Lecture 16: Multi-Version Concurrency Control

Recap

2/66

Multi-Version Concurrency Control BT

Optimistic Concurrency Control

e The DBMS creates a private workspace for each txn. trasaction

> Any object read is copied into workspace.
> Modifications are applied to workspace.

e When a txn commits, the DBMS compares workspace write set to see whether it
conflicts with other txns.

e If there are no conflicts, the write set is installed into the global database.

trasaction

Multi-Version Concurrency Control BT

OCC Phases

e Phase 1 — Read:

> Track the read/write sets of txns and store their writes in a private workspace.
e Phase 2 — Validation:

»> When a txn commits, check whether it conflicts with other txns.
e Phase 3 — Write:

> If validation succeeds, apply private changes to database. Otherwise abort and restart the
txn.

Multi-Version Concurrency Control [SRXET)

Today’s Agenda

e Multi-Version Concurrency Control
e Design Decisions

» Concurrency Control Protocol

> Version Storage

> Garbage Collection

> Index Management

WINERESEINE RSO A@EREN Multi-Version Concurrency Control

Multi-Version Concurrency Control

WINERESEINE RSO A@EREN Multi-Version Concurrency Control

Multi-Version Concurrency Control

e The DBMS maintains multiple physical versions of a single logical object in the
database:

> When a txn writes to an object, the DBMS creates a new version of that object (instead of
private workspace in OCC)
> When a txn reads an object, it reads the newest version that existed when the txn started.

WINERESEINE RSO A@EREN Multi-Version Concurrency Control

MVCC HISTORY

e Protocol was first proposed in 1978 MIT PhD dissertation.
e First implementations was Rdb/VMS and InterBase at DEC in early 1980s.

> Both were by Jim Starkey, co-founder of NuoDB.
» DEC Rdb/VMS is now "Oracle Rdb"
> InterBase was open-sourced as Firebird.

http://publications.csail.mit.edu/lcs/specpub.php?id=773

WINERESEINE RSO A@EREN Multi-Version Concurrency Control

Multi-Version Concurrency Control

e Writers don’t block readers. Readers don’t block writers.
e Read-only txns can read a consistent snapshot without acquiring locks.

> Use timestamps to determine visibility.

e Easily support time-travel queries.

WINERYSSTOINE S A@EEM Multi-Version Concurrency Control

MVCC - Example 1

Schedule Database
l"'--""-;-"‘ r ———————————————— -
T
: : creiondione ocgin cos
BEGIN ! = =
R(A) 1
BEGIN :
W(A) 1
R(A) A e e
COMMIT
COMMIT

o
"

WINERYS STOWE S SIqA@EM Multi-Version Concurrency Control

MVCC - Example 1

Schedule Database
T ————— -~ o e o -
T, T, H
BEGIN 1A 123 o =
R(A) 1
BEGIN '
W(A) 1
R(A) N e
COMMIT
COMMIT

A —

|

WINERYSSTOINE S A@EEM Multi-Version Concurrency Control

MVCC - Example 1

TS(T,)=1 'edulCTS(T,)=2 Database
,k\-l-_]'_ W - : .

1 1 2

Ay 123 o -

]
1
|| BEGIN !
R(A) I
! BEGIN :
W(A) i
R(A) |
COMMIT
COMMIT

o — —

Multi-Version Concurrency Control

MVCC - Example 1

TS(T;)=1)edul{TS(T,)=2 Database

! Version Value Begin End

1 1

! i
BEGIN I bl PPT— -
R(A) i : A TR =

H I

1

R(A) i S
COMMIT

T, creates version A,
and sets A, End-TS.

A

o —

e e e e

n COHCHITSHC.

MVCC - Example 1

(TS(T)=1 Pedul(TS(T,)=2)
T

T

2

T, reads version A,.

BEGIN
R(A)

R(A)

P

BEGIN
W(A)

COMMIT

Database

o a Beg
Ay 123 |o 2
A 456 |2 -

=

P

Multi-Version Concurrency Control

Txn Status Table

o

T

Active

T,

Active

-

N ———————

Multi-Version Concurrency Control

MVCC - Example 2

[7s(T)=1 pedul{ Ts()-2] Database
] T T S EEEEE—_—_—_————— -

i 1
L | ; !
1| BEGIN H 1A 123 o 1
R(A) i I I
: W(A) BEGIN I 1 :
I R(A) H H 1
! W(A) i | J
R(A) 1
I
I | COMMIT ! Txn Status Table
: i l,________________..‘
i comMIT | | I !
I ! 1 I
1 : 1 Ty 1 Active :
i ! i I
[! 1 I
1 ! 1 I
U \ 7

'4
\

Multi-Version Concurrency Control

MVCC - Example 2

(Ts(T)=1 pedul{ Ts(T,)=2 | Database
T, T 2 T

: 2 : : o) e Beg

I 2 Beg d

I SEE)IN ! i A 123 |o 1
*W(A) BEGIN i 1 a6 1 -

i R(A) : i

H . W(A) I Vemmm e e ————

L | coMMIT I Txn Status Table

1 e ———————————— -

I

I i

I coMMIT | | I

1 : 1T 1 Active

| P

1 I I

1 I 1

\ 1 N e e o e e e e o o

MVCC - Example 2

Multi-Version Concurrency Control

o

2

BEGIN
R(A)
W(A)

R(A)
COMMIT

BEGIN
R(A)
W(A)

COMMIT

A -

(Ts(r)-1 edul{ Ts(T,)-2] Database
T, T

A

T,readsversion Ay |========= -
because T, has not
committed yet. e
; : T, 2 Active
! I
I
I

N e e e o e e e e e

Multi-Version Concurrency Control

MVCC - Example 2

(Ts(t)=1 pedul{ 1s(T,)-2] Database
T T

! 2 Version Value Begin End

1 \ I

i I :

1 | BEGIN H 1A 123 o 1

1| RCA) I (s 456 |1 -
NI BEGIN 1 |

1 R(A) : 1

: W(A) i R ’
1 R(A) : - .

1 | COMMIT

: A £ Tzhastostal.luntilT, m—————————
1 COMMIT commaits. :
: : 1T 1 Active 1
: 1 : T, 2 Active :
1 H I 1
1 1 1
\ ! \

o e e

Multi-Version Concurrency Multi-Version Concurrency Control

MVCC - Example 2

(7s(r)-1 pedul{rs(r)-2) | Database
T T,

1 1
: : ersio alue Beg d :
BEGIN ! 1A 123 o 1 1
R(A)] 1A 456 |1 o
W(A) BEGIN H I !
R(A) : 1 1
W(A) i | S —— ’
R(A) [] 1
orar | 23 ! __Txn Status Table
A\ 4 1 7 =1
comr || ——
T, reads version A, that it H ! LETR CGEIE H
wrote earlier. ' e |2 Active !
r 1
\ A ! 1 1
\ ! N e o o e e o e o e Y

N o

1 /75

Multi-Version Concurrency Control

MVCC - Example 2

[T8(T)=1 pedul{ 1s(T,)-2] Database
T, T, 2 =

I]
: | Ty
gE,E)IN ! 1A, 123 o 1|
] 1A 456 |1 - |
W(A) BEGIN 1 1 i
R(A) : i i
W(A) I Ve e ’

R(A) [] 1

-I COMMIT m g ! Txn Status Table

: A 4 1 oo mmm e i
1 COMMIT H I d Timestamp Sta !
: : : T, 1 Committed| I
: 1 : T, 2 Active :
I H I 1
1 1 I
\ ! N e o e e e /

WINERYS STOWE S SIqA@EM Multi-Version Concurrency Control

MVCC - Example 2

TS(T,)-I ef'_“_'1 TS(TJ-Z] Database

Version Value Begin End

T, 1 Committed

\

S
Now T, can create the new
version.

Active

| ! l i

| | BEGIN ! 1A 123 o 1

| R(A) I 1[4, 456 |1 > |1

RO BEGIN i AN T — !

i R(A) I A i

I W(A) 1 S ’
R(A) [] 1

I

1| COMMIT Ig : Txn Status Table

i v I i =~

I mm COMM H : d Timestamp

I [

I

I

I

1

\

WINERESEINE RSO A@EREN Multi-Version Concurrency Control

Multi-Version Concurrency Control

e MVCC is more than just a Concurrency Control protocol.
e It completely affects how the DBMS manages transactions and the database.
e Examples: Oracle, SAP HANA, PostgreSQL, CockroachDB

WINERYS STOWE S SIqA@EM Multi-Version Concurrency Control

MVCC Design Decisions

Concurrency Control Protocol

Version Storage

Garbage Collection

Index Management

NGRS SoEateiscitqdeci:Illl Concurrency Control Protocol

Concurrency Control Protocol

WINLRESEIIEG iy dell Concurrency Control Protocol

Concurrency Control Protocol

e Approach 1: Timestamp Ordering
> Assign txns timestamps that determine serial order.
e Approach 2: Optimistic Concurrency Control

» Three-phase protocol from last class.
> Use private workspace for new versions.

e Approach 3: Two-Phase Locking

> Txns acquire appropriate lock on physical version before they can read/write a logical
tuple.

Multi-Version Concurrency Control EAYSE RS OELE

Version Storage

WINLRESEhIE sy deil il Version Storage

Version Storage

e The DBMS uses the tuples’ pointer field to create a version chain per logical tuple.

» This allows the DBMS to find the version that is visible to a particular txn at runtime.
> Indexes always point to the head of the chain.

e Different storage schemes determine where/what to store for each version.

WINLRESEhIE sy deil il Version Storage

Version Storage

e Approach 1: Append-Only Storage
> New versions are appended to the same table space.
e Approach 2: Time-Travel Storage
> Old versions are copied to separate table space.
e Approach 3: Delta Storage
» The original values of the modified attributes are copied into a separate delta record space.

Multi-Version Concurrency Control EAYSE RS OELE

Append-Only Storage

e All of the physical versions of a logical tuple are stored in the same table space. The
versions are mixed together.

e On every update, append a new version of the tuple into an empty space in the table.

Main Table

VERSION VALUE POINTER

A, 87117 o—:l

» A, $222 @
@

B, 270

Multi-Version Concurrency Control EAYSE RS OELE

Append-Only Storage

e All of the physical versions of a logical tuple are stored in the same table space. The
versions are mixed together.

e On every update, append a new version of the tuple into an empty space in the table.

Main Table
VERSION VALUE POINTER
A, 8111 o—:l
» A, $222 @
B, $10 @
A, $333 @

Multi-Version Concurrency Control EAYSE RS OELE

Append-Only Storage

e All of the physical versions of a logical tuple are stored in the same table space. The
versions are mixed together.

e On every update, append a new version of the tuple into an empty space in the table.

Main Table
VERSION VALUE POINTER
A, 87111 o—:l
» A, $222 ®
B, $10 @
A, $333 s |

WINLRESEhIE sy deil il Version Storage

Version Chain Ordering

e Approach 1: Oldest-to-Newest (O2N)
> Just append new version to end of the chain.
> Have to traverse chain on look-ups.

e Approach 2: Newest-to-Oldest (N20)

> Have to update index pointers for every new version.
> Don’t have to traverse chain on look ups.

Version Storage

Time-Travel Storage

e On every update, copy the current version to the time-travel table. Update pointers.
e Overwrite master version in the main table. Update pointers.

Main Table Time-Travel Table

VERSION VALUE POINTER VERSION VALUE POINTER
A, | 8222 @ A $717 [
B, $10

Multi-Version Concurrency Control EAYSE RS OELE

Time-Travel Storage

e On every update, copy the current version to the time-travel table. Update pointers.

e Overwrite master version in the main table. Update pointers.

Main Table Time-Travel Table
VERSION VALUE POINTER VERSION VALUE POINTER
A, $222 ° A, $111 [

B, $70 A, | $222 | e—

Multi-Version Concurrency Control EAYSE RS OELE

Time-Travel Storage

e On every update, copy the current version to the time-travel table. Update pointers.
e Overwrite master version in the main table. Update pointers.

Main Table Time-Travel Table

RSIO A PO R VERSION VALUE POINTER

» Ay $333 ° A, 8111 [’ :I

B, $70 A, $222 *—

Multi-Version Concurrency Control EAYSE RS OELE

Time-Travel Storage

e On every update, copy the current version to the time-travel table. Update pointers.
e Overwrite master version in the main table. Update pointers.

Main Table Time-Travel Table

RSIO A PO R VERSION VALUE POINTER

» Ay $333 A, $711 [’ :I

B, $70 A, $222 *—

Multi-Version Concurrency Control EAYSE RS OELE

Delta Storage

e On every update, copy only the values that were modified to the delta storage and
overwrite the master version.

e Txns can recreate old versions by applying the delta in reverse order.

Main Table Delta Storage Segment

» A, 3171

B, $70

Multi-Version Concurrency Control EAYSE RS OELE

Delta Storage

e On every update, copy only the values that were modified to the delta storage and
overwrite the master version.

e Txns can recreate old versions by applying the delta in reverse order.

Main Table Delta Storage Segment

RSIO PO R DELTA POINTER
. A 8717 A | vauestin| o
B, $10

Version Storage

Delta Storage

e On every update, copy only the values that were modified to the delta storage and
overwrite the master version.

e Txns can recreate old versions by applying the delta in reverse order.

Main Table Delta Storage Segment

» A, 222 | @ A | oacveasiin| o :]

B, $10 A, (VALUE-$222) *—

Multi-Version Concurrency Control EAYSE RS OELE

Delta Storage

e On every update, copy only the values that were modified to the delta storage and
overwrite the master version.

e Txns can recreate old versions by applying the delta in reverse order.

Main Table Delta Storage Segment

» A | 3335 Q—L A | ovacvesiin| o :]
B, $10 A, | (vaLuE-$222)| o—]

WINGRESOEd s citqdeoi:lll Garbage Collection

Garbage Collection

WINLRE St ey de il Garbage Collection

Garbage Collection

e The DBMS needs to remove reclaimable physical versions from the database over
time.

» No active txn in the DBMS can see that version (SI).
> The version was created by an aborted txn.

e Two additional design decisions:

> How to look for expired versions?
> How to decide when it is safe to reclaim memory?

WINLRE St ey de il Garbage Collection

Garbage Collection

e Approach 1: Tuple-level

> Find old versions by examining tuples directly.
> Background Vacuuming vs. Cooperative Cleaning

e Approach 2: Transaction-level

> Txns keep track of their old versions so the DBMS does not have to scan tuples to
determine visibility.

WINGRESOEd s citqdeoi:lll Garbage Collection

Tuple-level GC

e Background Vacuuming;:

¢ Separate thread(s) periodically scan the table and look for reclaimable versions.

e Works with any storage.

Multi-Version Concurrency Control

Tuple-level GC

Thread #1 Vacuum

TS(T1)=12\

Thread #2 Illl —
(o)

TS(T,)=25=""

VERSION

BEGIN END
Avgo 7 9
Bigo 7 9
Bior 70 20

A

45/ 66

Multi-Version Concurrency Control

Tuple-level GC

Thread #1

Vacuum

TS(T,)=12 \
Thread #2

TS(T,)=25=""

VERSION

ATy

BEGIN END
Aieo / J
Bigo / 9
Bio1 70 20

A

46/ 66

Multi-Version Concurrency Control

Tuple-level GC

Thread #1

Vacuum

TS(T)=12~y
Thread #2

TS(T)=25=""

VERSION

BEGIN

END

ATy

B101

20

A

47 | 66

Multi-Version Concurrency Control

Tuple-level GC

Thread#l Vacuum ; § VERSION BEGIN END
TS(T)=12my =k
Thread #2 ‘ - §3
Ts(T,)=25=" O BES [Bw | 10 | 2

= Dalx 48 / 66

WINGRESOEd s citqdeoi:lll Garbage Collection

Tuple-level GC

e Cooperative Cleaning:

e Worker threads identify reclaimable versions as they traverse version chain.
e Only works with O2N.

Multi-Version Concurrency Control

Tuple-level GC

Thread #1
TS(T,)=12

Thread #2
TS(T,)=25

4
. GET(A) » A Pla Bl a]

L e e e |

A

50/ 66

Multi-Version Concurrency Control

Tuple-level GC

Thread #1
TS(T,)=12 GET(A)

A X
hread 2 A INDEX

read 8 | & P8, Pl s,
TS(T,)=25 | H H H |

Do 51/66

Multi-Version Concurrency Control

Tuple-level GC

Thread #1
TS(T)=12

Thread #2
TS(T,)=25

GET(A)
A INDEX

\ 4
XX
[e. PLe. e e

A

52 /66

Multi-Version Concurrency Control

Tuple-level GC

Thread #1
TS(T,)=12

Thread #2
TS(T,)=25

GET(A)

4

A, Ay

e 2 100X o

L. e e e |

53 /66

WINGRESOEd s citqdeoi:lll Garbage Collection

Transaction-level GC

e Each txn keeps track of its read/write set.
e The DBMS determines when all versions created by a finished txn are no longer visible.

NGRS SOEd i Sitq @il Index Management

Index Management

Multi-Version Concurrency Control BRGEEVEREEE 1

Index Management

e Primary key indexes point to version chain head.
> How often the DBMS has to update the pkey index depends on whether the system
creates new versions when a tuple is updated.
> If a txn updates a tuple’s pkey attribute(s), then this is treated as an DELETE followed by
an INSERT.

e Secondary indexes are more complicated. ..

Multi-Version Concurrency Control BRGEEVEREEE 1

Secondary Indexes

e Approach 1: Physical Pointers
> Use the physical address to the version chain head.
e Approach 2: Logical Pointers

> Use a fixed identifier per tuple that does not change.
> Requires an extra indirection layer.
> Primary Key vs. Tuple Id

Multi-Version Concurrency Control
Physical Pointers

A PRIMARY INDEX [l A SECONDARY INDEX

|A1ae H Agg H Agg H Agy | }Append-OnIy

Newest-to-Oldest

58 /66

Multi-Version Concurrency Control
Physical Pointers

GET(A) @

Physical
Address

A PRIMARYINDEX [l A SECONDARY INDEX

—’I Aice H As H Ass H Asy | }ﬁgﬁg;‘ttgfg;dest

A

59/ 66

Multi-Version Concurrency Control
Physical Pointers

A PRIMARY INDEX

Y GET(A)

A SECONDARY INDEX

Physical
Address

Ao H Agg H Agg H Ag7 I }

Append-Only
Newest-to-Oldest

60/ 66

Multi-Version Concurrency Control
Physical Pointers

A PRIMARY INDEX

$ GET(A)
A SECONDARY INDEX

5 SECONDARY INDEX

A SECONDARY INDEX

A SECONDARY IND

Append-Onl
As H Asy | }Newest-to-

Idest

Asoo |"|—AW
j I

61/ 66

Multi-Version Concurrency Control
Logical Pointers

A PRIMARY INDEX

Y GET(A)
é SECONDARY INDEX

Primary
Key
Physical
Address

Newest-to-

_’l Aioo H Agg H Agg H Agz | }Append-OnI

Idest

DA 62 /66

Multi-Version Concurrency Control
Logical Pointers

$ GET(A)
A PRIMARY INDEX A SECONDARY INDEX

Tupleld
@ Tupleld— Address

Physical
Address

Ao H Agg H Agg H Ag7 | }Append-onl

Newest-to-Oldest

63/ 66

Multi-Version Concurrency Control BRGEEVEREEE 1

MVCC Implementations
DBMS Protocol Version Storage Garbage Collection Indexes
Oracle MV2PL Delta Vacuum Logical
Postgres MV-2PL/MV-TO Append-Only Vacuum Physical
MySQL-InnoDB MV-2PL Delta Vacuum Logical
HYRISE MV-OCC Append-Only - Physical
Hekaton MV-OCC Append-Only Cooperative Physical
MemSQL MV-0OCC Append-Only ~ Vacuum Physical
SAP HANA MV-2PL Time-travel Hybrid Logical
NuoDB MV-2PL Append-Only ~ Vacuum Logical
HyPer MV-OCC Delta Txn-level Logical

NGRS SOEd i Sitq @il Index Management

Conclusion

e MVCC is the widely used scheme in DBMSs.
e Even systems that do not support multi-statement txns (e.g., NoSQL) use it.

Next Class

Multi-Version Concurrency Control

e Advanced topics in Concurrency Control

A

66/ 66

	Multi-Version Concurrency Control
	Recap
	Multi-Version Concurrency Control
	Concurrency Control Protocol
	Version Storage
	Garbage Collection
	Index Management

