: The mean value of a ¢ over any spherical surface S drawn in the fluid

throughout whose interior V?¢=0, is equal to the value of ¢at the centre of the

sphere.

>

figure 2.10

Proof. Let ¢(P) be the value of ¢ at the centre P of a spherical surface S of radius r,
wholly lying in the liquid and let ¢ denotes the mean value of @over S. Let us draw

another concentric sphere of unit radius. Then a cone with vertex P which
intercepts area dsfrom the sphere S, intercepts an area dw from the sphere wand we

have
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2
:—Sz%:dszrzda) 0
74

Now, by definition

@:ijﬁdw:i e
or Az or 4y or r?

S

_ 12J'%dsz> o _1 %da):i %d_f 2)
Anr® ¢ or or Argor drgorr
Since the normal A to the surface is along the radiusr, therefore on'S , we have
op 0@ A
—=—=V¢AN 3
or on ¢ ®

From (2) &(3), we find

op 1 .
—= V¢.NdS
or 47zr2£ /
_ 1 jdiv(V¢)dr | Gauss theorem
4ar?
1 2 _0 2 _0
:47zr2J.V¢dT_’ | Vig=

where 7 is the volume enclosed by the surface S.

Thus (2—¢:0 = ¢ = const.
r

97




This shows that ¢ is independent of choice of rand hence mean value of ¢is same

over all spherical surfaces having the same centre P. When S shrinks to point P,

then ¢ = ¢(P)

Corollary. The velocity potential ¢ cannot have a maximum or minimum value in the

interior of any region throughout which V?¢=0.

Proof. If possible suppose that ¢ has a maximum value ¢(P) at a pointP . We draw
a sphere with centre P and radiuse, where eis small. Then the mean value ¢ of ¢
must be less than ¢(P) i.e. ¢ <@(P) as ¢(P)is maximum. This is a contradiction to
the mean potential theorem in whichg =¢(P). Thus ¢ cannot have a maximum
value. Similarly ¢ cannot have a minimum value.

Theorem: In an irrotational motion the maximum value of the fluid velocity

occurs at the boundary.
Proof. Let P be any interior point of the fluid and Q be a neighbouring point also

lying in the fluid. Let us take the direction of x —axis along the direction of ¢ at P.

Let g, &q,denote the speed of particles at P &Q respectively.

figure 2.10

2
Then e’ = (%j
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and q 2:(%j2+ o 27{%)2
* \ax)y \oy), \az)g

Since V2¢=O:>£(V2¢)=0:>V2(%j=0
OX OX

o o9

= x satisfies Laplace equation. Therefore, by mean value theorem (corollary), x
X X

cannot be maximum or minimum at P. Thus, there are points such as Q in the

neighbourhood of P such that

2 2
() 5] =
OX Jo \OXJp
:>qQ2 cannot be maximum in the interior of fluid and its maximum value |q |, if any,

must therefore occur on the boundary.

Note. q=|G|may be minimum in the interior of the fluid as q =0at the stagnation

point. i.e. g in minimum at stagnation points.

Corollary. In steady irrotational flow, the pressure has its minimum value on the

boundary.

Proof. From Bernoulli’s equation, we have

B+%q2 = const. @

o,

Equation (1) shows that pis least when q*is greatest and by above theorem, q*is
greatest at the boundary . Thus, the minimum value of p must occur only on the

boundary.
Note. The maximum value of p occurs at the stagnation points, where ¢ = 0.

Theorem. If liquid of infinite extent is in irrotational motion and is bounded

internally by one or more closed surfaces S, the mean value of ¢ over a large sphere

¥, of radius R, which enclosed S, is of the form
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- M
=—+C
¢ R
where M & C are constant, provided that the liquid is at rest at infinity.

Proof. Suppose that the volume of fluid acrossing each of internal surfaces contained

within X, per unit, is a finite quantity say —4zM (i.e. —47M represent the flux of fluid
0¢

across X is R radially outwards, the equation of continuity gives

[ 9 45 = aam M
L R

But d> =R%dw

figure 2.11

Therefore,

475 OR
1 (04 —-M
miRITR
ﬂ-Z
1 0 -M
= ——|ddo=
47[8RI¢d R?

Integrating w.r.t. R, we get
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1 M
— | do=—+C
472'-£¢d R

where Cis independent of R

S R
[ gz
= —=—+C
47R R
jqz:%m 2)

To show that Cis an absolute constant, we have to prove that it is independent of co-
ordinates of centre of sphere . Let the centre of the sphere X be displaced by distance
oxin an arbitrary direction while keeping R constant, then from (2),

8¢ _oC

OX  OX ®)

| ~.-Ris constant

;ﬁdw}=i a—¢dw=0,

ox  ox| 4n 475 OX

A,

Also, %=i{ ! j

since g—f =0o0n Xwhen R — ooas the liquid is at rest at infinity.

.. From (3), we get

oC

8_ =0= C s an absolute constant.
X

- M
Hence, ¢ :E+C’ where
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