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Fluid Dynamics 

UNIT-II: Pressure at a point of moving fluid, Euler equation of motion, Equations of 

motion in cylindrical and shperical polar co-ordinates, Bernoulli equations, Impulsive 

motion, Kelvin circulation theorem, Vorticity equation, Engery equation for 

incompressible flow, Kinetic energy of irrotational flow, Kelvin minimum energy 

theorem, Kinetic energy of infinite fluid, Uniqueness theorem.  

2.1:. Pressure at a point of a Moving Fluid 

Let P be a point in a ideal (inviscid) fluid moving with velocity .q


 We insert an 

elementary rigid plane area A into this fluid at point P . This plane area also moves 

with the velocity q


of the local fluid at .P  

If F


 denotes the force exerted on one side of A by the fluid particles on the other 

side, 

 

Then this force will act normal to .A  

Further, if we assume that 
A

F
Lim
A 







0
 exists uniquely, then this limit is called the 

(hydrodynamic) fluid pressure at point P and is denoted by .p  

A  

F


  

figure 2.1 
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Theorem:-Prove that the pressure p at a point P in a moving inviscid fluid 

is same in all direction. 

Proof:- Let q


be the velocity of the fluid. We consider an elementary tetrahedron 

PQRSof the fluid at a point P of the moving fluid. Let the edges of the tetrahedron be 

,xPQ  ,yPR  zPS  at time ,t where x , ,y z are taken along the co-ordinate 

axes OZOYOX ,, respectively. This tetrahedron is also moving with the velocity q


of 

the local fluid at .P  

Let p be the pressure on the face QRS where area is .s Suppose that  nml ,, are the 

d.c.’s of the normal to s drawn outward from the tetrahedron. 

 

Then, 

  sl projection of the area s on yz plane. 

                          = area of face PRS (triangle) 

                          =
22

1 zy
zy


   

Similarly,  sm = area of face PQS =
22

1 xz
xz


   

and,   sn = area of face PQR =
22

1 yx
yx


   

Z 

x

y

 
z y  

z  
P 

Y 

X 

Q 

S 

R 

figure 2.2 
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The total force exerted by the fluid, outside the tetrahedron, on the face QRS is  

  )ˆˆˆ( knjmilsp    

  )ˆˆˆ( ksnjsmislp    

  
)ˆˆˆ(

2
kyxjxzizy

p
 

 

Let 
zyx ppp ,,  be the pressures on the faces .,, PRQPQSPRS  The force exerted on 

these faces by the exterior fuid are kyxpjxzpizyp zyx
ˆ

2

1
,ˆ

2

1
,ˆ

2

1
  respectively. 

Thus, the total surface force on the tetrahedron is  

 
)ˆˆˆ(

2
kyxjxzizy

p
  kyxpjxzpizyp zyx

ˆ
2

1ˆ
2

1ˆ
2

1
 

 

 








 kyxppjxzppizypp zyx

ˆ)(
2

1ˆ)(
2

1ˆ)(
2

1


                              

)1(  

In addition to surface force (fluid forces), the fluid may be subjected to body forces 

which are due to external causes such as gravity. Let F


be the mean body force per 

unit mass within the tetrahedron. 

Volume of the tetrahedron PQRS is sh
3

1
i.e. ,

6

1
zyx  where h is the perpendicular 

from P on the face .QRS  

Thus, the total force acting on the tetrahedron PQRS is zyxF 


6

1


  
)2(  

Where  is the mean density of the fluid. 

From ),2(&)1(  the net force acting in the tetrahedron is 









 kyxppjxzppizypp zyx

ˆ)(
2

1ˆ)(
2

1ˆ)(
2

1
 zyxF 



6

1
  
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Now, the acceleration of the tetrahedron is 
Dt

qD


 and the mass zyx 
6

1
of fluid 

inside it is constant. 

Thus, the equation of motion of the fluid contained in the tetrahedron is  

 







 kyxppjxzppizypp zyx

ˆ)(
2

1ˆ)(
2

1ˆ)(
2

1
 zyxF 



6

1


                                       











Dt

qD
zyxF




6

1

                                          

 

    
)( amf



 

i.e.      ksnppjsmppislpp zyx
ˆ)(ˆ)(ˆ)(   hsF



3

1
 










Dt

qD
sh




3

1
 

on dividing by s and letting the tetrahedron shrink to zero about ,P in which case 

,0h it follows that 

  
0,0,0  pppppp zyx  

i.e.     pppp zyx 
                                                                                 

)3(  

Since the choice of axes is arbitrary, the relation )3(  establishes that at any point P  

Of a moving ideal fluid, the pressure p is same in all direction. 

Equation of Motion 

Euler’s Equation of Motion of an Ideal Fluid (Equation of Conservation of 

Momentum). 

To obtain Euler’s dynamical equation, we shall make use of Newton’s second law of 

motion.Consider a region  of fluid bounded by a closed surface S  which consists of 

the same fluidparticle at all times. Let q


be the velocity and  be the density of the 

fluid. 
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Then d is an element of mass within S and it remains constant 

The linear momentum of volume  is 

  



dqM


| momentumvelocitymass   

Rate of change of momentum is 

  
 
 

 d
dt

qd
dq

dt

d

dt

Md





      

)1(  

The fluid within  is acted upon by two types of forces. 

The first type of forces are the surface forces which are due to the fluid exterior to . 

Since the fluid is ideal, the surface force is simply the pressure p directed along the 

inward normal at all point of .S  

The total surface force on S is 

  
 


pddSnpdSnp
SS

ˆ)ˆ(

        

).( TheoremdivGaussBy       )2(  

The second  type of forces are the body forces which are due to some external agent. 

Let F


be the body force per unit mass acting on the fluid. Then dF


is the body 

force on the element of mass d and the total body force on the mass within  is 

  



dF


                                                                                               )3(  

n̂  

S 

p 
  

figure 2.3 
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By Newton’s second law of motion, we have 

Rate of change of momentum forcetotal  

   


d
dt

qd





dF





pd  

   0











 dF
dt

qd 

 

Since d is arbitrary, we get  0  F
dt

qd 

 

i.e.              



1
F

dt

qd 

                                                                                  )4(  

which holds at every point of the fluid and is known as Euler’s dynamical equation 

for an ideal fluid. 

Remark.: The above method for obtaining the Euler’s equation of motion, is also 

known as flux method. 

Other Forms of Euler’s Equation of Motion. 

)(i  We know that 

 





 .q

tDt

D

dt

d 
 

 Therefore equation )4( becomes 

 

pFqq
t

q








1
).(




                                                                                 )5(  

But  qcurlqqqq










  ,

2

1
).( 2  

Therefore, Euler’s equation becomes 

 






t

q


qq










 2

2

1
pF 



1
                                                                )6(  

Equation )6( is called Lamb’s hydrodynamical equation. 
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)(ii Cartesian Form 

Let ,&),,(),,,( 























z

p

y

p

x

p
pZYXFwvuq


 

Then equation )5( gives 

x

p
X

z

u
w

y

u
v

x

u
u

t

u



























1
 

y

p
Y

z

v
w

y

v
v

x

v
u

t

v



























1

                                                                           

)7(

z

p
Z

z

w
w

y

w
v

x

w
u

t

w



























1
 

Equation )7( are the required equations in Cartesian form of Euler's equations. 

)(iii Equation of Motion in Cylindrical Co-ordinates. ).,,( zr   

Here,         ),,(),,,( dzrddrrdwvuq 


 

  






















z

pp

rr

p
p ,

1
,


 

Let   ),,( zr FFFF 


 

Also, the acceleration components in cylindrical co-ordinates are 

 










dt

dw

r

uv

dt

dv

r

v

dt

du

dt

qd
,,

2

 

Thus, the equation of motion 

 





1
F

dt

qd 

  becomes 

  r

p
F

r

v

dt

du
r







12

 

  







p

r
F

r

uv

dt

dv 1

                                                                       

)8(  
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  z

p
F

dt

dw
z







1
 

)(iv Equations of Motion in Spherical co-ordinates ).,,( r  

Here,           )sin,,(),,,(  drrddrrdwvuq 


 

  
























p

r

p

rr

p
p

sin

1
,

1
,

 

Let   ),,(  FFFF r


 

Also, the acceleration components in spherical co-ordinates are 

 













r

vw

dt

dw

r

uv

r

w

dt

dv

r

wv

dt

du

dt

qd  cot
,

cot
,

222

 

Thus, the equation of motion take the form 

 r

p
F

r

wv

dt

du
r











122

 

 









p

r
F

r

uv

r

w

dt

dv 1cot2

                                                                  

)9(  

 









p
F

r

vw

dt

dw 1cot
 

Remark:- The two equations, the equation of continuity and the Euler’s equation of 

motion, comprise the equations of motion of an ideal fluid. Thus the equations 

      
0)( 




qdiv

t





 

And                               pFqq
t

q








1
).(




 

Are fundamental to any theoretical study of ideal fluid flow. These equations are 

solved subject to the appropriate boundary and initial conditions dictated by the 

physical characteristics of the flow. 
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Lagrange’s Equation of Motion: Let initially a fluid element be at ),,( cba at time 

0tt   when its volume is 0dV  and density is .0  After time ,t  let the same fluid 

element be at ),,( zyx  when its volume is dV and density is .  The equation of 

continuity is 

   0 J
                                                                                   

)1(  

Where                    
),,(

),,(

cba

zyx
J




  

The components of acceleration are 

   
,

2

2

t

x
x




 ,

2

2

t

y
y






2

2

t

z
z






 

Let the body force F


be conservative so that we can express it in terms of a body 

force potential function  as 

   F


                                                                                )2(  

By Euler’s equation of motion, 

   





11
pF

dt

qd 

                                              

)3(  

Its Cartesian equivalent is  

   xxt

x













 



1
2

2

 

   yyt

y













 



1
2

2

                                                               

)4(  

   zzt

z













 



1
2

2

 

We note that tcba ,,,  are the independent variables and our object is to determine 

zyx ,, in terms of tcba ,,,  and so investigate completely the motion. 
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To deduce equations containing only differentiations w.r.t. the independent variables 

tcba ,,,  we multiply the equations in )4( by ,ax  ,ay  az   and add to get 

 aaa

z

t

z

a

y

t

y

a

x

t

x



































 



1
2

2

2

2

2

2

 

 bbb

z

t

z

b

y

t

y

b

x

t

x



































 



1
2

2

2

2

2

2

                                                     

)5(  

 ccc

z

t

z

c

y

t

y

c

x

t

x



































 



1
2

2

2

2

2

2

 

This equation )5(  together with equation )1(  constitute Lagrange’s Hydrodynamical 

Equations. 

Example: A homogeneous incompressible liquid occupies a length l2 of a straight 

tube of uniform small bore and is acted upon by a body force which is such that the 

fluid is attracted to a fixed point of the tube, with a force varying as the distance from 

the point. Discuss the motion and determine the velocity and pressure within the 

liquid. 

Solution. We note that the small bore of the tube permits us to ignore any variation of 

velocity across any cross-section of the tube and to suppose that the flow is 

unidirectional. 

Let u be the velocity along the tube and p be the pressure at a general point P at 

distance x from the centre of force .O  Also, let h be the distance of the centre of  

mass G of the fluid, as shown in the figure. 
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Equations of  motion of the fluid are : 

)(i  Equation of Continuity  

 Here, )0,0,(uq 


 

Therefore, equation of continuity becomes 

 
)(0 tuu

x

u





                                                                                           )1(  

)(ii Euler’s Equation 

In this case, it becomes        
x

p
x

x

p
X

x

u
u

t

u

























11
 

 x

p
x

t

u














1
 |using )1(                                                              )2(  

Where ixˆ is the body force per unit mass,  being a positive constant. 

We observe that equation )2( can be written as 

  dx

dp
x

dt

du




1


 

                                                                             )3(  

Integrating w.r.t. ,x we get 

P G 

h 

x 

î  

l  l  

O 

figure 2.4 
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C
px

dt

du
x 




2

2

                                                                       )4(  

Where C  is a constant and at most can be a function of t  only w.r.t. ),,( zyx  

Let   be the pressure at the free surfaces lhx  , and lhx  of the liquid. 

Then using these boundary conditions, equation )4( becomes 

  

Clh
dt

du
lh 





 2)(
2

1
)(

 

  

Clh
dt

du
lh 





 2)(
2

1
)(

 

Which on subtraction give 

   
h

dt

du
                                                                               )5(  

But in the fluid motion all fluid particles move with the same velocity u and 
dt

dh
u   

Equation )5( becomes 

   
h

dt

hd


2

                                                                             )6(  

Now, we solve the different equation ),6( which can be written as 

   0)( 2  hD   

Here auxiliary equation is  

   iDD 2
1

2 )(0    

Therefore, the solution of )6( is 

   





  tAh 2

1

)(cos   

Where &A are constants which can be determined from initial conditions. 
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To Calculate Pressure:-   We have from )5(&)3(  

   

h
dx

dp
x 


 

1
 

   

)(
1

xh
dx

dp
 


 

Integrating w.r.t. ,x we get 

   

D
xhp







)1(2

)( 2


                                                              )7(  

The boundary condition  plhx ,  gives 

   

D
l







2

2




 

i.e.                          
2

2l
D 





  

Therefore, equation )7( becomes 

  22

)( 22 lxhp 










  

  

 22)(
2

lxh 






 

Example. Homogeneous liquid is in motion in a vertical plane, within a curved tube 

of uniform small bore, under the action of gravity. Calculate the period of oscillation. 

Solution. Let O  be the lowest point of the tube, AB the equilibrium level of the liquid 

and h the height of AB above O . Let & be respectively the inclinations of the 

tube to the horizontal at &&BA be the inclination of the tube at a distance s along 

the tube form O . Let ba& denote the arc length of OBOA& respectively and suppose 

that at time ,t the liquid is displaced through a small distance z along the tube form 

its equilibrium position. 
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Due to the assumption of uniform small bore the flow is unidirectional along the tube.

 

Let the velocity be ),( tsu  

The equation of continuity gives 0




s

u
                                                                    )1(  

 u is independent of s

 

Euler’s equation of motion becomes 

  s

p
g

s

u
u

t

u


















1
sin  

Using equation ),1( this gives 

  
s

p
g

t

u

dt

du














1
sin

 

i.e.                   
s

p
g

dt

du








1

sin

 

                                                                        )2(  

integrating it w.r.t. ,s we find 

  C
p

gy
dt

du
s 


                                                                           )3(  

Y 

O 

 

A 

    

N 

s 

h 

z 

M 

B 

  

z 

figure 2.5 
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Where C may be a function of time t  at the most 

 

The boundary conditions at free surface are 

MatzaOMszhyforpi  ,sin)(   

  NatzbOMszhyforpii  ,sin)(   

Using these boundary conditions in )3( , we get 

 

Czhg
dt

du
za 





 )sin()(  

 

Czhg
dt

du
zb 





 )sin()(  

Subtracting these we get 

 
)sin(sin)(   gz

dt

du
ba                                                                       )4(  

Since  

  dt

dz
u 

2

2

dt

zd

dt

du


 

Equation )4( becomes 

  )sin(sin)(
2

2

  gz
dt

zd
ba  

z
dt

zd


2

2

                                                                               )5(  

dy 

dx 

ds 

 

figure 2.6 
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where                       
ba

gz






)sin(sin 
  

We observe that equation )5( represents the simple harmonic motion. It’s period T is 

given by 

  

2

1

)sin(sin
2

2





















g

ba
T  

Example: A sphere of radius ,R whose centre is at rest, vibrates radically in an 

infinite incompressible fluid of density , which is at rest infinity. If the pressure at 

infinity is , show that the pressure at the surface of the sphere at time t  is 

 






















2

2

22

2

1

dt

dR

dt

Rd
  

If ),cos2( ntaR   show that, to prevent cavitation in the   must not be less than 

.3 22na  

Solution. Here the motion of the fluid will take place in such a manner so that each 

element of the fluid moves towards the centre. Hence the free surface should be 

spherical. Thus the fluid velocity vwill be radial and hence vwill be function of r

(the radial distance from the center of the sphere which is taken as origin), and time t  

only. Let p be pressure distance .r  Let P be the pressure on the surface of the sphere 

of radius and V be the velocity there, Then the equation of continuity is  

    tFVRvr  22
                                                                    (1) 

From ),1(   2

)(

r

tF

t

v









 

Again equation of motion is  

     r

p

r

v
v

t

v

















1
                                                                        (2) 

Or                        
r

p
v

rr

tF


























1

2

1)( 2

2
              [using )2( ]                           (3) 
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Integrating with respect to )3(,r reduces to 

  

C
p

v
r

tF









2

2
'

2

1)(
 

When ,' r  then  pv &0'  so that 


C  

  


p
v

r

tF 





 2

2
'

2

1)(
 

Or                 












 2

2
'

2

1)(
2

2

1
v

r

tF
p                                                                  (4) 

But VvPp  '& when .' Rr   Hence )4( gives 

  

  







 

2
')('

2

2

1
VtF

R
P Rr

                                                     

)5(  

Also                 .dtdRV   Hence using ),1( we have 

  )()(' 2
' VR

dt

d
tF Rr  
























dt

dRR

dt

d

dt

dR
R

dt

d 2
2 .

2
 

 dt

dR

dt

dR

dt

RdR 2

2

22

2

1

2


2

2

22

2










dt

dR
R

dt

RdR
 

Using the above values of V and   )5(,)('
' Rr

tF
  reduces to  

 













































22

2

22

2

2

2

1

dt

dR

dt

dR
R

dt

RdR

R
P 

 

Or         





















2

2

22

2

1

dt

dR

dt

Rd
P                                                               )6(  

Second Part: From .,''2 constvr  we conclude that 'v is maximum when 'r is 

minimum i.e. .' Rr  Hence pressure is minimum on Rr '  by using Bernoulli’s 

theorem  
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Given                             ntaR cos2 
                                                                   

 7  

                            ntandtdR sin  

and                             ntnnta
dt

dR
sincos22 2

2

  

                                ntnantntna
dt

dR 22222
2

sin2coscos22   

with the above values,  6  reduces to 

     ntntnantnaP 222222 coscos2sin23                          
 8

 

From   R,7 varies from a3 to .a Thus the sphere has the greatest radius ,3a there is a 

possibility of a cavitation there because pressure would be minimum there. Hence the 

minimum value of pressure  sayP'  on the surface of the sphere is given by replacing 

0t or mnt 2 in  .8 We thus obtain 

   
223' naP                                                                         9  

To prevent cavitation in the fluid. 'P givn by  9  must be positive i.e.   must not be 

less than .3 22na  

Example: Liquid is contained between two parallel planes, the free surface is a 

circular cylinder of radius a whose axis is perpendicular to the planes. All the liquid 

within a concentric circular cylinder of radius b is suddenly annihilated ; prove that if 

be the pressure at the outer surface, the initial pressure at any point on the liquid 

distant r from the centre is  .
loglog

loglog

ba

br




  

Solution. Here the motion of the liquid will take place in such a manner so that each 

element of the liquid moves towards the axis of the cylinder 'v will be radial and 'v

will function of 'r The radial distance from the cylinder bz ||  which is taken as 
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origin) and time t only. Let p be the pressure at a distance '.r Then the equation of 

continuity is  

    
 tFvr ''                                                                      1  

From  ,1
   '

)('

'

'

r

tF

t

v





                                                                  2  

The equation of motion is  

                                             
r

p

r

v
v

t

v

















1
 

Or                                      
r

p
v

rr

tF


























1

2

1)( 2

2
              [using )2( ] 

Integrating,    

    

  C
p

vrtF 


2'
2

1
'log'                                           3  

Initially when  .0'r  then Ppv  &0'  

      C
p

rF 


'log0'                                                   4  

again ,  P when ar '  and 0P when br '  

    CaF 





log0'  and   CbF log0'                                          5  

Solving  5  for   ,&0' CF  we have 

  
 

,
log

log
ba

bC



  

 
,

log
0'

ba
F






 

Putting these values in  4 , we get  

  
   ba

b
r

ba

P

log

log
'log

log 






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   





ba

br
P

log

log'log

ba

br

loglog

log'log




                                                   6  

For the required result, replace 'r by r in  6 . 

Example: A spherical hollow of radius a initially exists in an infinite fluid, subject to 

constant pressure at infinity. Show that the pressure that distance r' from the centre 

when the radius of the cavity is r is to the pressure at infinity as 

  
4233333342 '3:)(')4('3 rrrrarrarr   

Solution: Let 'v be the velocity at a distance 'r at any time t and p be the pressure 

there. Again, let v be the velocity of the inner surface of radius .r Then the equation of 

continuity is  

    vrtFvr 22 ''                                                                                    1  

From  1 ,                                
 
2'

''

r

tF

t

v





                                                                  2  

The equation of motion is 

   '

1

'

'
'

'

r

p

r

v
v

t

v
















 

or   
'

1
'

2

1

''

)(' 2

2 r

p
v

rr

tF




















                      Using )2(  

Integrating,  

   '

1

'

)('

r

p

r

tF







 

Bernoulli’s Equation (Theorem) 
For Steady Flow. We shall obtain a special form of Euler’s dynamical equation in 

terms of pressure. The Euler’s dynamical equation is 

   

pF
dt

qd




1

                                                                         1  
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Where q


is velocity, F


is the body force, p and  are pressure and density 

respectively. 

F


be conservative so that it can be expressed in terms of a body force potential 

function   as  

   F


                                                                                 2  

When the flow is steady, then 0




t

q


                                                                        3  

Therefore, in case of steady motion with a conservative body force equation  ,1 on 

using  2 &  3 , gives 

   

pqq 











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1 2


 

   
qq

t

q

dt

qd 


 ).( 



  

  

0&
2

1 2 



















t

q
qq

t

q

dt

qd
or 


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   












 qpq

1

2

1 2                                                           4  

Further, if we suppose that the liquid is barotropic i.e. (density is a function of 

pressure p only), then we can write 

   



dp
p

1

 

Using this in ),4( we get 

   














  q

dp
q2

2

1
                                                    )5(  

Multiplying )5(  scalarly by q


and nothing that 

   ,0).().(  


qqqq  we get 
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0
2

1
. 2 








  

dp
qq


                                                       )6(  

If ŝ is a unit vector along the streamline through general point of the fluid and s

measures distance along this stream line, then since ŝ is parallel to ,q


therefore 

equation )6( gives 

  ŝ is parallel to q


 

  

0
2

1 2 












 

dp
q

s


skq ˆ


 

  s
s




ˆ  

Hence along any particular streamline, we have 

  
  C

dp
q



2

2

1 

                                                                           

)7(  

Where C is constant which takes different values for different stremlines. Equation 

)7( is known as Bernoulli’s equation. This result applies to steady flow of ideal 

barotropic fluids in which the body forces are conservative. 

Now, if ŝ is a unit vector taken along a vortexline, then, similarly, we get 

  C
dp

q


2

2

1 
 along any particular vortexline. (Here,we multiply scalarly by 


) 

Remark. 

(i) If 0


q  i.e. if 


&q are parallel, then streamlines and vortex lines coincide and 

q


is said to be Beltrami vector. 

If ,0


 the flow is irrotational 

For both of these flow patterns, 

  
  C

dp
q



2

2

1 
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where C is same at all points of the fluid. 

(ii) For homogeneous incompressible fluids,  is constant and 

  
 



pdp
 

The Bernoulli’s equation becomes  

  

Cq
p

 2

2

1 

  

So that if q


is known, the pressure can be calculated. 

For Unsteady Irrotational Flow.  

Here also, we suppose that the body forces are conservative i.e. F


 

For irrotational flow, 0 qq


  

The equation of motion 
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In the present case becomes, 
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




  t

dp
q
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


                                     | Barotropic fluid. 

Integrating, we get  

  
 




 )(

2

1 2 tf
t

dp
q






                                                                2  

Which is the required equation. 

If the liquid is homogeneous, then  


pdp
 and the equation  2 become 
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)(
2

1 2 tf
t

p
q 




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





 

Further, for study case,  

  
.)(,0 consttf

t





 

  

.
2

1 2 const
p

q 



 

Example: A long straight pipe of length L has a slowly tapering circular cross section. 

It is inclined so that its axis makes and angle  to the horizontal with its smaller 

cross-section downwards. The radius of the pipe at its upper end is twice that of at its 

lower end and water is pumped at a steady rate through the pipe to emerge at 

atmospheric pressure. It the pumping pressure is twice the atmospheric pressure, show 

that the fluid leaves the pipe with a speed U give by 

 

,sin
25

322








 



gLU

 

where   is atmospheric pressure. 

Solution. The assumption that the pipe is slowly tapering means that any variation in 

the velocity over any cross-section can be ignored. Let the velocity at the wider end of 

the pipe be V and the emerging velocity be U (velocity at the lower end). The only 

body force is that of gravity, so jgF ˆ


and consequently gy  
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Bernoulli’s equation, Cq
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                   | For water  is const. 

Becomes Cgyq
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 2
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
 

Applying this equation of the two ends of the pipe, we get 
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)2(  | for lower end 0y  

Let a and a2  be the radii of the lower and upper ends respectively, then by the 

principle of conservation of mass 

  UaVa 22)2(    
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From ),3(&)2( we obtain 
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Hence the result. 
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Example: A straight tube ,ABC of small bore, is bent so as to make the angle ABC  a 

right angle and AB equal to .BC  The end C is closed and the tube is placed with end 

A upwards and AB vertical, and is filled with liquid. If the end C be opened, prove 

that the pressure at any point of the vertical tube is instantaneously diminished one-

half. Also find the instantaneous change of pressure at any point of the horizontal 

tube, the pressure of the atmospheric being neglected. 

Solution.  Let aBCAB   

When the liquid in AB has fallen through a distance z at time ,t then let P be any 

point in the vertical column such that 

  zaBMxBPzAM  ,,  If pu & be the velocity and pressure at 

,P then equation of motion is 

  x

p
g

x

u
u

t

u

















1
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)1(             

and equation of continuity is 

  
0
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

x

u
  i.e. )(tuu   

Therefore, equation )1( becomes 
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Integrating w.r.t. ,x we get 
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Using the boundary condition 0p at ,zax  we get  
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Therefore, equation )2( becomes 
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Now, we take a point Q in ,BC where 'xBQ  and let ',' pu  be the velocity and 

pressure at ,Q then 
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equating the pressure at B , when 0',0  xx , we get 
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figure 2.7 
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Initially, when C is just opened, then 0,0  tz  and we have 
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Therefore, from equation )3( , initially, the pressure at P is given by 
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But when the end C is closed, the liquid is at rest and the hydrostatic pressure at P  

   
)(1 xagghp                       | xaAPh               )7(  

From )7(&)6( , we get 
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Thus, the pressure is diminished to one-half. 

Now, form )4( , initial pressure at Q is given by 
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When the end C is closed, the initial pressure (hydrostatic) 2p at Q (or B orC ) is ga  
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Therefore, instantaneous change in pressure 

   
)'(

2

1
)'(

2

1
'02 xagxaggapp    

Example: A sphere is at rest in an infinite mass of homogeneous liquid of density  , 

the pressure at infinity being  . Show that, if the radius R of the sphere varies in any 

manner, the pressure at the surface of the sphere at any time is 
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Solution. In the incompressible liquid, outside the sphere, the fluid velocity q will be 

radial and thus will be a function of r , the radial distance from the centre of the 

sphere (the origin), and time t only. 

               The equation of continuity in spherical polar co-ordinates becomes 
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   i.e. spherical symmetry 
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On the surface of the sphere, 

   RuRr  ,  

Therefore, 

   RRtf 2)(   

and thus 
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   RRur 22                                                                                )2(  

 

We observe that  rasu 0 , as required     

From )1( , it is clear that 0


qcurl  

   the motion is irrotational and q

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The pressure equation for irrotational non-steady fluid motion in the absence of body 

forces is 
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where  tC  is a function of time t . 

 As r , p , 0,02  rfu  

So that   


tC  for all t                                                                             )5(  

Therefore, from )5(&)4(),3(),2( , we get 
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figure 2.8 
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At the surface of the sphere, we have Rr   and equation )6( gives 
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Now, 
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Therefore, from )7( , we obtain 
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Hence the result. 

Example: An infinite mass of ideal incompressible fluid is subjected to a force 
37r

per unit mass directed towards the origin. If initially the fluid is at rest and there is 

cavity in the form of the sphere ar  in it, show that the cavity will be completely 

filled after an interval of time   .10
2135 

a  
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Solution. The motion is entirely radial and consequently irrotational and the present 

case in  the case of spherical symmetry. The equation of continuity is 
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On the surface of the sphere, )(, sayvRRr    
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The Euler’s equation of motion, in radial direction, using ur  , is 
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So, we need to integrate the Euler’s equation 
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Let us assume that the cavity has cavity radius R at time t and its velocity then is vR 

. Integrating )3( over the whole liquid )(  rtoRr at time t , we obtain  
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Since the fluid is at rest at infinity, 0u . Also 0,0  Rpp (cavity), thus we get 
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To make it exact, we multiply by 2R so that 
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Integrating, we get 
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Now, we take 0 Rv because as the cavity fills, R decrease with time. 

Thus )4( gives 
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    2135 10


 at  Hence the result. 

Impulsive Motion 
Impulsive motion occurs in a fluid when there is rapid but finite charge in the fluid 

velocity q


 over a short interval t of time t , or a high pressure on a boundary acting 

over time t , or the rapid variation in the velocity of a rigid body immersed in the 

fluid. Such type of actions are termed as impulsive actions. 

The situation of impulsive action is effectively modeled mathematically by letting the 

body force or pressure approach to infinity while 0t  in such a way that the 

integral of body force or pressure over the time interval t remains finite in this limit. 

It the flow is incompressible, infinitely rapid propagation of the effect of the 

impulsive action takes place, so that an impulsive pressure is produced 

instantaneously throughout the fluid. Here, we consider only the incompressible fluid 

with constant density . The impulsive body force I


and impulsive pressure P are 

defined as 
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We note that finite body forces such as gravity do not contribute to the impulsive 

body force .I


 

To determine the equation of impulsive motion, we consider the Euler’s equation 
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Integrating w.r.t. time t  from to tt  and taking limit as ,0t  we get  
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Assuming that fluid is accelerated impulsively at 0t  and since we expert a finite 

change in q


as a result of the impulsive, we get form )2(&)1(  
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where qq


&' denote respectively the fluid velocity before and after the impulsive 

action. 

Thus, the equation of impulsive motion is  

  PIqq 


 )'(                                                                             )4(  

Which holds at each point of the fluid. 

In Cartesian co-ordinates, )4(  can be expressed as 
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when there is no externally applied impulse, then 0


I  and equation )4( becomes 
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Further, if the motion is irrotational, then ,'',   qq


 where '& denote the 

velocity potential just before and just after the impulsive action, then )5(  becomes 

  )'(  P                                                                                        )6(  

Where we have ignored the constant of integration since an extra pressure, constant 

throughout the liquid, would not effect the impulsive motion. 
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Corollary. If the fluid is at rest prior to the impulsive action, then the velocity q


 

generated in the fluid by the impulse is given by           
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For this case, equation )5(  can be put as 
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And equation )6( becomes 

  P                                                                                               )9(  

Equations )9(&)6( give the relation between impulsive pressure P and the velocity 

potential .  

Remark. From the above discussion, we observe that, likewise, an irrotational motion 

can be brought to rest by applying an impulsive pressure   throughout the fluid. 

Example. A sphere of radius a is surrounded by an infinite liquid of density , the 

pressure at infinity being .  The sphere is suddenly annihilated. Show that the 

pressure at distance r from the centre immediately falls to .1 
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a
  Show further that 

if the liquid is brought to rest by impinging on a concentric sphere of radius ,
2

a
 the 

impulsive pressure sustained by the surface of the sphere is .67 2a  

Solution. Let 'v be the velocity at a distance 'r from the centre of the sphere at any 

time pt & be the pressure. The equation of continuity (case of spherical symmetry) is  
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Equation of motion is  
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integrating w.r.t. ,'r we get 
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Since   0','  vpr  so that .C  

Thus   


p
v

r

tf 


 2'
2

1

'

)(
                                                                        )2(  

When, sphere is suddenly annihilated i.e. ,0,0','  pvar then 

  


a

tf )(
    i.e.   



a
tf


)(

                                                    

)3(  

The velocity 'v vanishes just after annihilation, so from ),3(&)2( we get 

                            

p

r

a 




'
p

r

a





'
 

Thus, the pressure at the time of annihilation )'( rr  is  

                             
p

r

a




'










r

a
p 1  

Which proves the first result. 

Now, let P be the impulsive pressure at a distance ,'r  then from the relation 

,qP


 we get 

  
'

'
v

dr

dP
 ''drvdP   

From the equation of continuity, we have 
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  )(''22 tfvrvr                                                                                  )4(  

So           ')'( 22 drrrvdP                                                                             )5(  

Where r is the radius of the inner surface and v is the velocity there, Integrating )5( , 

we get 

                        1

22 )'( CrrvP    

When              0,'  Pr so that 01 C  

Thus                )'( 22 rrvP                                                                                      )6(  

Equation )6(  determines the impulsive pressure P at a distance '.r  The velocity v at 

the inner surface of the sphere )0( p  is obtained from )2( as 

                        


 2

2

1)(
v

r

tf

                                                                              

)7(  

From ),4( 222
2

22.
)(

)( rv
dt

dr

dr

dv
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dt

dr
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dt

dv
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dt

vrd
tf   

22)( v
dr

dv
rvtf   

Thus )7( becomes 
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
 22
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2 vv

dr

dv
rv  
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


 2

2

3
v

dr

dv
rv  

2223 2
32 rrv

dr

dv
vr




                   | Multiplying by 

2r  

   
2

23 2)(
r

dr

vrd




  

Integrating, we get 
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The velocity v at the surface of the sphere ,2ar  on which the liquid strikes, 

is  
 

  







3

14

2

2

3

2
3

33
2

a

aa
v  

From relation ),6( using ,2ar  we get  
'3

14

4

2

r

a
P



 
                                       )8(  

Which determines the impulsive pressure at a distance r’ from the centre of the 

sphere. 

Thus, the impulsive pressure at the surface of the radius 2a  is given by 

                   

67
23

14

4

2
2

a
a

a
P 







 . Hence the result 

 Stream Function 
When motion is the same in all planes parallel to xy plane (say) and there is no 

velocity parallel to the z axis i.e. when vu, are functions of tyx ,, only and ,0w

we may regard the motion as two-dimensional and consider only the cases confined to 

the xy plane. When we speak of the flow across a curve in this plane, we shall mean 

the flow across unit length of a cylinder whose trace on the xy plane is the question, 

the generators of the cylinder being parallel to the z axis. 

For a two-dimensional motion in xy plane, q


 is a function of tyx ,, only and the 

differential equation of the streamlines (lines of flow) are 
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  v

dy

u

dx
  i.e. 0udyvdx                                                                  )1(  

and the corresponding equation of continuity is  

  

0









y

v

x

u
                                                                                       )2(  

We note that equation )2( is the condition of exactness of )1( , it follows that )1( must 

be an exact differential, d (say). Thus 

  

dy
y

dx
x

dudyvdx











  

so that  

  x
v

y
v












,  

This function is called the stream function or the current function or Lagrange’s 

stream function. 

Obviously, the streamlines are given by the solution of )1( i.e. 0d i.e. .const  

(For unsteady flow, streamlines are given by )(tf  

Thus, the stream function is constant along a streamline. 

From the above discussion, it is clear that the existence of stream function is merely a 

consequence of the continuity and incompressibility of the fluid. The stream function 

always exists in all types of two dimensional motion whether rotational or irrotational. 

However, it should be noted again that velocity potential exists only for irrotational 

motion whether two dimensional or three dimensional. 

Physical Interpretation of Stream Function:- 

Let P be a point on a curve C in xy plane. Let an element ds of the curve makes an 

angle  with x axis.  
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The direction cosines of the normal at P are  0,cos),90cos(   i.e. 

 0,cos,sin   

The flow across the curve C from right to left is 

  
C

dsnq ,ˆ.


 where jin ˆcosˆsinˆ   ,   jviuq ˆˆ

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  
C

ABd   

where 
BA  & are the values of  at the initial and final points of the curve. Thus, 

the difference of the values of a stream function at any two points represents the flow 

across that curve, joining the two points. 
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n̂  

    

  
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figure 2.9 
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Corollary. If we suppose that the curve C be the streamline, then no fluid crosses its 

boundary, then 

    ABAB   0  

i.e.  is constant along .c  

Relation Between  (i.e. C-R equations): & - 

We know that the velocity potential   is given by 
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




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 ,
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i.e.                   
y
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u











,                                                                               )1(  

Also, the stream function  is given by 

  
y

v
x

u











,                                                                              )2(  

From ),2(&)1(  we get 

  
yx 






 
and 

xy 






 
                                                                  )3(  

Equation in )3( imply 

  0&0 22    

i.e. &  are harmonic functions. 

again, from )3( , we get 

  )ˆˆ( jviuqgrad 


  
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
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



 

   kgradk ˆˆ    

i.e.    gradkkgradgrad  ˆˆ)(  

i.e.                k̂                                                                            )4(  

Again, from )3( , we note that 
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




yyxx
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i.e.                 0.                                                                               )5(  

 

Thus, for irrotational incompressible two-dimensional flow (steady or unsteady), 

),(),,( yxyx   are harmonic functions and the family of curves .const  

(equipotentials) and .const  (streamlines) intersect orthogonally. 

Exercise. Show that )(,2 222 yxacvcxyu   are the velocity components of a 

possible fluid motion. Determine the stream function and the streamlines. 

Remark. We shall consider the study of two dimensional motion later on. At present 

we continue discussing three dimensional irrotational flow of incompressible fluids. 
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Three Dimensional Irrotational Flow 
Acyclic and Cyclic Irrotational Motion: An irrotational motion is called acyclic if 

the velocity potential   is a single valued function i.e. when at every field point, a 

unique velocity potential exists, otherwise the irrotational motion is said to be cyclic. 

Clearly, only acyclic irrotational motion is possible in a simply connected region. 

For a possible fluid motion, even if  is multivalued at a particular point, the velocity 

at that point must be single-valued. Hence if we obtain two different values of  , 

these values can only differ by a constant. 

At present, we restrict ourself to acylic irrotational motion for which we prove a 

number of results related to  . 

Mean Value of Velocity Potential Over Spherical Surfaces: 

Theorem: The mean value of a   over any spherical surface S drawn in the fluid 

throughout whose interior ,02    is equal to the value of  at the centre of the 

sphere. 

 

Proof. Let )(P be the value of  at the centre P of a spherical surface S of radius r , 

wholly lying in the liquid and let  denotes the mean value of  over S . Let us draw 

another concentric sphere  of unit radius. Then a cone with vertex P which 

intercepts area ds from the sphere S , intercepts an area d from the sphere  and we 

have 

 

P 
1 

 
r S d

 

  

n̂  

figure 2.10 
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Now, by definition 
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Since the normal n̂  to the surface is along the radius r , therefore on S , we have 
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From )3(&)2( , we find 
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where  is the volume enclosed by the surface .S  

Thus   .0 const
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
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This shows that  is independent of choice of r and hence mean value of  is same 

over all spherical surfaces having the same centre .P  When S shrinks to point P , 

then )(P   

Corollary. The velocity potential  cannot have a maximum or minimum value in the 

interior of any region throughout which 02   . 

Proof. If possible suppose that   has a maximum value )(P  at a point P . We draw 

a sphere with centre P and radius, where is small. Then the mean value  of   

must be less than )(P  i.e. )(P   as )(P is maximum. This is a contradiction to 

the mean potential theorem in which )(P  . Thus   cannot have a maximum 

value. Similarly   cannot have a minimum value. 

Theorem: In an irrotational motion the maximum value of the fluid velocity 

occurs at the boundary. 

Proof. Let P be any interior point of the fluid and Q  be a neighbouring point also 

lying in the fluid. Let us take the direction of x axis along the direction of q


 at .P

Let 
QP qq & denote the speed of particles at QP& respectively. 
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figure 2.10 
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and                  
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
 satisfies Laplace equation. Therefore, by mean value theorem (corollary), 

x
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cannot be maximum or minimum at .P  Thus, there are points such as Q  in the 

neighbourhood of P such that 
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2

Qq  cannot be maximum in the interior of fluid and its maximum value |,| q


if any, 

must therefore occur on the boundary. 

Note. || qq


 may be minimum in the interior of the fluid as 0


q at the stagnation 

point. i.e. q in  minimum at stagnation points. 

Corollary. In steady irrotational flow, the pressure has its minimum value on the 

boundary. 

Proof. From Bernoulli’s equation, we have 

   

.
2

1 2 constq
p
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

                                                             )1(  

Equation )1( shows that p is least when 
2q is greatest and by above theorem, 

2q is 

greatest at the boundary . Thus, the minimum value of p must occur only on the 

boundary. 

Note. The maximum value of p occurs at the stagnation points, where .0


q  

Theorem. If liquid of infinite extent is in irrotational motion and is bounded 

internally by one or more closed surfaces ,S the mean value of  over a large sphere 

, of radius ,R which enclosed ,S is of the form 
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C

R

M
  

where CM & are constant, provided that the liquid is at rest at infinity. 

Proof. Suppose that the volume of fluid acrossing each of internal surfaces contained 

within , per unit, is a finite quantity say M4 (i.e. M4 represent the flux of fluid 

across  is 
R


radially outwards, the equation of continuity gives 
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Integrating w.r.t. ,R we get 
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figure 2.11 
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where C is independent of R  

   









 
C

R

M
d

R

d


 24

1
 

   C
R

M

R

d






24



 

   C
R

M
                                                                               )2(  

To show that C is an absolute constant, we have to prove that it is independent of co-

ordinates of centre of sphere . Let the centre of the sphere  be displaced by distance 

x in an arbitrary direction while keeping R constant, then from ),2(  
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                                                      | R is constant 
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on when R as the liquid is at rest at infinity. 

 From ),3( we get 
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