UNIT 13 OBJECT-ORIENTED DATABASE

Structure Page No.

13.0 Introduction
13.1 Objectives
13.2 Why Object-Oriented Database?
13.2.1 Limitations of Relational Databases
13.2.2 The Need for Object-Oriented Databases
13.3 Object-Relational Database Systems
13.3.1 Complex Data Types
13.3.2 Types and Inheritances in SQL
13.3.3 Additional Data Types of OOP in SQL
13.3.4 Object Identity and Reference Type Using SQL
13.4 Object-Oriented Database Systems
13.4.1 Object Model
13.4.2 Object Definition Language
13.4.3 Object Query Language
13.5 OODBMS Vs Object-Relational Database
13.6 Summary
13.7 Solutions/Answers

13.0 INTRODUCTION

Object-oriented software development methodologies have become very popular in the
development of software systems. Database applications are the backbone of most of
these commercial business software developments. Therefore, it is but natural that
object technologies also have their impact on database applications. Database models
are being enhanced in computer systems for developing complex applications. For
example, a true hierarchical data representation like a generalisation hierarchy scheme
in a rational database would require a number of tables but could be a very natural
representation for an object-oriented system. Thus, object-oriented technologies have
found their way into database technologies. The present-day commercial RDBMS
supports the features of object orientation.

This unit introduces various features of object-oriented databases. In this unit, we shall
discuss the need for object-oriented databases, the complex types used in object-
oriented databases, how these may be supported by inheritance, etc. In addition, we also
define object definition language (ODL) and object manipulation language (OML). We
shall introduce the object-oriented and object-relational databases.

13.1 OBJECTIVES

After going through this unit, you should be able to:

define the need for object-oriented databases;

explain the concepts of complex data types;

use SQL to define object-oriented concepts;

familiarise yourself with object definition and query languages, and
define object-relational and object-oriented databases.

13.2 WHY OBJECT-ORIENTED DATABASE?

An object-oriented database is used for complex data types. Such database applications
require complex interrelationships among object hierarchies to be represented in
database systems. These interrelationships are difficult to implement in relational
systems. Let us discuss the need for object-oriented systems in advanced applications
in more detail. However, first, let us discuss the weakness of relational database
systems.

13.2.1 Limitations of Relational Databases

Relational database technology was not able to handle complex application systems
such as Computer-Aided Design (CAD), Computer Aided Manufacturing (CAM),
Computer Integrated Manufacturing (CIM), Computer Aided Software Engineering
(CASE) etc. The limitation for relational databases is that they have been designed to
represent entities and relationships in the form of two-dimensional tables. Any complex
interrelationship, like multi-valued attributes or composite attributes, may result in the
decomposition of a table into several tables; similarly, complex interrelationships result
in a number of tables being created. Thus, the main asset of relational databases, viz.,
its simplicity for such applications, is also one of its weaknesses in the case of complex
applications.

The data domains in a relational system can be represented in relational databases as
standard data types defined in the SQL. However, the relational model does not allow
extending these data types or creating the user’s own data types. Thus, limiting the types
of data that may be represented using relational databases.

Another major weakness of the RDMS is that concepts like inheritance/hierarchy need
to be represented with a series of tables with the required referential constraint. Thus,
they are not very natural for objects requiring inheritance or hierarchy.

However, one must remember that relational databases have proved to be commercially
successful for text-based applications and have lots of standard features, including
security, reliability and easy access. Thus, even though they may not be a very natural
choice for certain applications, yet their advantages are far too many.

Thus, many commercial DBMS products are basically relational but also support object-
oriented concepts.

13.2.2 The Need for Object-Oriented Databases

As discussed in the earlier section, relational database management systems have certain
limitations. But how can we overcome such limitations? Let us discuss some of the basic
issues with respect to object-oriented databases.

The objects may be complex, or they may consist of low-level objects (for example, a
window object may consist of many simpler objects like a menu bar, scroll bar, etc.).
However, to represent the data of these complex objects through relational database
models you would require many tables — at least one each for each inherited class and a
table for the base class. To ensure that these tables operate correctly, you would need to
set up referential integrity constraints as well. On the other hand, object-oriented models
would represent such a system very naturally through, an inheritance hierarchy. Thus,
it is a very natural choice for such complex objects.

Consider a situation where you want to design a class (say an address class, which
includes address lines, City, State and Pin code); the advantage of object-oriented

database management for such situations would be that they allow the representation of
not only the structure but also the operation on newer user-defined database type such
as finding the Address with similar Pin code. Thus, object-oriented database
technologies are ideal for implementing such systems that support complex inherited
objects, user defined data types (that define operations including the operations to
support inheritance and polymorphism).

Another major reason for the need of object-oriented database system would be the
seamless integration of this database technology with object-oriented applications.
Software design is now mostly based on object-oriented technologies. Thus, object-
oriented databases may provide a seamless interface for combining the two
technologies.

Object-oriented databases are also required to manage complex, highly interrelated
information. They provide solutions in the most natural and easy way that is closer to
our understanding of the system. Michael Brodie related object-oriented systems to the
human conceptualisation of a problem domain, which enhances communication among
the system designers, domain experts, and the system end users.

The concept of an object-oriented database was introduced in the late 1970s, however,
it became significant only in the early 1980s. The initial commercial product offerings
appeared in the late 1980s. Some of the popular object-oriented database management
systems were Objectivity/DB (developed by Objectivity, Inc.), VERSANT (developed
by Versant Object Technology Corp.), Cache, ZODB, etc. An object-oriented database
can be used in application areas such as e-commerce, engineering product data
management, securities, medicine, etc.

Figure 1 traces the evolution of object-oriented databases. Figure 2 highlights the
strengths of object-oriented programming and relational database technologies. An
object-oriented database system needs to capture the features from both these worlds.
Some of the major concerns of object-oriented database technologies include access
optimisation, integrity enforcement, archive, backup and recovery operations etc.

Increased features, ease of use and speed

0O Languages Object oriented Object oriented databases
supporting databases with OO having declarative data
persistence language supporting modeling language (like

data and behaviour DML /DDL)
definitions

Figure 1: The evolution of object-oriented systems

Now, the question is, how does one implement an Object-oriented database system? As
shown in Figure 2 an object-oriented database system needs to include the features of
object-oriented programming and relational database systems. Thus, the two most
natural ways of implementing them will be either to extend the concept of object-
oriented programming to include database features (OODBMS) or extend the relational
database technology to include object-oriented features (Object Relational Database
Systems). Let us discuss these two viz., the object relational and object-oriented
database systems in more detail in the subsequent sections.

Object Oriented Database Technologies

Relational Database
Object Oriented Features
. e Security
Programming + Infeot]
e Inheritance * Integrity
e Encapsulation * Transactions
e Object Identity ¢ Concurrency
e Polymorphism e Recovery
e Persistence

Figure 2: Makeup of an Object-Oriented Database System

13.3 OBJECT-RELATIONAL DATABASE
SYSTEMS

Object-Relational Database Systems are the relational database systems that have
been enhanced to include the features of object-oriented paradigm. This section
provides details on how these newer features have been implemented in the SQL.
Some of the basic object-oriented concepts that have been discussed in this
section in the context of their inclusion into SQL standards include, the complex
types, inheritance and object identity and reference types.

13.3.1 Complex Data Types

In the previous section, we have used the term complex data types without
defining it. Let us explain this with the help of a simple example. Consider a
composite attribute Address. The Address of a person in an RDBMS can be
represented using the following:

House-no and apartment

Locality

City

State

Pin-code
When using RDBMS, such information either needs to be represented as separate
attributes, as shown above, or just one string separated by comma or semicolon. The
second approach is very inflexible, as it would require complex string related operations
for extracting information. It also hides the details of an address; thus, it is not suitable.

If you represent the attributes of the Address as separate attributes, then the problem
would be with respect to writing queries. For example, if you need to find the address
of a person, you need to specify all the attributes that you have created for the Address

viz., House-no, Locality.... etc. The question is - Is there any better way of representing
such information using a single field? If there is such a mode of representation, then that
representation should permit distinguishing each element of the Address. The following
may be one such possible solution:

CREATE TYPE Address AS (

Addresslinel Char (20)
Addressline?2 Char (20)
City Char(12)
State Char (15)
Pincode Char (6)

)

Thus, Address is now a new type that can be used while creating a database system
schema as:

CREATE TABLE STUDENT (
name Char (25)
address Address
phone Char (12)
programme Char (5)
dob Date

)

But what are the advantages of such definition?
Consider the following queries:

Find the name and address of the students enrolled in the PGDCA programme.

SELECT name, address
FROM student
WHERE programme = ‘PGDCA’ ;

Please note that the attribute ‘address’, although composite, is used as a single attribute
in the query. But can you also refer to individual components of this attribute?
Find the name and address of all the PGDCA students of Mumbai.

SELECT name, address

FROM student
WHERE programme = ‘MCA’ AND address.city=‘Mumbai’;

Thus, such definitions allow you to handle a composite attribute as a single attribute
with a user-defined type. You can also refer to any of the components of this attribute
without any problems, so the data definition of the components of the composite
attribute is still intact.

Complex data types also allow you to model a table with multi-valued attributes, which
would require a new table in a relational database design. For example, a library
database system would require representing the following information of a book.

ISBN number

Book title

Authors

Published by

Subject areas of the book.

Clearly, in the table above, authors and subject areas are multi-valued attributes. You

need to design two relational database tables for these attributes — Author
(ISBNnumber, author) and Area (ISBNnumber, subject area). (Please note that this
design does not consider the author's position in the list of authors).

Although this database solves the immediate problem, yet it is a complex design. An
object-oriented database system may solve this problem. This is explained in the next
section.

13.3.2 Types and Inheritances in SQL

In the previous sub-section, we discussed the data type — Address. It is a good example
of a structured type. In this section, let us give more examples for such types, using
SQL. Consider the attribute:

. Name — that includes given name, middle name and surname.

. Address — that includes address details, city, state and pin code.
These types can be defined using SQL extensions, as given below:

CREATE TYPE Name AS (

Given name Char (20),
Middle name Char (15),
Sur name Char (20)

)
FINAL

This type/class cannot be inherited further due to the keyword FINAL.

CREATE TYPE Address AS (
Add det Char (20),
City Char (20),
State Char (20),
Pincode Char (0)

)
NOT FINAL

You can use this class to create inherited classes, like Home Address and
Office Address, as this type/class is NOT FINAL.

The FINAL and NOT FINAL keywords have the same meaning as you learned in
JAVA, 1.e., a FINAL class cannot be inherited further.

These types can now be used to create a student class, which has data members and
methods that work on objects of the student class, as follows:

CREATE TYPE Student AS (
name Name,
address Address,
dob Date

)

NOT FINAL

METHOD ageinyears (givendate Date)
RETURN INTERVAL YEAR;

The method can be implemented separately using the following SQL Commands:

CREATE INSTANCE METHOD (givendate Date)
RETURN INTERVAL YEAR
FOR Student
begin
Return (givendate - self.dob);
end
This method computes the age on a given date. Please note that Date is a data type of
SQL. FOR is the looping construct and will result in the execution of this method for
every student object’s instance.

The possibility of using constructors also exists, but a detailed discussion on that is
beyond the scope of this unit.

Type Inheritance

In the present standard of SQL, you can define inheritance. Let us explain this with
the help of an example.

Consider a type University _person defined as:

CREATE TYPE University person AS (
name Name,
address Address

)

Now, this type can be inherited by the Staff type or the Student type. For example, the
Student type, if inherited from the class given above, would be:

CREATE TYPE Student
UNDER University person (
programme Char (10),
dob Date

)

Similarly, you can create a sub-class for the Staff of the University as:

CREATE TYPE Staff
UNDER University person (
designation Char (10),
basic salary Number (7)

)

Notice that both the inherited types shown above inherit the name and address attributes
from the type University person. Methods can also be inherited in a similar way;
however, they can be overridden if the need arises.

Table Inheritance

The concept of table inheritance has evolved to incorporate implementation of
generalisation/ specialisation hierarchy of an E-R diagram. SQL allows inheritance of
tables. Once a new type is declared, it could be used in the process of creation of new
tables with the usage of keyword “OF”. Let us explain this with the help of an example.

Consider the classes University person, Staff and Student, as we have
defined in the previous sub-section. You can create the table for the type
University person as:

CREATE TABLE university members OF University person;

The table inheritance would allow us to create sub-tables for such tables as:

CREATE TABLE student list OF Student
UNDER university members;

Similarly, you can create a table for the staff as:

CREATE TABLE staff OF Staff
UNDER university members;
Please note the following points for table inheritance:

o The type that is associated with the sub-table must be the sub-type of the type
of the parent table. This is a major requirement for table inheritance.

. All the attributes of the parent table — (university members in our case)
should be present in the inherited tables.

. Also, the three tables may be handled separately. However, any record present

in the inherited tables is also implicitly present in the base table. For example,
any record inserted in the student 1ist table will be implicitly present in
university members tables.

o A query on the parent table (such as university members) would find the
records from the parent table and all the inherited tables (in our case all three
tables). However, the attributes of the result table would be the same as the
attributes of the parent table.

o You can restrict your query to only the parent table by using the keyword ONLY.

For example,
SELECT name FROM university members ONLY;

13.3.3 Additional Data Types of OOP in SQL
The object-oriented/relational database must support the data types that allow multi-
valued attributes to be represented easily. Two such data types that exist in SQL are:

° Arrays — stores information in an order and
. Multisets — stores information in an unordered set.

Let us explain this with the help of an example of a book database as introduced in the
section13.3.1 A Book type can be represented using SQL as:

CREATE TYPE Book AS (
ISBNNO Char (14),
BOOK_TITLE Char (25),
AUTHORS Char (25) ARRAY [5],
PUBLISHED_BY Char (20),
KEYWORDS Char (10) MULTISET

) ;

Please note, the use of the type ARRAY. Arrays not only allow authors to be represented
but also allow the sequencing of the authors' names. Multiset allows a number of
keywords without any ordering imposed on them.

But how can you enter data and query such data types? The following SQL commands
would help in defining such a situation. But first, you need to create a table:

CREATE TABLE library OF Book;

INSERT INTO library VALUES('008-124476-x’, ‘Database
Systems’, ARRAY [‘Silberschatz’, ‘Elmasri’],
YXYZ Publication’, MULTISET [‘Database’,

‘Relational’, ‘Object Oriented’]) ;

The command above would insert information on a hypothetical book into the database.
Let us now write a few queries on this database:

Find the list of books related to area Object Oriented:

SELECT ISBNNO, BOOK TITLE
FROM library
WHERE ‘Object Oriented’ IN (UNNEST (KEYWORDS)) ;

Find the first author of each book:

SELECT ISBNNO, BOOK_TITLE, AUTHORS [1]
FROM library ;

You can create many such queries. A detailed discussion on this can be found in the
latest SQL standards and is beyond the scope of this unit.

13.3.4 Object Identity and Reference Type Using SQL

Till now, we have created the tables, but what about the situation when we have
attributes that draw a reference to another attribute in the same table? This is a
referential constraint. Thus, an object-relational database system should address the
following two concerns:

° In relational databases, foreign keys are used to link the attributes in two
different relations. Can such keys be used in an object-relational database?

° How will you identify the object that is being referenced?

The following example will address the concerns stated above.

Example: A library purchases books. Each book is given a unique book number called
the catalogue number. The library maintains a procurement table, which can be
created using the following SQL command:

CREATE TABLE procurement (

CATALOGUE_NO CHAR (5),
ISBNNO REF (Book) SCOPE (library)

The SQL statement given above would create a procurement table, which would
assign two basic information to a newly purchased book — first, it will give the book a
unique CATALOGUE NO, and second, it will link this book to a specific record in the
library table through an ISBNNO.

To insert a new book in this table, you must first create a Book object using the T SBNNO
of this book. Assuming that such an object already exists, then you may use the
following command to add a book to the procurement table:

INSERT INTO procurement
VALUES ('98765’, NULL) ;

This command will add a new book to the procurement table having
CATALOGUE NO as ‘98765’ and no reference to the ISBN number. The link to the
ISBN number record will be created using the following SQL command:

UPDATE procurement

10

SET ISBNNO = (SELECT book_id

FROM library

WHERE ISBNNO = '83-7758-476-6")
WHERE CATALOGUE NO = ‘987657 ;

Please note that in the query above, the sub-query generates the object identifier
(book id) for the ISBNNO of the book whose accession number is 98765. It then sets
the reference for the desired record in the procurement.

This is a slightly complex procedure, and several other mechanisms exist to perform
this operation. You can refer to them in the further readings.

%= Check Your Progress — 1

B
) et
RV B Rt
............. e L - D AR L0
o s |
e

13.4 OBJECT-ORIENTED DATABASE SYSTEMS

Object-oriented database systems are applying object-oriented concepts into database
system models to create an object-oriented database model. This section describes the
concepts of the object model, followed by a discussion on object definition and object
manipulation languages that are derived from SQL.

13.4.1 Object Model

Object Data Management Group (ODMG) has designed the object model for the object-
oriented database management system. The Object Definition Language (ODL) and
Object Manipulation Language (OML) are based on this object model. Let us briefly
define the concepts and terminology related to the object model.

Objects and Literal: These are the basic building elements of the object model. An
object has the following four characteristics:

. A unique identifier

. A name

. A lifetime, defining whether it is persistent or not, and

o A structure that may be created using a type constructor. The structure in
OODBMS can be classified as atomic or collection objects (like Set, List,
Array, etc.).

A literal does not have an identifier but has a value that may be constant. The structure
of a literal does not change. Literals can be atomic, such that they correspond to basic
data types like int, short, long, float, etc. or structured literals (for example, current date,
time, etc.) or collection literal defining values for some collection object.

Interface: Interfaces define the operations that can be inherited by a user-defined
object. Interfaces are non-instantiable. All objects inherit basic operations (like copy
object, delete object) from the interface of Objects. A collection object inherits
operations — such as an operation to determine an empty collection — from the basic
collection interface.

Atomic Objects: An atomic object is an object that is not of a collection type. They are
user-defined objects that are specified using class keywords. The properties of an atomic
object can be defined by its attributes and relationships. An example is the book object
given in the next subsection. Please note here that a c/ass is instantiable.

Inheritance: The interfaces specify the abstract operations that can be inherited by
classes. This is called behavioural inheritance and is represented using the “ : ” symbol.
Sub-classes can inherit the state and behaviour of super-class(s) using the keyword

EXTENDS.

Extents: An extent of an object contains all the persistent objects of that class. A class
having an extent can have a key.

In the following section, we shall discuss the use of the ODL and OML to implement
object models.

13.4.2 Object Definition Language

Object Definition Language (ODL) is a standard language on the same lines as the DDL
of SQL, that is used to represent the structure of an object-oriented database. It uses
unique object identity (OID) for each object such as library item, student, account, fees,
inventory etc. In this language, objects are treated as records. Any class in the design
process has three properties that are attribute, relationship, and methods. A class in ODL
is described using the following syntax:

class <name>

{

<list of properties>
bi

Here, class is a keyword, and the properties may be attributes, methods or relationships.
The attributes defined in ODL specify the features of an object. It could be simple,
enumerated, structured or complex type.

12

class

{

b

Please note that, in this case, we have defined authors as a structure and a new field on

Book

attribute string ISBNNO;
attribute string BOOKTITLE;
attribute enum CATEGORY
{text, reference, journal} BOOKTYPE;
attribute struct AUTHORS
{string fauthor, string sauthor,
string tauthor} AUTHORLIST;

Book type as an enum.

These books need to be issued to the students. For that, you need to specify a
relationship. The relationship defined in ODL specifies the method of connecting one
object to another. You can specify the relationship by using the keyword “relationship”.
For example, to connect a student object with a book object, you need to specify the

relationship in the student class as:

relationship set <Book> receives

Here, for each object of the class student, there is a reference to the book object and the

set of references is called receives.

But if we want to access the student based on the book, then the “inverse relationship”

could be specified as

relationship set <Student> receivedby

You can specify the connection between the relationship receives and receivedby by
using the keyword “inverse” in each declaration. If the relationship is in a different class,
it is referred to by the relationship name followed by a scope resolution operator (::) and

the name of the other relationship.

The relationship could be specified as:

class

{

class

Book

attribute string ISBNNO;
attribute string BOOKTITLE;
attribute integer PRICE;
attribute string PUBLISHEDBY;
attribute enum CATEGORY
{text, reference} BOOKTYPE;
attribute struct AUTHORS
{string fauthor
string sauthor
string tauthor} AUTHORLIST;
relationship set <Student> receivedby
inverse Student::receives;
relationship set <Supplier> suppliedby
inverse Supplier::supplies;

Student

attribute string ENROLMENT NO;

attribute string NAME;
attribute integer MARKS;
attribute string COURSE;
relationship set <Book> receives
inverse Book::receivedby;
bi

class Supplier

attribute string SUPPLIER ID;
attribute string SUPPLIER NAME;
attribute string SUPPLIER ADDRESS;
attribute string SUPPLIER CITY;
relationship set <Book> supplies
inverse Book::suppliedby;

}i

Methods could be specified with the classes along with input/output types. These
declarations are called “signatures”. These method parameters could be in, out or inout.
Here, the ‘in’ parameter is passed by value, whereas the ‘out’ or ‘inout’ parameters are
passed by reference. Exceptions could also be associated with these methods.

class Student

{

attribute string ENROLMENT NO;

attribute string NAME;

attribute string st address;

relationship set <Book> receives
inverse Book::receivedby;

void findcity(in set<string>,out set<string>)
raises (notfoundcity);

b

In the method findcity, the name of the city is passed with the objective to find the name
of the students who belong to that specific city. In case blank is passed as a parameter
for city name, then the exception notfoundcity is raised. The implementation of this
method can be done separately.

The ODL could be atomic type or class names. The basic type uses many class
constructors such as set, bag, list, array, dictionary and structure. We have shown the
use of some in the example above. You can refer to the further readings for more detail
on these.

Inheritance is implemented in ODL using subclasses with the keyword “extends”.

class Journal extends Book

{
attribute string VOLUME;

attribute string emailauthorl;
attribute string emailauthor?2;

}i

Multiple inheritance is implemented by using extends separated by a colon (:). If there
is a class Fee containing fee details, then multiple inheritance could be shown as:

class StudentFeeDetail extends Student:Fee
{
void deposit (in set <float>, out set <float>)

13

14

raises (refundToBeDone)

b

Like the difference between relation schema and relation instance, ODL uses the class
and its extent (set of existing objects). The objects are declared with the keyword
“extent”.

class Student (extent firstStudent)

{
attribute string ENROLMENT NO;

attribute string NAME;

It is not necessary in the case of ODL to define keys for a class. But if one or more
attributes have to be declared as keys, then it may be done with the declaration of a key
for a class with the keyword “key”.

class student (extent firstStudent key ENROLMENT NO)

{
attribute string ENROLMENT NO;

attribute string NAME;

Assuming that the ENROLMENT NO and ACCESSION_NO form a key for the issue
table, then:
class Issue (extent thisMonthIssue key

(ENROLMENT NO, ACCESSION NO))

{ attribute string ENROLMENT NO;
attribute string ACCESSION NO;

The major considerations while converting ODL designs into relational designs are as
follows:

a) It is not essential to declare keys for a class in ODL, but in Relational design
new attributes have to be created as a key.

b) Attributes in ODL could be declared as non-atomic, whereas in Relational
design they have to be converted into atomic attributes.

c) Methods could be part of the design in ODL, but they cannot be directly

converted into a relational schema, as they are not the property of a relational
schema.

d) Relationships are defined in inverse pairs for ODL, but in the case of relational
design only one pair is defined.

For example, for the book class schema, the relation is:
Book (ISBNNO, TITLE, CATEGORY, fauthor, sauthor, tauthor)

ODL has been created with the features required to create an object-oriented database
in OODBMS. You can refer to the further readings for more details on it.

13.4.3 Object Query Language

Object Query Language (OQL) is a standard query language that takes high-level
declarative programming of SQL and object-oriented features of OOPs. Let us explain
it with the help of examples.

Find the list of authors for the book titled “OODBMS”.
SELECT b.AUTHORS
FROM Book b
WHERE BOOK_TITLEZ“OODBMS" ;

Display the title of the book which has been issued to the student whose name is Anand.
SELECT BOOK TITLE
FROM Book b, Student s
WHERE s.NAME =”Anand” ;

This query can also be written by using a relationship as:
SELECT BOOK TITLE
FROM Book b
WHERE b.receivedby.NAME ="”Anand” ;

In the previous case, the query creates a bag of strings, but when the keyword

DISTINCT is used, the query returns a set.
SELECT DISTINCT BOOK TITLE

FROM Book b
WHERE b.receivedby.NAME ="”Anand” ;

When you add the ORDER BY clause to return a sorted list.

SELECT BOOK TITLE

FROM Book b

WHERE b.receivedby.NAME =”Anand”
ORDER BY b.CATEGORY ;

Aggregate operators like SUM, AVG, COUNT, MAX, MIN could be used in OQL. If
you want to compute the maximum marks obtained by any student, then the OQL
command is

Max (SELECT s.MARKS FROM Student s);

Group By and Having clauses can also be used; however, you may refer to further
readings for details on them.

Union, intersection and difference operators are applied to set or bag type with the
keywords UNION, INTERSECT and EXCEPT. If you want to display the details of
suppliers from PATNA and SURAT, then the OQL command is:

(SELECT DISTINCT su
FROM Supplier su
WHERE su.SUPPLIER CITY="PATNA")

UNION

(SELECT DISTINCT su
FROM Supplier su
WHERE su.SUPPLIER CITY="SURAT");

The result of the OQL expression could be assigned to host language variables. If
costlyBooks is a set <Book> variable to store the list of books whose price is more than
Rs. 500, then:

15

16

costlyBooks = SELECT DISTINCT b
FROM Book b
WHERE b.PRICE > 500

In this section, you have been introduced to OQL. You can refer to further readings
for more details on OQL.

== Check Your Progress — 2

1) Create a class staff using ODL that also references the Book class given in
section 13.4.

2) What modifications would be needed in the Book class because of the table
created by the above query?

13.5 OODBMS VERSUS OBJECT RELATIONAL
DATABASE

An object-oriented database management system is created on the basis of persistent
programming paradigm, whereas an object-relational is built by creating object-oriented
extensions of a relational system. In fact, both the products have clearly defined

objectives. The following table shows the difference between them:

Object-Relational DBMS

Object-Oriented DBMS

The features of these DBMS include:

e Support for complex data types

e Powerful query languages support
through SQL

e Good protection of data against
programming errors

The features of these DBMS include:

e Support complex data types,

e Very high integration of database with
the programming language,

e Very good performance

e But not as powerful at querying as
Relational.

One of the major assets here is SQL.
Although, SQL is not as powerful as a
Programming Language, but it is none-the-
less essentially a fourth-generation language,
thus, it provides excellent protection of data
from the Programming errors.

It is based on object-oriented programming
languages, thus, are very strong in
programming, however, any error of a data
type made by a programmer may affect many
users.

The relational model has a very rich
foundation for query optimisation, which
helps in reducing the time taken to execute a
query.

These databases are still evolving in this
direction. They have reasonable systems in
place.

These databases make the querying as simple
as in relational even, for complex data types
and multimedia data.

The querying is possible but somewhat
difficult to get.

Although the strength of these DBMS is SQL,
it is also one of the major weaknesses from
the performance point of view of in memory
applications.

Some applications that are primarily run in
the RAM and require a large number of
database accesses with high performance may
find such DBMS more suitable. This is

because of rich programming interface
provided by such DBMS. However, such
applications may not support very strong
query capabilities. A typical example of one

such application is databases required for
CAD.

" Check Your Progress — 3

State True or False.

1) Object-relational databases cannot represent inheritance but can

represent complex data types. TO FQO

2) The class extent defines the limit of a class.
TO FQO

3) The query language of object-oriented DBMS is stronger than

object-relational databases. TO FO
4) SQL commands cannot be optimised. TO FO
5) Object-oriented DBMS supports a very high level of integration

of databases with OOP. TO FO

13.6 SUMMARY

Object-oriented technologies are one of the most popular technologies in the present
era. Object orientation has also found its way into database technologies. The object-
oriented database systems allow the representation of user-defined types, including
operation on these types. They also allow the representation of inheritance using the
type and table inheritance. The idea here is to represent the whole range of newer types
if needed. Such features help in enhancing the performance of a database application
that would otherwise have many tables. SQL support these features for object-relational
database systems.

The object definition languages and object query languages have been designed for the
object-oriented DBMS on the same lines as that of SQL. These languages try to simplify
various object-related representations using OODBMS.

The object-relational and object-oriented databases do not compete with each other but
have different kinds of application areas. For example, relational and object-relational
DBMS are most suited for simple transaction management systems, while OODBMS
may find applications with e-commerce, CAD and other similar complex applications.

17

13.7 SOLUTIONS/ANSWERS

Check Your Progress 1
1) The object-oriented databases are need for:

o Representing complex types.

. Representing inheritance, polymorphism

. Representing highly interrelated information

o Providing object-oriented solution to databases bringing them closer to OOP.

2) Primarily by representing it as a single attribute. All its components should
also be referenced separately.

3)
CREATE TYPE Addrtype AS

(
houseNo CHAR (8
street CHAR (1
colony CHAR (1
city CHAR (8
state CHAR (8
pincode CHAR (6

) ;

METHOD pin () RETURNS CHAR(6) ;
CREATE METHOD pin () RETURNS CHAR(6);
FOR Addrtype
BEGIN
Return pincode;
END

4) CREATE TABLE addresswithpin OF Addrtype

(
REF IS addressid,
PRIMARY KEY
(street,colony,city,pincode)

) ;

5) The relationship can be established with multiple tables by specifying the
keyword “SCOPE”. For example:
CREATE TABLE mylibrary

(
mybook REF (Book) SCOPE library;

myStudent REF (Student) SCOPE student;
mySupplier REF (Supplier) SCOPE supplier;
)7

Check Your Progress 2

1)
class Staff

{
attribute string STAFF ID;

attribute string STAFF NAME;

attribute string DESIGNATION;

relationship set <Book> issues
inverse Book::issuedto;

b

2) The Book class needs to represent the relationship that is with the Staff class.

This would be added to it by using the following commands:
RELATIONSHIP SET < Staff > issuedto

INVERSE :: issues Staff

3) SELECT DISTINCT b.TITLE

FROM BOOK b
WHERE Db.issuedto.NAME = “Shashi”

Check Your Progress 3

1) False 2) False 3) False 4) False 5) True

19

UNIT 14 DATA WAREHOUSING AND DATA
MINING

Structure
14.0 Introduction
14.1 Objectives
14.2 What [s Data Warehousing?
14.3 Basic Components of a Data Warehouse
14.3.1 The Data Sources
14.3.2 Data Extraction, Transformation and Loading (ETL)
14.4 Multidimensional Data Model of a Data Warehouse
14.5 Data Mining Technology
14.6 Classification
14.6.1 Classification Using Distance (K-Nearest Neighbour)
14.6.2 Decision Tree
14.7 Clustering
14.8 Association Rule Mining
14.9 Applications of Data Mining
14.10 Summary
14.11 Solutions/Answers
14.12 Further Readings

14.0 INTRODUCTION

With the advancement of communication technology, a large amount of data is
generated and collected by various organisations. This large data can be used for making
meaningful decisions, which can be attributed to discovering useful knowledge and
patterns from their existing data. One of the ways of storing vast reservoirs of data is
data warehousing. Data warehouses provide superior capabilities for data storage,
processing, and responsiveness to analytical queries compared to transaction-oriented
databases. In decision-making applications, users need to access a larger volume of data
very rapidly — much faster than what can be conveniently handled by traditional
database systems. Often, such data is extracted from multiple operational databases. The
data of a data warehouse can be used by a data mining application. Data mining is an
interdisciplinary field that takes its approach from different areas like databases,
statistics, artificial intelligence and data structures to extract hidden knowledge from
large volumes of data. The data mining concept is used by the research community and
the industry for various kinds of data analysis.

This unit aims to introduce you to some of the fundamental techniques used in data
warehousing and data mining. This unit introduces only those data warehousing
concepts which relate to structured data.

14.1 OBJECTIVES

After going through this unit, you should be able to:

Illustrate the concepts of a data warehouse;

discuss data warehousing schemas;

identify the multi-dimensional data modelling of a data warehouse;
explains the purpose of data mining and its applications;

illustrate classification and clustering approaches of data mining;
explains how association rules can be identified in data mining.

14.2 WHAT IS DATA WAREHOUSING?

Let us first try to answer the question: What is a data warehouse? A simple answer could
be: A data warchouse is a tool that manages data after and outside of operational
systems. Thus, it is not a replacement for the operational systems but is a major tool that
acquires data from the operational systems. Data warehousing technology has evolved
in business applications for the process of strategic decision-making. Data warehouses,
sometimes, may be considered the key components of the IT strategy and architecture
of an organisation.

The formal definition of the data warehouse was given by W.H. Inman: “A Data
warehouse is a collection of data, which is (i) subject-oriented, (ii) integrated, (iii)
nonvolatile (iv) time-variant that supports decision-making by the management”.
Figure I presents some uses of data warehousing in various industries.

S.No., Industry Functional Areas of Use Strategic Uses

1 Banking Creating new schemes for loans and | Finding trends for customer
other banking products; helps in | service; product and service
operations; identifies information | promotions; reduction of

for marketing. expenses.
2 Airline Operations; marketing. Crew assignment; aircraft
maintenance plans; fare

determination; analysis of
route profitability; frequent -
flyer program design.

3 Hospital Operation optimisation. Reduction of operational
expenses; scheduling of
Iesources.

4 Investment Insurance product development; Risk management; financial
and marketing market analysis; customer
Insurance tendencies analysis; portfolio

management

Figure 1: Uses of Data Warehousing

A data warehouse offers the following advantages:

o It provides historical information that can be used in many different forms of
analysis.

. Improves the data quality by predicting missing data.

. It can help support disaster recovery, although not alone, but with other backup
resources.

One of the major advantages of a data warehouse is that it allows a large collection of
historical data from many operational databases that can be analysed through one data
warehouse interface. A data warehouse does not create value of its own in an
organisation. However, the value can be generated by the users of the data warehouse.
For example, a data warehouse of a manufacturing unit may answer some of the
following questions:

o What would be the income, expenses and profit for a year?

o What would be the sales amount this month?

o Who are the vendors for a product that is to be procured?

o How much of each product is manufactured in each production unit?

. How much is to be manufactured?

o What percentage of the product is defective?

. Are customers satisfied with the quality? etc.

The data warehouse supports various business intelligence applications. Some of these
may be - online analytical processing (OLAP), decision-support systems (DSS), data
mining etc. We shall discuss some of these terms in more detail in the later sections.

BASIC COMPONENTS OF A DATA
WAREHOUSE

14.3

A data warehouse is defined as a subject-oriented, integrated, nonvolatile, time-variant
collection, but how can we achieve such a collection? To answer this question, let us
define the basic architecture that helps a data warehouse achieve the objectives stated
above. We shall also discuss various processes that are performed by these components
on the data.

Figure 2 defines the basic architecture of a data warehouse. The analytical reports are
not a part of the data warehouse but are one of the major business application areas
including OLAP, DSS and Data Mining

Transformation:

The Data Warehouse
Data The ETL Process
Sources Extraction: The data of
Data
e Databases of Data Cleaning Warehouse
an organisation Data Profiling
. . Data
at various sites
Warehouse

Aggregating — Schema
e Datain Filtering —/| along with
Worksheet, XML |) Joining meta data |\
format — Sorting (The data can —/
Loading: be used for
: analysis)
* DatainERP Loading data in
and other data the data
resources warchouse
schema

Reports

The Reports are
generated using the
query and analysis
tools.

Figure 2: The Data Warehouse Architecture

14.3.1 The Data Sources

The data of the data warehouse can be obtained from many operational systems. A data
warehouse interacts with the environment that provides most of the source data for the
data warehouse. By the term environment, we mean traditionally developed database

systems and other applications. In a large installation, hundreds or even thousands of
these database systems or files-based systems exist with plenty of redundant data.

The warehouse database obtains most of its data from such different forms of legacy
systems — files and databases. Data may also be sourced from external sources as well
as other organisational systems. This data needs to be integrated into the warehouse.
But how do you integrate the data of these large numbers of operational systems into
the data warehouse system? You need the help of ETL tools to do so. These tools capture
the data that is required to be put in the data warehouse.

Data in Data Warehouse

The basic characteristics of the data in a data warehouse can be described in the
following way:

i) Subject Oriented: The first characteristic of the data warehouse’s data is that its
design and structure can be oriented to important objects of the organisation. These
objects for a university data warchouse can be STUDENT, PROGRAMME,
REGIONAL CENTRES etc., whereas the operational systems may be designed
around applications and functions such as ADMISSION, EXAMINATION and
RESULT DECLARATIONS (in the case of a University). Refer to Figure 3.

Operational Data: Data Warehouse:

Application-Oriented Subject-Oriented

Admission Student

Examination 8 Programme
Regional Centre
Results

Figure 3: Operations system data vs Data warehouse data

ii) Integrated: Integration means bringing together data from multiple dissimilar
operational sources on the basis of an enterprise data model. A data model of a data
warehouse can be a basic template that uniquely defines the organisation’s key data
items. Data integration requires:

e Standardising the data naming and definition: for example, “student enrolment
number” can be standardised over the data of the entire university.

e Standardising of encodings: for example, the first two digits of an enrolment
number represent the year of admission.

e Standardising the Measurement of variables: for example, all the units would
be expressed in the metric system and all monetary details would be given in
Indian Rupees.

iii) Time-Variant: The third defining characteristic of the data in a data warehouse
is that it is time-variant or historical in nature. The entire data in the data
warehouse is/was accurate at some point in time. This is in contrast with
operational data that changes over a shorter time period. Figure 4 defines this
characteristic of a data warehouse.

OPERATIONAL DATA DATA WAREHOUSE DATA

It is the current value data Contains a snapshot of historical data

Time span of data = 60-90 days | Time span of data = 5-10 years or more

Data can be updated in most After making a snapshot of the data record cannot
cases be updated

May or may not have a Will always have a timestamp

timestamp

Figure 4: Characteristics of data of operational data and data in a data warehouse

iv) Non-volatile: Data loaded in a data warehouse is subsequently scanned and
used but is not updated in the same classical ways as the operational system’s data,
which is updated through the transaction processing cycles.

Metadata Directory

The metadata directory component defines the repository of the information stored in
the data warehouse. The metadata can be used by general users as well as data
administrators. It contains the following information:

1) the structure of the contents of the data warehouse data,

ii) the source of the data,

iii) the data transformation processing requirements, such that data can be passed
from the legacy systems into the data warehouse database,

iv) the process summarisation of data,

V) the data extraction history, and

vi) how the data needs to be extracted from the data warchouse.

14.3.2 Data Extraction, Transformation and Loading (ETL)

The first step in data warehousing is to perform data extraction, transformation, and
loading of data into the data warehouse. This is called ETL, which is Extraction,
Transformation, and Loading. ETL refers to the methods involved in accessing and
manipulating data available in various sources and loading it into a target data
warehouse.

What happens during the ETL Process?
The following are the sub-processes of the ETL process of the data warehouse:

Data Extraction: The ETL is a three-stage process. During the Extraction phase, the
desired data is identified and extracted from many different sources. These sources
may be different databases or non-databases. The process of extraction sometimes
involves some basic transformation. For example, if the data is being extracted from
two Sales databases where the sales in one of the databases are in Dollars and the
other in Rupees, then a simple transformation would be required in the data. The size
of the extracted data may vary from hundreds of kilobytes to hundreds of gigabytes,
depending on the data sources and business systems.

The extraction process involves data cleansing and data profiling. Data cleansing can
be defined as the process of removal of inconsistencies in the data. For example, the

state name may be written in many ways, and they can be misspelt too. For example,
the state Uttar Pradesh may be written as U.P., UP, Uttar Pradesh, Utter Pradesh etc.
The cleansing process may try to correct the spellings as well as resolve such
inconsistencies. But how does the cleansing process do that? One simple way may be
to create a Database of the States with possible fuzzy matching algorithms that may map
various variants into one state name. Thus cleansing the data to a great extent.

Data profiling involves creating the necessary data from the point of view of a data
warehouse application. Another concern here is to eliminate duplicate data. For
example, an address list collected from different sources may be merged and purged to
create an address profile with no duplicate data.

Data Transformation: One of the most time-consuming tasks - data transformation
follows the extraction stage. The data transformation process includes the following:

o Use of data filters,

e Data validation against the existing data,
e Checking data duplication, and

¢ Information aggregation.

Transformations are useful for transforming the source data according to the
requirements of the data warehouse. The process of transformation should ensure the
quality of the data that needs to be loaded into the target data warehouse. Some of the
common transformations are:

Filter Transformation: Filter transformations are used to filter the rows in a mapping
that do not meet specific conditions. For example, the list of employees of the Sales
department who made sales above Rs.50,000/- may be filtered out.

Joiner Transformation: This transformation is used to join the data of one or more
different tables that may be stored in two different locations and could belong to two
different sources of data that may be relational or other data formats like XML.

Aggregator Transformation: Such transformations perform aggregate calculations on
the extracted data. Some such calculations may find the sum or average.

Sorting Transformation: requires creating an order in the required data based on the
application requirements of the data warehouse.

Data Loading: Once the data for the data warehouse is properly extracted and
transformed, it is /oaded into a data warehouse. This process requires creation and
execution of programs that perform this task. One of the key concerns here is to
propagate source data updates. Sometimes, this problem is equated to the problem of
maintenance of the materialised views.

When should we perform the ETL process for the data warehouse? ETL process should
normally be performed at night or when the load on the operational systems is low.
Please note that the integrity of the extracted data can be ensured by synchronising
different operational applications feeding the data warehouse and the data in the data
warehouse.

== Check Your Progress — 1

1) What is a Data Warehouse?

3) What is ETL? What are the different transformations that are needed during
the ETL process?

144 MULTIDIMENSIONAL DATA MODEL OF A
DATA WAREHOUSE

A data warehouse is a huge collection of data. Such data may involve grouping of data
on multiple attributes. For example, the enrolment data of the students at a University
may be represented using a student schema such as:

Student_enrolment (year, programme, region, number)

Some data values for such schema are (Also refer to Figure 5, which shows this data):

o In the year 2002, BCA enrolment at Region (Regional Centre Code) RC-07
(Delhi) was 350.

o In the year 2003, BCA enrolment in Region RC-07 was 500.

o In the year 2002, MCA enrolment in all the regions was 8000.

Please note that for representing the value of a number of students, you need to refer
to three attributes: year, programme and region. Each of these attributes is identified as
a dimension attribute. Thus, the data of the Student enrolment table can be modelled
using three-dimensional attributes (year, programme, region) and a measure attribute
(number). Such kind of data is referred to as multidimensional data. Thus, a data
warehouse may use multidimensional matrices referred to as a data cube model. If the
dimensions of the matrix are greater than three, then it is called a hypercube. Figure 5
represents the multidimensional data of a university:

/3>o / 500 / / /
/7 7 7 7

BCA | 5000 9500 6000 4000 /

MCA| 8000 7800 9000 9000

45000 || 43000 42000 40000
Others C-29

RC-07
All | 62000 60300 || 57000 53000 00 RC-01
All

2002 2003 2004 2005 All

Figure S: Sample multidimensional data

Multidimensional data may be a little difficult to analyse. Therefore, Multidimensional
data may be displayed on a certain pivot, for example, consider the following table:

Region: ALL THE REGIONS
BCA MCA Others All the
Programmes
2002 9000 8000 45000 62000
2003 9500 7800 43000 60300
2004 6000 9000 42000 57000
2005 4000 9000 40000 53000
ol 28500 33800 170000 232300
Years

Figure 6: Pivot table on Programme and Year dimension.

The table given above shows the multidimensional data in cross-tabulation. This is also
referred to as a pivot table. Please note that cross-tabulation is a two-dimensional
structure. Therefore, if the data warehouse has three dimensions, then the cross-
tabulation will be done on only two dimensions and the third dimension would be kept
as ALL. For example, the table above has two dimensions Year and Programme, the
third dimension Region has a fixed value ALL for the given table. The last row of Figure
6 is on one dimension, viz. Programme.

Now, the question is, how can multidimensional data be represented in a data
warehouse? or, more formally, what is the schema for multidimensional data?

Three common multidimensional schemas are the Star schema, the Snowflake schema
and Galaxy or Fact Constellation schema. In this Unit, we will define the Star and
Snowflake schema. Galaxy schema contains multiple fact tables. You can find more
detail on this schema in the further readings. A multidimensional storage model contains
two types of tables: the dimension tables and the fact table. The dimension tables have
tuples of dimension attributes, whereas the fact tables have one tuple each for a recorded
fact. Let us demonstrate this with the help of an example. Consider the University data
warehouse where one of the data tables is the Student enrolment table. The three
dimensions in such a case would be:

. Year

o Programme, and

. Region

The star schema for such a data is shown in Figure 7.

Dimension Table: Fact Table: Dimension
Programme Enrolment Table: Year
Year
ProgramCode Year
Programme
Name Semester
i Region
Duration
Enrolment Start date

RCcode

RCname
Dimension Table:

Region City

State

RCPhone

Figure 7: A Star Schema

Please note that in Figure 7, the fact table points to different dimension tables, thus,
ensuring the reliability of the data. Please also note that each Dimension table is a table
for a single dimension only and that is why this schema is known as a Star schema.
However, a dimension table may not be normalised. Thus, a new schema named the
Snowflake schema was created. A Snowflake schema has normalised but hierarchical
dimensional tables. For example, consider the Star schema shown in Figure 7, if, in the
Region dimension table, the value of the field Rcphone is multivalued, then the Region
dimension table is not normalised. Thus, we can create a Snowflake schema for such a
situation (Refer to Figure 8).

10

Dimension Table: Fact Table: Dimension Table:
Programme Enrolment Year
ProgramCode Year _,| Year
Name \ Programme Semester
Duration Region
Enrolment Start date

. RCcode
Dimensiton Table: /
Region RCphone
RCcode
RCname
City Phone
Table
State

Figure 8: Snowflake Schema

Data warehouse storage can also utilise indexing to support high-performance access.
As the data of a data warehouse is non-volatile, the data warehouse allows storage and
access to summary data.

A data warehouse is an integrated collection of data and can help the process of making
better business decisions. Several tools and methods are available to process the data of
a data warehouse to create information and knowledge that supports business decisions.
Two such techniques are Decision-support systems and Online Analytical processing.
A detailed discussion on these topics is beyond. The scope of this unit. In this unit, we
define data mining, which can extract useful information from a data warehouse.

14.5 DATA MINING TECHNOLOGY

Data is growing at a phenomenal rate today and users expect more sophisticated
information from data. There is a need for techniques and tools that can automatically
generate useful information and knowledge from large volumes of data. Data mining is
one such technique of generating hidden information from the large data.

Data mining can be defined as: “an automatic process of extraction of non-trivial or
implicit or previously unknown but potentially useful information or patterns from data
in large databases, data warehouses or in flat files”.

Data mining uses the data of a data warehouse, which is well equipped for providing
data as input for data mining. The advantages of using the data of a data warehouse for
data mining are listed below:

. Data quality and consistency are essential for data mining to ensure the
accuracy of the predictive models. Data is loaded in a data warehouse after data
extraction, cleaning and transformation; therefore, is good quality data.

. As stated earlier, the data of a data warehouse is integrated from multiple data
sources for a specific purpose and, therefore, is suited for data mining.

. Some data mining techniques would require aggregated or summarised data. A
data warehouse contains such data.

As defined earlier, data mining generates potentially useful information or patterns from
data. In fact, the information generated through data mining can be used to create
knowledge. So let us first define the three terms: data, information and knowledge.

1. Data (Symbols) are raw facts, for example, “Miral” is a name, BCA is a
programme, and 2200105000 is an enrolment number.

2. Information: Information is the processed data. It provides answers to “who”,
“what”, “where”, and “when” questions. For example, Miral is a BCA student
of IGNOU having enrolment number “2200105000”. He has scored 761 marks
out of 1000.

3 Knowledge: Knowledge is the application of data and information, it answers
the “how” questions. This is not explicit in the database. A student who scores
more than 075% marks is brilliant; therefore, Miral is brilliant.

Data Mining Approaches

The approaches to data mining are based on the type of information/ knowledge to be
mined. We will emphasise three different approaches: Classification, Clustering, and
Association Rules.

The classification task maps data tuples into predefined groups or classes. The task of
clustering is to group tuples with similar attribute values into a new class. So,
classification is supervised by the goal attribute, while clustering is an unsupervised
classification. The task of association rule mining is to find relationships
between/among data values of a set of transactional data. Its original application was on
“market basket data”.

In most of these approaches, a notion of distance measure is used. A distance measure
is used to find the distance or dissimilarity between objects. The two most common
distance measures are:

k
o Euclidean distance: edis(t;,t) = Z (t—ts)?
h=1
k
. Manbhattan distance: mdis(ti,t) = 2}1—1' (tin — tjn) |

where ¢ and ¢ are tuples and /4 can take the values from 1 to £, each of which represents
a different attribute that is being used to compute the distance.
In the next section, we discuss the three data mining approaches.

12

% Check Your Progress — 2

1) What is a dimension? How is it different from a fact table?

2) How is the Snowflake schema different from the Star schema?
3) Define what data mining is.

4) What are different data mining tasks?

14.6 CLASSIFICATION

The classification task maps data tuples into predefined groups or classes.

Given a database/dataset consisting of tuples # where i varies from 1 to n, i.e.
D={t;, t,,..., ta};
and a set of known classes C={Cj, ..., Cy}, where m >> n.

The classification problem is to map each ¢ to a C..

Some simple examples of classification are:

. Teachers classify students’ marks data into a set of grades as A, B, C, D, or F.
. You can clarify the height of a set of students in the classes: tall, medium or
short.

Basic Principle:

1. The classification involves learning using the training data, which is the data that
has already been assigned to one of the classes. This training results in a
classification model.

2. This model is then tested using the test data to find the effectiveness of the model.
The test data also has assigned classes, which are checked against the class
predicted by the model. The accuracy of the model can be ascertained on the basis
of correctly predicted classes of the test data.

3. A good model is then used to classify the data that has not been classified.

Some of the common techniques used for classification are Decision Trees, Neural
Networks etc. In this section, we present two examples of classification.

14.6.1 Classification Using Distance (K-Nearest Neighbour)

This approach places items in the class to which they are “closest” by determining the
distance of an item from a class. Classes are represented by a central point called
centroid. The K-nearest neighbour algorithm has the following steps:

1) Create a training data set consisting of attributes or features that would be used
for classifying data and the identified classes for these attributes. Figure 9
shows an example training data set.

2) Defines the number of near items (items that have less distance to the attributes
of concern) from the training data that should be used to classify data. The value

of K should be <= \/ Number_of Training_Items

3) A new item is placed in the class in which most of its near items are placed.

Example: Consider the following data, which classifies each person’s class
<Short, Medium, Tall> depending upon height attribute.

Name Height Class
Sunita 1.6m Short
Ram 2.0m Tall
Namita 1.9m Medium
Radha 1.88m Medium
Jully 1.7m Short
Arun 1.85m Medium
Shelly 1.6m Short
Avinash 1.7m Short
Sachin 2.2m Tall
Manoj 2.1m Tall
Sangeeta 1.8m Medium
Anirban 1.95m Medium
Krishna 1.9m Medium
Kavita 1.8m Medium
Pooja 1.75m Medium

Figure 9: Sample Height data with classification

1) You are given the task of classifying the tuple xyz <XYZ, 1.6> using the data
that is given to you.

2) The height attribute is used for distance calculation, and suppose K=5, then the
following are the five nearest tuples to the tuple xyz. Please note that we have
used the Manhattan distance on attribute height as a measure of classification.

Height Class
1.6m Short
1.7m Short
1.6m Short
1.7m Short
1.75m Medium
3) On examination of the tuples above, we classify the tuple xyz<XYZ, 1.6> to

the Short class since most of the nearest tuples belong to the Short class.

Thus, in K-nearest neighbour classification, the classification is controlled by the
neighbours.

14.6.2 Decision Tree

Given a data set D = {#,,1, ..., t,}, where tuple ;=< A4,, A>,....A; >, that is, each tuple is
represented by 4 attributes. Also, let us suppose that the classes are C ={C},, Cu},
then the Decision or Classification Tree is a tree associated with D such that:

13

. The tree consists of internal and leaf nodes. A label using an attribute A4; is
assigned to each internal node.

. An arc from a parent node is labelled with a predicate on the attribute label of
the parent node.
o Every leaf node has a class label.

The basic steps in the Decision Tree are as follows:
. Building the tree by using the training set dataset/database.
) Applying the tree to the new dataset/database.

This decision tree can then be used for classification. We show an example of a decision
tree without giving an algorithm for drawing it. You may refer to further reading for
details.

Consider the following data in which the Position attribute acts as a predicted class, and
department and salary are attributes of determining the class of a tuple.

Department Age Salary Position
Personnel 31-40 |Medium Range Boss
Personnel 21-30 |Low Range Assistant
Personnel 31-40 |Low Range Assistant
MIS 21-30 |Medium Range Assistant
MIS 31-40 |High Range Boss
MIS 21-30 |Medium Range Assistant
MIS 41-50 |High Range Boss
Administration | 31-40 |Medium Range Boss
Administration | 31-40 |Medium Range Assistant
Security 41-50 |Medium Range Boss
Security 21-30 |Low Range Assistant

Figure 10: Sample data for classification

You may analyse the data given in Figure 10 on each individual attribute. The
following tables present the analysis of class Position on the attributes Age,
Department and Salary, respectively.

Age Assistant BOSS
21-30 4 0
31-40 2 3
41-50 0 2

Department Assistant BOSS
Personal 2 1
MIS 2 2
Administration 1 1
Security 1 1

Salary Assistant BOSS
Low Range 3 0
Medium Range 3 3
High Range 0 2

Out of the three attributes, the Age attribute predicts the Position class the best, as it
predicts that all the person in the range 21-30 are Assistants and all the person in the
age group 41-50 are Boss. Thus, it should be used as the first splitting attribute.
However, for a person in the age range of 31-40, the Postion cannot be defined. So, we

have to find the spitting attribute for this age range 31-40. The tuples that belong to this
range are as follows:

Tuples Only for 31-40 age range

Department Salary Position
Personnel Medium Range Boss
Personnel Low Range Assistant
MIS High Range Boss
IAdministration |[Medium Range Boss
|Administration [Medium Range Assistant

The tuples as given above can be mapped as:

Department Assistant BOSS
Personal 1 1
MIS 0 1
Administration 1 1

Salary Assistant BOSS
Low Range 1 0
Medium Range 1 2
High Range 0 1

The Salary attribute can perform better prediction than the Department attribute, so we
select Salary as the next splitting attribute. In the middle range Salary, the Position class
is not defined while for other ranges it is defined. So, we have to find the spitting
attribute for this middle range. Since only Department attribute is left, so, Department
will be the next splitting attribute. Now, the tuples that belong to this salary range are
as follows:

Department Position
Personnel Boss
Administration Boss
Administration Assistant

In the Personnel department, all person are Boss, while, in the Administration there is a
tie between the classes. So, the person can be either Boss or Assistant in the
Administration department. The final decision tree, based on presented data, for
predicting the Position class is as follows:

15

16

Age?

21-30 41-50
K
A
o
A 4
Salary?
Low Range High Range
=
[
=3
o
3
o
>
«Q
[0
A 4
Department?

Administration

Personnel

Assistant/Boss

Figure 11: The decision tree for the sample data of Figure 10

Now, you can use the decision tree to predict the Position of a person if his/her Age,
Salary and Department attributes are known.

There are many more techniques of classification, however, they are beyond the scope
of this unit, you may refer to further readings for these.

14.7 CLUSTERING

Clustering is grouping tuples with similar attribute values into the same group. Given a
database D={#;,1,,...,t,} of tuples and an integer value K, the Clustering problem is to
define a mapping where each tuple ¢ is assigned to one cluster Kj, 1<=j<=K.

Unlike the classification problem, clusters are not known in advance. The user has to
enter the value of the number of clusters K. In other words, a cluster can be defined as
the collection of data objects that are similar in nature, as per certain defining properties,
but these objects are dissimilar to the objects in other clusters. Clustering is a very useful
exercise, especially for identifying similar groups in the given data. Such data can be
about buying patterns, geographical locations, web information and many more. For
example, you can use clustering to segment the customer database of a departmental
store based on similar buying patterns. Similarly, to identify similar Web usage patterns,

you may use clustering. Some of the clustering issues are as follows:
e Qutlier handling: How will the outliers be handled? (Outliers are data objects
that have values far beyond the average data limits of those data objects).
Outlier handling requires answering the question: Whether an outlier be

considered or left aside while calculating the clusters?
Dynamic data: How will you handle dynamic data?
Interpreting results: How will the result be interpreted?
Evaluating results: How will the result be calculated?
Number of clusters: How many clusters will you consider for the given data?
Data to be used: whether you are dealing with quality data or noisy data? If
the data is noisy, how is it to be handled?

e Scalability: Whether the algorithm that is used is to be scaled for small as well

as large data sets/databases.

There are many algorithms for clustering. However, we will discuss only one basic
algorithm. You can refer to more details on clustering from further readings.

Partitioning Clustering

The partitioning clustering algorithm constructs K partitions from a given set of »
objects of data. Here, K < n, and each partition must have at least one data object while
one object belongs to only one of the partitions. A partitioning clustering algorithm
normally requires users to input the desired number of clusters, K. We define one such
technique called K-means clustering with the help of an example.

K-Means clustering: In K-Means clustering, initially a set of K clusters is randomly
chosen. Then iteratively, items are moved among sets of clusters until the desired set of
clusters is reached. A high degree of similarity among elements in a cluster is obtained
by using this algorithm. For this algorithm, a set of clusters K= {t;;, ti2, ...,tin} is chosen.
A cluster mean is computed for each cluster using the equation:
mi=(Um) (tiy + .c. Ttim) (1

Where ¢ represents the tuples and m represents the mean. This mean is used to refine
the clusters further. We explain this algorithm with the help of an example.
Example: Consider an input set is given as:

Input set= {1, 2, 3, 5, 10, 15, 16,18, 22, 30} and K = 2.

Find the cluster of input values.

Step 1: Randomly assign means to two clusters, K; and K>, as m;=3 and m,=5
Assign Input set values to clusters based on the smallest distance to the mean.
This will result in:

K= {1,2,3} and K= {5, 10, 15, 16, 18, 22, 30}

Step 2: Compute the mean (use the formula given in equation 1) of the clusters after the
assignment of the input set. This will result in m;=2 and my=16.57.

Redefine clusters as per the closest mean from the mean of the cluster. For
example, for the mean of step 2, input value 5 is closer to 2, so add it to K.
Thus, the revised clusters are:

K={1,2,3,5} and K= {10, 15, 16, 18, 22, 30}.

Step 3: Compute the mean for the latest cluster assignment. This will result in m,=2.75
and m»=18.5.

Repeat the process of finding the cluster as per the closest mean from the mean
of the cluster. The revised clusters remain as:
K;=1{1,2,3,5,10} and K>= {15, 16, 18, 22, 30}.

Step 4: Compute the mean, it will be m;=4.2, m,=20.2
No change in clusters, so STOP. The final clusters are:
K;=1{1,2,3,5,10} and K>= {15, 16, 18, 22, 30}.

17

18

You can refer to more details on the clustering algorithms from further readings.

" Check Your Progress — 3

1) What is the classification of data? Give some examples of classification.
2) What is clustering?
3) How is clustering different from classification?

14.8 ASSOCIATION RULE MINING

The task of association rule mining is to find certain association relationships among a
set of items in a dataset/database. The association relationships are described as
association rules. In association rule mining there are two measurements, support and
confidence. The confidence measure indicates the rule’s strength, while support
corresponds to the frequency of the pattern.

A typical example of an association rule created by data mining often termed “market
basket data” is “While shipping for basic groceries, it has been found that about 80% of
the customers who purchase bread from the store also purchase butter along with.”

Applications of association rule mining include cache customisation, advertisement
personalisation, store layout designing, customer segmentation etc. All these
applications try to determine the associations between data items, if it exists, to optimise
performance.

Formal Definition:

Given a set of items / = {i;, i, ..., in} and a set of transactions 7, where a transaction
T: comprises of items and is a subset /. Each transaction is identified by a TID. For the
given sets, an associationrule is defined as X=> Y, where both X and Y are the
subsets of /suchthatX N Y = @.

The support (s) for the stated association rule X=> Y is defined as the percentage
of transactions in 7 that contains X U Y.

The confidence (c¢) for the stated association rule X—=> Y is defined as the
percentage of transactions that include X, also include Y.

Support indicates how frequently the pattern occurs, while confidence indicates the
strength of the rule.

The objective of association rule mining is to find all those rules which have better
support than the defined minimum support and better confidence than the defined

minimum confidence. The association rule mining consists of two sub-problems:

(1) Find the frequent item sets (Freqltem) having support more than a
predetermined minimum support.

(2) Derive association rules from Fregltem, which have confidence more than the
minimum confidence.

There are a lot of ways to find the large item sets, but in this unit, we will only discuss
the Apriori Algorithm.

Apriori Algorithm: For finding frequent item sets.

The Apriori algorithm applies the concept that all the subsets of a frequent itemset
should be frequent. The Apriori algorithm generates the candidate item sets from the
item sets that were found to be frequent in the previous iteration of the algorithm.

This algorithm first finds the frequent item sets having just 1 item, which are combined
to form item sets of 2 items and so on. The algorithm iterations terminates when no

additional higher item sets can be generated.

Notations that are used in the Apriori algorithm are given below:

k-itemset An itemset having k items
L Set of frequent k-itemset (those with minimum support)
Ck Set of candidates k-itemset (for finding frequent item sets)

The Apriori algorithm is implemented as an iterative function. It takes L. as an input
parameter and returns L. It consists of a join step and a pruning step. It is explained
with the help of the following example:

Example: Finding frequent item sets:
Consider the following transactions and find the frequent item sets by applying the
Apriori algorithm assuming minimum support (s) =30%.

Transaction ID Item(s) purchased
1 Shirt, Trouser
2 Shirt, Trouser, Coat
3 Coat, Tie, Tiepin
4 Coat, Shirt, Tie, Trouser
5 Trouser, Belt
6 Coat, Tiepin, Trouser
7 Coat, Tie
8 Shirt
9 Shirt, Coat
10 Shirt, Handkerchief

Figure 12: Sample Transactions data

The method of finding the frequent itemset is shown in the Figure 13.

20

Iteration Candidates Frequent itemset (s > 3, i.e.

Number 30% of 10 Transactions)
1 Ci={Belt 1, Li={Coat 6,
Coat 6, Shirt 6,
Handkerchief 1, Tie 3,
Shirt 6, Trouser 5 }
Tie 3,
Tiepin 2,
Trouser 54
2 C,= {{Coat, Shirt} 3, L,={{Coat, Shirt} 3,
{Coat, Tie} 3, {Coat, Tie} 3,
{Coat, Trouser} 3, {Coat, Trouser} 3,
{Shirt, Tie} 1, {Shirt, Trouser} 3 }

{Shirt, Trouser} 3,
{Tie, Trouser} 1}

3 Cs= {{Coat, Shirt, Trouser} 2} Ly=0

Figure 13: Frequent Itemset for different k using Apriori algorithm
In pass number 1, you may notice that Belt in purchased in only one (5%
transaction) of all the 10 transaction that in why it has a value 1. Similarly, the
support of each item is computed from the transaction data.

Likewise, in pass 2 {Coat, shirt} together are purchased in transactions 2, 4, 9.

Also please note that set Cz is computed by joining set L1 with itself, which will
result in
Ca: {{Coat, Shirt}, {Coat, Tie}, {Coat, Trouser}, {Shirt, Tie},

{Shirt, Trouser}, {Tie, Trouser} }
Set L is computed after finding the support of each element of set C, as shown
in Figure 13.
The calculation of 3-itemsets is mentioned below:

Join operation on L, onto itself yields 3 item sets as:
{{Coat, Shirt, Tie}, {Coat, Shirt, Trouser}, {Coat, Tie, Trouser} }

However, the Prune operation removes two of these items from the candidate set
Cs due to the following reasons:
e {Coat, Shirt, Tie} is pruned as one of its subset {Shirt, Tie} is not in L
e {Coat, Shirt, Trouser} is retained as {Coat, Shirt}, {Coat, Trouser} and
{Shirt, Trouser} all three are in L
o {Coat, Tie, Trouser} is pruned as its subset{Tie, Trouser} is not in L,
The algorithm terminates, as L3 is a NULL set. Thus, the frequent 2 items are:

Lo={{Coat, Shirt}, {Coat, Tie}, {Coat, Trouser}, {Shirt, Trouser} }
Finding Association Rules: Assuming minimum confidence (c¢) of 60%.

Confidence for rule Coat—> Shirt
_ Transactions containing {Coat,Shirt} 100

Transactions containing only {Coat}
3

== x100=50%
Confidence for rule Shirt > Coat = Z x 100 =50%
Confidence for rule Coat 2> Tie = Z X 100 =50%
Confidence for rule Tie = Coat = z x 100 =100%

Confidence for rule Coat =2 Trouser = z X 100 =50%
Confidence for rule Trouser = Coat = z X 100 =60%
Confidence for rule Shirt = Trouser = z X 100 =50%

Confidence for rule Trouser = Shirt = g X 100 = 60%

Only the following three association rules fulfil the confidence criteria of
confidence >= 60%.

Tie = Coat; Trouser = Coat; Trouser = Shirt

Thus, the Arpioi algorithm is able to determine the frequent item sets, which can
be used to determine the association rules. One of the major advantages of the
Apriori algorithm is that it is a very easy algorithm to implement; however, it
requires the transaction database to be memory resident.

14.9 APPLICATIONS OF DATA MINING

Some of the applications of data mining are as follows:

° Marketing and sales data analysis: A company can use customer transactions
in their database to segment the customers into various types. Such companies
may launch products for specific customer types.

o Investment analysis: Customers can look at the areas where they can get good
returns by applying data mining.

o Loan approval: Companies can generate rules for giving loans depending
upon the dataset they have. On that basis, they may decide to whom and what
amount of loan should be given.

o Fraud detection: By finding the correlation between faults, new faults can be
detected by applying data mining.

o Network management: By analysing patterns generated by data mining for
the networks and their faults, the faults can be minimised as well as future
hardware and software needs of the network can be predicted.

o Brand Loyalty: Given a customer and the product he/she uses, predict whether
the customer will change their products.

" Check Your Progress — 4

1) What is association rule mining?

2) What are the applications of data mining in the banking domain?

3) Apply the Apriori algorithm for generating frequent itemset in the following
dataset:

21

22

Transaction ID Items purchased
Ta PI, PIs
Ts PI, PI3
Tc PI,PL, PI;PL4
TD PI1P12 PI3

14.10 SUMMARY

This unit first introduces the concepts of data warehousing systems. The data warehouse
is a technology that collects operational data from several operational systems, refines
it and stores it in its own multidimensional model, such as Star schema or Snowflake
schema. The data of a data warchouse can be indexed and can be used for analyses
through data mining. Data mining is the process of automatic extraction of interesting
but not known information in large databases. Basic data mining tasks are
Classification, Clustering and Association rules. The classification task maps data into
predefined classes. Clustering task groups objects with similar properties/behaviour into
the same group. Association rules find the association relationship among a set of
objects. Data mining can be applied in many areas, whether it is Games, Marketing,
Bioscience, Loan approval, Fraud detection etc.

Please go through further readings for more details on data warehousing and data
mining.

14.11 SOLUTIONS/ANSWERS

%= Check Your Progress — 1

1) A Data Warehouse is a repository of processed but integrated information that
can be used for queries and analysis. Data and information are extracted from
heterogeneous sources. It is subject-oriented, time-variant integrated data,
which is not changed once put in a data warehouse.

2)
e Integrated data
e Subject-oriented data
e Time-variant data
e Non-volatile
3) ETL is Extraction, transformation, and loading. ETL refers to the methods

involved in accessing and manipulating data available in various sources and
loading it into the target data warehouse. The following are some of the
transformations that may be used during ETL:

Filter Transformation
Joiner Transformation
Aggregator transformation
Sorting transformation.

%= Check Your Progress — 2

1)

2)

3)

4)

A dimension may be equated with a reference object. For example, in a sales
organisation, the dimensions may be salesperson, product and period of
information. Each of these is a dimension. The fact table will represent the fact
relating to the dimensions. For this example, a fact table will include sales (in
rupees) made by a particular salesperson for a specific product for a certain
period. Fact is actual data. A fact, thus, represents an aggregation of relational
data on the dimensions.

The primary difference between them is that the Snowflake schema uses a
normalised dimensional table.

Data mining is the process of automatic extraction of interesting (non-trivial,
implicit, previously unknown and potentially useful) information or patterns
from large data stored in large databases or data warehouses.

Different data-mining tasks are - Classification, Clustering and Association
Rule Mining.

" Check Your Progress — 3

1)

2)

3)

The classification task maps data into predefined groups or classes. Data are
represented as tuples, which consist of a set of predicating attributes and a goal
attribute. The task is to discover some kind of relationship between the
predicating attributes and the goal attribute so that the discovered knowledge
can be used to predict the class of new tuple(s).

Some examples of classification are:
Classification of students' grades depending on their marks in previous
examinations.
Classification of customers as good or bad customers in a bank.

The task of clustering is to group the tuples with similar attribute values into
the same class. Given a database of tuples and an integer value K, Clustering
defines mapping, such that tuples are mapped to K different clusters.

In classification, the classes are predetermined, but in the case of clustering, the
groups are not predetermined. Only the number of clusters is decided by the
user.

= Check Your Progress — 4

1)

2)

3)

The basic idea of association rule mining is to find unknown and interesting
associations among various data items.

Data mining applications in banking are as follows:

1) Detecting patterns of fraudulent credit card use.

2) Identifying good customers.

3) Determining whether to issue a credit card to a person or not.

4) Finding hidden correlations between different financial indicators.

The dataset D given for the problem is:

23

24

Transaction ID Items purchased
Ta PI, PI;s
Ts PI, PI3
Tc PI, PI, PI; P4
Tp PI, PI, PI;

Assuming the minimum support as 50% for calculating the large item sets. As
we have 4 transactions, at least 2 transactions should have the data item.

First Scan:
C1:PI1::3,PI»:3,PI5:3,P14:1,PIs: 1
Li: PI1Z3, P12:3,PI3Z3
C,: PI,PL,, PI,PI;, P1,PI;

Second Scan:
Ca: PI,PI1»:2, PI,PIs:3, PI,PIs:2
L,: PI,PI»:2, PI,PI5:3, PI,PIs:2
Cs: PI,PLLPI;
Pruned C3Z P11P12P13

Third scan

L3Z PI1P12PI3Z 2

Frequent item sets L={L, L», L3}

14.12 FURTHER READINGS

1) Data Mining Concepts and Techniques,] Han, M Kamber, Morgan Kaufmann
Publishers, 2001.

2) Data Mining, A K Pujari, 2004.

UNIT 15 NoSQL DATABASE

Structure Page Nos.

15.0 Introduction
15.1 Objectives
15.2 Introduction to NoSQL
15.2.1 Whatis NoSQL
15.2.2 Brief History of NoSQL Databases
15.2.3 NoSQL Database Features
15.2.4 Difference between RDBMS and NoSQL
15.3 Types of NoSQL Databases
15.3.1 Column Based
15.3.2 Graph Based
15.3.3 Key-Value Pair Based
15.3.4 Document Based
154 Summary
15.5 Solutions/Answers
15.6 Further Readings

15.0 INTRODUCTION

In the previous Unit of this Block, you have gone through the concept of relational
database management systems and data warchousing. However, these technologies are
somewhat slower for scalable web applications. NoSQL databases arose because
databases at the time were not able to support the rapid development of scalable web-
based applications.

NoSQL databases have changed the manner in which data is stored and used, despite
the fact that relational databases are still commonly employed. Most applications come
with features like Google-style search, for instance. The growth of data, online surfing,
mobile use, and analytics have drastically altered the requirements of contemporary
databases. These additional requirements have spurred the expansion of NoSQL
databases, which now include a range of types such as key-value, document, column,
and graph.

In this Unit, we will discuss the many kinds of NoSQL databases, including those that
are built on columns, graphs, key-value pairs, and documents respectively.

15.1 OBJECTIVES

After going through this unit, you should be able to:
e define what is NoSQL;
e differentiate between NoSQL and SQL;
e cxplain the basic features of Column based NoSQL Database;
e explain the Graph-based NoSQL Database;
e explain the Key-value pair based NoSQL Database and
e explain the Document based NoSQL Database.

15.2 INTRODUCTION TO NoSQL

Databases are a crucial part of many technological and practical systems. The
phrase "NoSQL database" is frequently used to describe any non-relational
database. NoSQL is sometimes referred to as "non SQL," but it is also referred
to as "not only SQL." In either case, the majority of people agree that a NoSQL
database is a type of database that stores data in a format that is different from
relational tables.

Whenever you want to use the data, it must first be saved in a particular structure
and then converted into a usable format. On the other hand, there are some
circumstances in which the data are not always presented in a structured style,
which means that their schemas are not always rigorous. This unit provides an
in-depth look into NoSQL and the features that make it unique.

15.2.1 What is NoSQL?

NoSQL is a way to build databases that can accommodate many different kinds
of information, such as key-value pairs, multimedia files, documents, columnar
data, graphs, external files, and more. In order to facilitate the development of
cutting-edge applications, NoSQL was designed to work with a variety of
different data models and schemas.

The great functionality, ease of development, and performance at scale offered
by NoSQL have helped make it a popular name. NoSQL is sometimes referred
to as a non-relational database due to the numerous data handling features it
offers. Due to the fact that it does not adhere to the guidelines established by
Relational Database Management Systems (RDBMS), you cannot query your
data using conventional SQL commands. We can think of such well-known
examples as MongoDB, Neo4J, HyperGraphDB, etc.

15.2.2 Brief History of NoSQL Databases

In the late 2000s, as the price of storage began to plummet, No-SQL databases
began to gain popularity. No longer is it necessary to develop a sophisticated,
difficult-to-manage data model to prevent data duplication. Because developers'
time was quickly surpassing the cost of data storage, NoSQL databases were
designed with efficiency in mind.

Table 1: History of Databases

Year Database Solutions Company / Database
Technology
1970-2000 Mainly RDBMS related Oracle, IBM DB2, SQL Server,

MySQL

2000-2005 DotCom boom — new scale Google, Facebook, IBM,
solutions, start of NoSQL dev, amazon

whitepapers
2005-2010 New open source & Cassandra, Riak, Apache
mainstream databases Hbase, neo4j, MongoDB,
CouchDB, Redis

47

2010 Adoption of Cloud DBaaS (Database as a Service)
onwards

As storage costs reduced significantly, the quantity of data that applications were
required to store and query grew. This data came in all forms— structured, semi-
structured, and unstructured — and sizes making it practically difficult to define
the schema in advance. NoSQL databases give programmers a great deal of
freedom by enabling them to store enormous amounts of unstructured data.

In addition, the Agile Manifesto was gaining momentum, and software
developers were reconsidering their approach to software development. They
were beginning to understand the need of being able to quickly adjust to ever-
evolving requirements. They required the flexibility to make rapid iterations and
adjustments to all parts of their software stack, including the underlying
database. They were able to achieve this flexibility because of NoSQL
databases.

The use of the public cloud as a platform for storing and serving up data and
applications was another trend that arose, as cloud computing gained popularity.
To make their applications more robust, to expand out rather than up, and to
strategically position their data across geographies, they needed the option to
store data across various servers and locations. These features are offered by
some NoSQL databases like MongoDB.

60003 O ==
2,000
6003)
200
60
20 b
6 %ﬁ.\
2
06
0.2
0.063
0.024

Cost of MB in US Dollars

0.0063
0.002
0.00065
0.0002
0.000062
0.00002-

1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 2015
Year

Figure 1: Cost per MB of Data over Time (Log Scale)
(Adapted from https://www.mongodb.com)

15.2.3 NoSQL database features

Every NoSQL database comes with its own set of one-of-a-kind capabilities.
The following are general characteristics shared by several NoSQL databases:
e Schema flexibility

Horizontal scaling
Quick responses to queries as a result of the data model
Ease of use for software developers

15.2.4 Difference between RDBMS and NoSQL

The differences and similarities between the two DBMSs are as follows:

For the most part, NoSQL databases fall under the category of non-
relational or distributed databases, while SQL databases are classified as
Relational Database Management Systems (RDBMS).

Databases that use the Structured Query Language (SQL) are table-
oriented, while NoSQL databases use either document-oriented or key-
value pairs or wide-column stores, or graph databases.

Unlike NoSQL databases, which have dynamic or flexible schema to
manage unstructured data, SQL databases have a strict or static schema.

Structured data is stored using SQL, whereas both structured and
unstructured data can be stored using NoSQL.

SQL databases are thought to be scalable in a vertical direction, whereas
NoSQL databases are thought to be scalable in a horizontal direction.

Increasing the computing capability of your hardware is the first step in
the scaling process for SQL databases. In contrast, NoSQL databases
scale by distributing the load over multiple servers.

MySQL, Oracle, PostgreSQL, and Microsoft SQL Server are all
examples of SQL databases. BigTable, MongoDB, Redis, Cassandra,
RavenDb, Hbase, CouchDB, and Neo4j are a few examples of NoSQL
databases.

Vertical scalability is required for SQL databases. This means that an excessive
amount of load must be able to be managed by increasing the amount of CPU,
SSD, RAM, GPU, etc. on your server. When it comes to NoSQL databases, the
ability to scale horizontally is one of their defining characteristics. This means
that the addition of additional servers will make the task of managing demand
more manageable.

=~ Check Your Progress 1

1)

2)

What is NoSQL?

3) Differentiate between the NoSQL and SQL.

15.3 TYPES OF NoSQL DATABASES

In this section, we will discuss the many classifications of NoSQL databases.
There are typically four types of NoSQL databases:

1) Column-based: Instead of accumulating data in rows, this method
organizes it all together into columns, which makes it easier to query
large datasets.

2) Graph-based: These are systems that are utilized for the storage of
information regarding networks, such as social relationships.

3) Key-value pair based: This is the simplest sort of database, in which each
item of your database is saved in the form of an attribute name (also
known as a "key") coupled with the value.

4) Document-based: Made up of sets of key-value pairs that are kept in
documents.

15.3.1 Column Based

A column store, in contrast to a relational database, is arranged as a set of
columns, rather than rows. This allows you to read only the columns you need
for analysis, saving memory space that would otherwise be taken up by
irrelevant information. Because columns are frequently of the same kind, they
are able to take advantage of more efficient compression, which makes data
reading even quicker. The value of a specific column can be quickly aggregated
using columnar databases.

Although columnar databases are excellent for analytics, because of the way they
publish data, it is challenging for them to remain consistent because writes to all
the columns need several write events on the disk. However, this problem never
arises with relational databases because row data is continuously written to disk.

How Does a Column Database Work?

A columnar database is a type of database management system (DBMS) that
allows data to be stored in columns rather than rows. It is accountable for
reducing the amount of time needed to return a certain query. Additionally, it
is accountable for the significant enhancement of the disk I/O performance.
Both data analytics and data warehousing benefit from it. Additionally, the
primary goal of a Columnar Database is to read and write data in an efficient
manner. Column-store databases include Casandra, CosmoDB, Bigtable, and
HBase, to name a few.

Columnar Database Vs Row Database:

When processing big data analytics and data warehousing, there are a number
of different techniques that can be used, including columnar databases and row
databases. But they each take a different method.

For instance:

* Row Database: “Customer 1: Name, Address, Location". (The fields for each
new record are stored in a long row).

* Columnar Database: “Customer 1: Name, Address, Location”. (Each field
has its own set of columns). Refer Table 2 for relational database example.

Table 2: Relational database: an example

ID Number | First Name | Last Name | Amount
A01234 Sima Kaur 4000
B03249 Tapan Rao 5000
C02345 Srikant Peter 1000

In a Columnar DBMS, the data will be stored in the following format:
A01234, B03249, C02345; Sima, Tapan, Srikant; Kaur, Rao, Peter; 4000,

5000, 1000.

In a Row-oriented DBMS, the data will be stored in the following format:
A01234, Sima, Kaur, 4000; B03249, Tapan, Rao, 5000; C02345, Srikant,

Peter, 1000.

Columnar databases: advantages
The use of columnar databases has various advantages:

e Column stores are highly effective in compression, making them storage
efficient. This implies that you can conserve disk space while storing
enormous amounts of data in a single column.

e Aggregation queries are fairly quick with column-store databases
because the majority of the data is kept in a column, which is beneficial
for projects that need to execute a lot of queries quickly.

e Load times are also quite good; a table with a billion rows can be loaded
in a matter of seconds. This suggests that you can load and query
practically instantly.

e A great deal of versatility because columns do not have to resemble one
another. The database would not be affected if you add new or different
columns, however, updating all tables is necessary to input whole new
record queries.

e Opverall, column-store databases are excellent for analytics and reporting
due to their quick query response times and capacity to store massive
volumes of data without incurring significant costs.

Column databases: Disadvantages

While there are many benefits to adopting column-oriented databases, there are
also a few drawbacks to keep in mind.

e [t takes a lot of time and effort to create an efficient indexing schema.

e Incremental data loading is undesirable and is to be avoided, if at all
possible, even though this might not be a problem for some users.

e This applies to all forms of NoSQL databases, not just those with
columns. Web applications frequently have security flaws, and the
absence of security features in NoSQL databases does not help. If
security is your top goal, you should either consider using relational
databases or, if it's possible, use a clearly specified schema.

e Due to the way data is stored, Online Transaction Processing (OLTP)
applications are incompatible with columnar databases.

Are columns databases always NoSQL?

Before we conclude, we should note that column-store databases are not always
NoSQL-only. It is frequently argued that column-store belongs firmly in the
NoSQL camp because it differs so much from relational database approaches.
The debate between NoSQL and SQL is generally quite nuanced, therefore this
is not usually the case. They are essentially the same as SQL techniques when it
comes to column-store databases. For instance, keyspaces function as schema,
so schema management is still necessary. A NoSQL data store's keyspace
contains all column families. The concept is comparable to relational database
management systems' schema. There is typically only one keyspace per
program. Another illustration is the fact that the metadata occasionally
resembles a conventional relational DBMS perfectly. Ironically, column-store
databases frequently adhere to ACID and SQL standards. However, NoSQL
databases are often either document-store or key-store, neither of which are
column-store. Therefore, it is difficult to claim that column-store is a pure
NoSQL system.

15.3.2 Graph Based

The initial hardware hurdles that made it feasible for SQL to handle vast
quantities of data are no longer there, despite the fact that SQL is an excellent
superb RDBMS and has been used for many years to manage massive amounts
of data. As a result, NoSQL has rapidly emerged as the dominant form of
contemporary database management and many of the largest websites, we rely
on today, are powered by NoSQL, like Twitter's use of FlockDB and Amazon's
DynamoDB.

A database that stores data using graph structures is known as a graph database.
It represents and stores data using nodes, edges, and attributes rather than tables
or documents. Relationships between the nodes are represented by the edges.
This makes data retrieval simpler and, in many circumstances, only requires one
action. Additionally, it works fantastically as a database for fast, threaded data
structures like those used on Twitter

How does a Graph Database Work?

Graphs, which are not relational databases, rely heavily on the idea of multi-

relational data "pathways" for their functionality. However, the structure of
graph databases is typically simple. They are largely made up of two elements:

The Node: This represents the actual data itself. It may be the number of
people who watched a video on YouTube; it could be the number of
people who read a tweet; or it could even be fundamental information
like people's names, addresses, and other such details.

The Edge: This clarifies the real connection between the two nodes. It is
interesting to note that edges can also have their own data, such as the
type of connection between two nodes. Similar to edges, mentioned
directions may also describe the direction in which the data is flowing.

Graph databases are mostly utilized for studying relationships. For instance,
businesses might extract client information from social media using a graph
database. For example, some organization might use a graph database to extract
data about relationships between Person, Restaurant, and City, as shown in
Figure 2.

Friends

LivesIn{address,...,...) Likes(rating, review...)

Restaurant

LocatedIn{address,...,...)

Figure 2. Different Nodes and Edges in Graph Database.
(Adapted from https://www.kdnuggets.com/)

When do we need Graph Database?

Y

2)

3)

It resolves issues with many-to-many relationships. For example, many-
to-many relationships include friends of friends.

When connections among data pieces are more significant. For example,
there is a profile with some unique information, but the main selling
point is the relationship between these different profiles, which is how
you get connected inside a network.

Low latency with big amounts of data. The relational database's data sets
will grow significantly as you add more relationships, and when you
query it, its complexity will increase and it will take longer than usual.
However, graph databases are specifically created for this purpose, and
one can easily query relationships.

Now, let’s look at a more specific illustration to explain a group of people's
complicated relationships. For example, five friends share a social network.
These friends are Binny, Bhawna, Chaitaya, Manish, and Mohit. Their personal
data may be kept in a graph database that resembles this, as shown in Figure 3
and Table 3:

53

Figure 3. Example-Five friends sharing Social network.

Table 3: Relational database: an example
Id |[FirstnamelLastname Email Mobile
1001] Biney Dayal binnya@example.com [8645212321
1002 Bhawna Rao |bhawanrao@example.com|[9645212323
1003] Chaitaya | Robert |chaitayarob@example.com|7645212356
1004 Manish | Kumar | mkumar@example.com [9955212320
1005 Mohit Jain mjain@example.com (9945212329

This means we will need yet another table to keep track of user relationships.
Our friendship table (refer Table 4) will resemble the following:

Table 4: Friendship Table

user idfriend id
1001 {1002
1001 {1003
1001 1004
1001 |1005
1002 1001
1002 {1003
1002 {1004
1002 {1005
1003 [1001
1003 [1002
1003 [1004
1003 [1005
1004 1001
1004 [1002
1004 (1003
1004 (1005
1005 [1001
1005 [1002
1005 [1003
1005 [1004

We won't go too deeply into the theory of the database's main key and foreign
key. Instead, presume that the friendship table uses both friends' ids. Let's say
that every member on our social network gets access to a feature that lets them
view the personal information of their other users who are friends with them.
This means that if Chaitaya were to ask for information, it would be regarding
Biney, Bhawna, Manish and Mohit. We shall address this issue in a conventional

(relational database) manner. First, we need to locate Chaitaya's user id in the
database's Users table (refer Table 5).

Table 5: Chaitaya’s Record
Id |FirstnameLastnameEmail Mobile
1 003|Chaitaya Robert |chaitanyarob@example.net|7645212356

We would now search the friendship table (refer Table 6) for all tuples with the
user id of 3. The resulting relationship would look like this:

Table 6: Friendship Table for user id 3

user idfriend id|
1003 1001
1003 1002
1003 1004
1003|1005

Let us now examine the time required for this Relational database strategy. This
will be close to log (N) times, where N is the number of tuples in the friendship
table. In this case, the database continues to keep the entries in sequential order
based on their ids. So, in general, the time complexity for 'M' number of queries
is M*log (N). Only, if we had used a graph database strategy the overall time
complexity has been O (N). For the simple reason that once Chaitaya has been
located in the database, all the rest of her friends may be found with a single
click, as shown in Figure 4.

Biney
Dayal

Bhawna Chaitaya
Rao Robert

Figure 4. Accessing other data with a single click.
Graph Database Examples

Although graph databases are not as widely used as other NoSQL databases,
there are a handful that have become de facto standards when discussing
NoSQL:

Neodj is both an open-source and an interestingly developed on Java graph
database. It is considered to be one of the best graph databases. In addition to
that, it comes with its own language known as Cypher, which is comparable to
the declarative SQL language but is designed to work with graphs. In addition
to Java, it supports a number of other popular programming languages, including
Python, .NET, JavaScript, and a few others. Neo4;j excels in applications such as

55

the administration of data centers and the identification of fraudulent activity.

RedisGraph is a graph module that is integrated into Redis, which is a key-
value NoSQL database. RedisGraph was developed to have its data saved in
RAM for the same reason that Redis itself is constructed on in-memory data
structures. As a result, a graph database with excellent speed and quick searching
and indexing is created. RedisGraph also makes use of Cypher, which is ideal if
you're a programmer or data scientist looking for greater database flexibility.
Applications that require blazing-fast performance are the main uses.

OrientDB It is interesting to note that OrientDB supports graph, document store,
key-value store, and object-based data formats. Having stated that, the graph
model, which uses direct links between databases, is used to hold all of the
relationships. Although it does not use Cypher, OrientDB is open-source and
developed in Java, just like Neo4j and the two prior graph databases. OrientDB
is designed to be used in situations when many data models are necessary, and
as a result, it is optimized for data consistency as well as minimizing data
complexity.

15.3.3 Key-value pair Based

Key-value stores are perhaps the most widely used of the four major NoSQL
database formats because of their simplicity and quick performance. Let us
examine key-value stores' operation and application in more detail. With some
of the most well-known platforms and services depending on them to deliver
material to users with lightning speed, NoSQL has grown in significance in our
daily lives. Of course, NoSQL includes a range of database types, but key-value
store is unquestionably the most used.

Because of its extreme simplicity, this kind of data model is built to execute
incredibly quickly when compared to relational databases. Furthermore, because
key-value stores adhere to the scalable NoSQL design philosophy, they are
flexible and simple to set up.

How Does a Key-Value Work?

In reality, key-value storage is quite simple. A value is saved with a key that
specifies its location, and a value can be pretty much any piece of data or
information. In reality, this design idea may be found in almost every
programming language as an array or map object, refer Figure 5. The fact that it
is persistently kept in a database management system makes a difference in this
case.

s N N\
Key Value
City - Hyd
State - TS
Country - INDI&
- AN AN /

Figure 5. Example Key-Value database.

Popularity of key-value stores is due to the fact that information is stored as a
single large piece of data instead of as discrete data. As a result, indexing the
database is not really necessary to improve its performance. Instead, because of

the way it is set up, it operates more quickly on its own. Similar to that, it mostly
uses the get, put, and delete commands rather than having a language of its own.

Of course, this has the drawback that the data you receive in response to a request
is not screened. Under certain conditions, this lack of data management may be
problematic, but generally speaking, the trade-off is worthwhile. Because key-
value stores are both quick and reliable, the vast majority of programmers find
ways to get around any filtering or control problems that may arise.

Benefits of Key-Value

Key-value data models, one of the more well-liked types of NoSQL data models,
provide many advantages when it comes to creating a database:

Scalability: Key-value stores, like NoSQL in general, are infinitely scalable in
a horizontal fashion, which is one of its main advantages over relational
databases. This can be a huge advantage for sophisticated and larger databases
compared to relational databases, where expansion is vertical and finite, as
shown in Figure 6.

WERTICAL HORIZONTAL

Figure 6. Horizontal and Vertical Scalability.

More specifically, partitioning and replication are used to manage this.
Additionally, by avoiding things like low-overhead server calls, it decreases the
ACID guarantees.

No/Simpler Querying: With key-value stores, querying is really not possible
except in very particular circumstances when it comes to querying keys, and
even then, it is not always practicable. Because there is just one request to read
and one request to write, key-value makes it easier to manage situations like
sessions, user profiles, shopping carts, and so on (due to the blob-like nature of
how the data is stored). Similar to this, concurrency problems are simpler to
manage because only one key needs to be resolved.

Mobility: Because key-value stores lack a query language, it is simple to move
them from one system to another without modifying the architecture or the code.
Thus, switching operating systems is less disruptive than switching relational
databases.

When to Use Key-Value

Key-value stores excel in this area because traditional relational databases are
not actually designed to manage a large number of read/write operations. Key-
value can readily scale to thousands of users per second due to its scalability.
Additionally, it can easily withstand lost storage or data because of the built-in
redundancy.

As a result, key-value excels in the following instances:
e Profiles and user preferences
e Large-scale user session management

e Product suggestions (such as in eCommerce platforms)

57

e Delivery of personalized ads to users based on their data profiles
e Cache data for infrequently updated data

There are numerous other circumstances where key-value works nicely. For
instance, because of its scalability, it frequently finds usage in big data research.
Similar to how it works for web applications, key-value is effective for
organizing player sessions in MMOG (massively multiplayer online game) and
other online games.

Key-Value Database Examples

Some key-value database models, for instance, save information to a solid-state
drive (SSD), while others use random-access memory (RAM). We depend on
key-value stores on a daily basis in our lives since they are some of the most
popular and frequently used databases. The fact is that some of the most popular
and commonly used databases are key-value stores.

Amazon DynamoDB is most likely the database that is used the most often for
key-value storage. In point of fact, study into Amazon DynamoDB was the
impetus for the rise in popularity of NoSQL.

Aerospike is a free and open-source database that was designed specifically for
use with in-memory data storage.

Berkeley DB: Another free and open-source database, Berkeley DB is a high-
performance framework for storing databases, despite the fact that it has a very
simple interface.

Couchbase: Text searches and querying in a SQL-like format are both possible
with Couchbase, which is an interesting feature.

Memcached not only saves cached data in RAM, which helps websites load
more quickly, but it is also free and open source.

Riak was designed specifically for use in the app development process, and it
plays well with other databases and app platforms.

Redis: A database that serves as both a memory cache and a message broker.

15.3.4 Document Based

A non-relational database that stores data as structured documents is known as a
document database (also known as a NoSQL document store). Instead of using
standard rows and columns, JSON format is a more recent technique to store
data. An XML or JSON file, or a PDF, are all examples of documents. NoSQL
is everywhere nowadays; just look at Twitter and its use of FlockDB or Amazon
and their use of DynamoDB. Figure 7 shows the difference between the
Relational and Document Store model.

Relational Data Model
Document Store Model

Figure 7: Relational Vs Document Store Model.

In spite of the fact that there are a great deal of data models, each of which
contains hundreds of databases, the one we are going to investigate today is
called Document-store. One of the most common database models now in use,
document-store functions in a manner that is somewhat similar to that of the key-
value model in the sense that documents are saved together with particular keys
that access the information. Figure 8 (a) shows the document that holds
information about a book. This file is a JSON representation of a book's
metadata, which includes the book's BookID, Title, Author, and Year and Figure
8 (b) shows the same metadata for Key value database.

A Document Key Value
{ BookID 978-1449396091
“BookID”: “978-1449396091”,
“Title”: “DBMS”, Title DBMS
“ég;tlkrl’(’).r“:z 012{;§hu W gl Author Raghu Ramakrishnan
} Year 2022

(a) (b)

Figure 8: Example of Document and Key-value database

When to use a document database?

e When your application requires data that is not structured in a table
format.

e When your application requires a large number of modest continuous
reads and writes and all you require is quick in-memory access.

e When your application requires CRUD (Create, Read, Update, Delete)
functionality.

e These are often adaptable and perform well when your application has to
run across a broad range of access patterns and data kinds.

59

How does a Document Database Work?

It appears that document databases work under the assumption that any kind of
information can be stored in a document. This suggests that you shouldn't have
to worry about the database being unable to interpret any combination of data
types. Naturally, in practice, most document databases continue to use some sort
of schema with a predetermined structure and file format.

Document stores do not have the same foibles and limitations as SQL databases,
which are both tubular and relational. This implies that using the information at
hand is significantly simpler and running queries may also be much simpler.
Ironically, you can execute the same types of operations in a document storage
that you can in a SQL database, including removing, adding, and querying.

Each document requires a key of some kind, as was previously mentioned, and
this key is given to it through a unique ID. This unique ID processed the
document directly instead of being obtained column by column.

Document databases often have a lower level of security than SQL databases.
As aresult, you really need to think about database security, and utilizing Static
Application Security Testing (SAST) is one approach to do so. SAST, examines
the source code directly to hunt for flaws. Another option is to use DAST, a
dynamic version that can aid in preventing NoSQL injections.

Document database advantages

One major benefit of document-store is that all of the data is stored in a single
location, rather than being spread out over many interconnected databases. As a
result, if you do not employ relational processes, you perform better than a SQL
database.

e Schema-less: Because there are no constraints on the format and
structure of data storage, they are particularly effective at keeping huge
quantities of existing data.

e Faster creation of document and maintenance: The creation of a
document is a fairly straightforward process, and apart from that, the
upkeep requirements are virtually nonexistent.

e Open formats: It offers a relatively easy construction process that makes
use of XML, JSON, and other formats.

e Built-in versioning: Because it contains built-in versioning, it means
that when the documents expand in size, there is a possibility that they
will also expand in complexity. Versioning makes conflicts less likely.

More precisely, document stores are excellent for the following applications
because schema can be changed without any downtime or because you could not
know future user needs:

e cCommerce giants (Like Amazon)
e Blogging platforms (such as Blogger, Tumblr)

e CMS (Content management systems) (Like WordPress, windows
registry)
e Analytical platforms (such as Tableau, Oracle server)

Document databases' drawbacks

e Weak Atomicity: Multi-document ACID transactions are not supported.
We will need to perform two different queries, one for each collection,
in order to handle a change in the document data model involving two
collections. This is where the atomicity criteria are violated.

e Consistency Check Limitations: A database performance issue may
arise from searching for documents and collections that aren't linked to
an author collection.

e Security: In today's world, many online apps do not have enough
security, which in turn leads to the disclosure of critical data. Thus, web
app vulnerabilities become a cause for concern.

Document databases examples

e One of the best NoSQL database engines is MongoDB, which is not only
well-known but also uses JSON like format. It has its own query
language.

e A search engine built on the document-store data architecture is
Elasticsearch. Database searching and indexing may be accomplished
using this straightforward and easy-to-learn tool.

e CouchDB: In addition to Ubuntu, it also works with the social
networking site Facebook. It utilizes Javascript and is developed in the
Erlang programming language.

e BaseX is a simple, open-source, XML-based DBM that makes use of
Java.

=~ Check Your Progress 2

1) How Does a Column Database Work? Discuss.

154 SUMMARY

This unit covered the fundamentals of NoSQL as well as the many kinds of
NoSQL databases, such as those based on columns, graphs, key-value pairs, and

61

documents. Numerous businesses now use NoSQL. It is difficult to pick the best
database platform. NoSQL databases are used by many businesses because of
their ability to handle mission-critical applications while decreasing risk, data
spread, and total cost of ownership.

Despite their incredible capability, column-store databases do have their own set
of problems. Due to the fact that columns require numerous writes to the disk,
for instance, the way the data is written results in a certain lack of consistency.
Graph databases can be used to offer content in high-performance scenarios
while producing threads that are simple to comprehend for the typical user,
beyond merely expressive information in a graphical and effective way (such as
in the case of Twitter). The simplicity of a key-value store is what makes it so
brilliant. Although this has potential drawbacks, particularly when dealing with
more complicated issues like financial transactions, it was designed specifically
to fill in relational databases' inadequacies. We may create a pipeline that is even
more effective by combining relational and non-relational technologies, whether
we are working with users or data analysis. Document-store data models are
quite popular and regularly used due to their versatility. It helps analytics by
making it easy for firms to store multiple sorts of data for later use.

15.5 SOLUTIONS/ANSWERS

Check Your Progress 1

1) NoSQL is a way to build databases that can accommodate many different
kinds of information, such as key-value pairs, multimedia files, documents,
columnar data, graphs, external files, and more. In order to facilitate the
development of cutting-edge applications, NoSQL was designed to work
with a variety of different data models and schemas.

2)

Schema flexibility

Horizontal scaling

Quick responses to queries as a result of the data model
Ease of use for software developers

3) Itis different in the following ways:

e For the most part, NoSQL databases fall under the category of non-
relational or distributed databases, while SQL databases are classified
as Relational Database Management Systems (RDBMS).

e Databases that use the Structured Query Language (SQL) are table-
oriented, while NoSQL databases use either document-oriented or key-
value pairs or wide-column stores, or graph databases.

e Unlike NoSQL databases, which have dynamic or flexible schema to
manage unstructured data, SQL databases have a strict, preset or static
schema.

e Structured data is stored using SQL, whereas both structured and
unstructured data can be stored using NoSQL.

e SQL databases are thought to be scalable in a vertical direction,
whereas NoSQL databases are thought to be scalable in a horizontal
direction.

Increasing the computing capability of your hardware is the first step in
the scaling process for SQL databases. In contrast, NoSQL databases
scale by distributing the load over multiple servers.

MySQL, SQLite, Oracle SQL, PostgreSQL, and Microsoft SQL Server
are all examples of SQL databases. BigTable, MongoDB, Redis,
Cassandra, RavenDb, Hbase, CouchDB, and Neo4j are a few examples
of NoSQL databases.

Check Your Progress 2

1y

2)

3)

A columnar database is a type of database management system (DBMS)
that allows data to be stored in columns rather than rows. It is
accountable for reducing the amount of time needed to return a certain
query. Additionally, it is accountable for the significant enhancement of
the disk I/O performance. Both data analytics and data warehousing
benefit from it. Additionally, the primary goal of a Columnar Database
is to read and write data in an efficient manner. Column-store databases
include Casandra, CosmoDB, Bigtable, and HBase, to name a few. Also,
refer 15.3.1.

Graph Database Examples:

Neodj is both an open-source and an interestingly developed on Java
graph database. It is considered to be one of the best graph databases in
the world. In addition to that, it comes with its own language known as
Cypher, which is comparable to the declarative SQL language but is
designed to work with graphs. In addition to Java, it supports a number
of other popular programming languages, including Python, .NET,
JavaScript, and a few others. Neo4j excels in applications such as the
administration of data centres and the identification of fraudulent
activity.

RedisGraph is a graph module that is integrated into Redis, which is a
key-value NoSQL database. RedisGraph was developed to have its data
saved in RAM for the same reason that Redis itself is constructed on in-
memory data structures. As a result, a graph database with excellent
speed and quick searching and indexing is created. RedisGraph also
makes use of Cypher, which is ideal if you're a programmer or data
scientist looking for greater database flexibility. Applications that
require blazing-fast performance are the main uses.

OrientDB: It's interesting to note that OrientDB supports graph,
document store, key-value store, and object-based data formats. Having
stated that, the graph model, which uses direct links between databases,
is used to hold all of the relationships.

It is generally agreed that document stores, which are a sort of NoSQL
database, are the most advanced of the available options. They use JSON
as their data storage format, which is different from the more traditional
rows and columns layout. Most of the day-to-day activities that we carry
out on the internet are supported by NoSQL databases. NoSQL is
everywhere nowadays; just look at Twitter and its use of FlockDB or
Amazon and their use of DynamoDB. Also, refer 15.3.4.

63

15.6 FURTHER READINGS

1)

2)
3)

Next Generation Databases: NoSQL and Big Data 1% ed. Edition, G. Harrison,
Apress, December 26, 2015.

Shashank Tiwari, Professional NoSQL, 1st Edition, Wrox, September 2011.
https://www.kdnuggets.com/

UNIT 16 EMERGING DATABASE MODELS

Structure Page no.

16.0 Introduction
16.1 Objectives
16.2 Distributed Databases
16.2.1 Data Fragmentation and Replication
16.2.2 Distributed Query Processing
16.3 Active Databases
16.4 XML for Data Representation
16.5 Blockchain Databases
16.6 Multimedia Database
16.7 Use of Databases in Web Applications
16.8 Summary
16.9 Solutions / Answers

16.0 INTRODUCTION

With the advent of relational database systems in the 1970s, database technology
became popular in the industry due to the simplicity of database technologies and the
availability of SQL for querying the database. However, just a relational model was not
sufficient. Many advanced database technologies have become available. We have
already discussed some of these technologies, like object-oriented database
management systems, data warehousing and mining and NoSQL databases, in the first
three Units of this Block. This Unit discusses several advanced database technologies.

This Unit first introduces you to the distributed database systems needed to address the
needs of organisations that have distributed data. A distributed database system allows
the distribution of fragments of data over a number of database sites. It also supports
query processing, which may involve several sites. These concepts are detailed in this
Unit. The Unit also introduces you to the concepts of Active databases, XML data and
Blockchain technology. Finally, the Unit defines how a database system can be used as
a backend to a web application.

This Unit gives a brief introduction to these database technologies. You may refer to
the further readings for more details on these technologies.

16.1 OBJECTIVES

After going through this Unit, you should be able to:

o define the need for a distributed database system;

o explain the data fragmentation and replication in distributed databases;
o define the distributed query processing;

. define the features of the active database management system;

. explain the document creation using XML;

. explain the characteristics of Blockchain systems;

. list the characteristics of multimedia database

o use the web database in a web application.

16.2 DISTRIBUTED DATABASES

Many commercial organisations use a database system to manage large amounts of
transactional data. These database systems have multiple users and run on a high-
performance centralised computer system. These systems may allow geographically
distributed users to connect to the database using a network. However, with the increase
in the volume of database transactions and user interactions, use of a number of database
servers, which may process local data, may be more efficient. This led to creation of
distributed database management systems. A distributed database management system
(DDBMS) manages several database servers, which may be dispersed at various
geographical locations but store the data of a single database system. For example,
consider a sample student relational schema given in Figure 1; how can this schema be
represented in a distributed database? Figure 2 shows an example of a distribution of
the student database over a few possible locations.

Student

Enrollment | Name | Father's | Highest Email | Phone | Regional | Programme
No. Name Qualification Centre

Fee

Enrollment No. | Semester | Amount Paid | Date of Payment
Subject

Enrollment No. | Semester | Subject Code

Figure 1: A sample student relation

Regional Centre: Delhi
Relations:
Student: Data of Delhi and Noida
Fee: Data of Delhi and Noida
Subject: Data of Delhi and Noida

Relations:

Network for
Communication

of Information

Headquarters

Relations:
Student: Complete Data
Fee: Complete Data

Subject: Complete Data

Relations:

Figure 2: A distributed student relation

The following are some of the important aspects of distributed database systems:

A distributed database has multiple sites that hold a part of a logically
connected database. For example, in Figure 2, the Regional Centre Delhi
holds the data of the students who are registered with that regional office
of the head office.

The technical implementation details, such as "The data of Delhi students
is available at the Headquarters and Delhi Regional Center", are hidden
from the actual users of the database, who can be the students or Regional
Centre staff, etc. This is known as transparency.

The user can issue a command to the DDBMS without worrying about
the location of data (called location transparency), where the copies of
the data have been kept (called replication transparency), or the fragment
of the horizontal fragment of data is kept (called sharding). For example,
in Figure 2, a student who is associated with Regional Centre Noida can
place his/her query without knowing the fact that his/her data is located
at the Headquarters, Regional Centre Delhi and Regional Centre Noida.
His/her query will be replied to by any of the locations based on the place
of the query and the status of different sites. You may also observe that
in Figure 2, the data of students related to Regional Cenre Noida is
replicated at three sites — Headquarters, Regional Centre Delhi and
Regional Centre Noida. Also, note that horizontal fragments of student

Regional Centre: Chennai

Student: Data of Chennai
Fee: Data of Chennai
Subject: Data of Chennai

Regional Centre: Noida

Student: Data of Noida
Fee: Data of Noida
Subject: Data of Noida

data of Chennai are stored at the Regional Centre Chennai site.

e A DDBMS will be required to manage more failures than a centralised
DBMS, as it must also manage network failures.

e A DDBMS is available for a longer duration than that of centralised
RDBMS.

e A DDBMS is better scalable than a centralised RDBMS due to data
distribution on various sites.

16.2.1 Data Fragmentation and Replication

In a distributed database, as shown in Figure 2, all the data is not stored at all the
database sites. In general, the data related to a particular site is stored on that
site. For example, in Figure 2, data related to Regional Centre Chennai and
Regional Centre Noida is stored at their respective sites. The process of
distributing data into different parts is called fragmentation. This kind of
distribution of data facilitates faster query processing, as most of the queries at
a site can be answered from the local data. In addition to fragmentation, the data
is replicated at more than one site. For example, in Figure 2, data of Regional
Centre Noida is replicated at Regional Centre Noida and Regional Centre Delhi
sites. This data replication helps improve the reliability and availability of the
database, as the database would be available to users even if one of the replicated
sites fails. The following example explains different kinds of fragmentation.

Example: Consider the slightly modified Student table given in Figure 1 with the
following database instance:

Student

EnrNo Name Father Qual Phone RC Programme
23001 Anil Mohan uG 9900100000 Noida PGDCA
23002 Rahim Jamil uG 9900200000 Chennai PGDCA
23003 Simon Robert PG 9900300000 Noida MCA
23004 Sahil Sanjay uG 9900400000 Delhi MCA
23005 Sanjay Ajay PG 9900300000 Noida PGDCA
23006 Diya Jeba uG 9900400000 Chennai MCA

The following can be the Horizontal Fragments of the table based on the RC.

Student: Horizontal Fragment on RC Noida site

EnrNo Name Father Qual Phone RC Programme
23001 Anil Mohan uG 9900100000 Noida PGDCA
23003 Simon Robert PG 9900300000 Noida MCA
23005 Sanjay Ajay PG 9900300000 Noida PGDCA

Student: Horizontal Fragment on RC Chennai site

EnrNo Name Father Qual Phone RC Programme
23002 Rahim Jamil UG 9900200000 Chennai PGDCA
23006 Diya Jeba UG 9900400000 Chennai MCA
Student: Horizontal Fragment on RC Delhi site (Noida or Delhi)

EnrNo Name Father Qual Phone RC Programme
23001 Anil Mohan UG 9900100000 Noida PGDCA
23003 Simon Robert PG 9900300000 Noida MCA
23004 Sahil Sanjay UG 9900400000 Delhi MCA
23005 Sanjay Ajay PG 9900300000 Noida PGDCA

The other kind of fragmentation is vertical fragmentation. For example, if RC
Noida has been assigned the work of contacting all the students telephonically,
irrespective of their regional centre, then one possible vertical fragment for

Regional Centre Noida would be as follows:

Further, considering that Regional Centre Noida is assigned PGDCA students
only for telephonic contact, the fragment would be a mixed fragment as follows:

As far as replication is concerned, you may observe that the student data of
Regional Centre Noida is replicated at Regional Centre Delhi, too. Replication
helps in enhancing reliability and availability but results in more overheads in

Student: Vertical Fragmentation for Noida
EnrNo | Name | Phone Programme
23001 | Anil 9900100000 PGDCA
23002 | Rahim | 9900200000 PGDCA
23003 | Simon | 9900300000 MCA
23004 | Sahil 9900400000 MCA
23005 | Sanjay | 9900300000 PGDCA
23006 | Diya 9900400000 MCA

Student: Mixed Fragmentation for Noida

EnrNo | Name | Phone Programme
23001 | Anil 9900100000 PGDCA
23002 | Rahim | 9900200000 PGDCA
23005 | Sanjay | 9900300000 PGDCA

transaction processing.

16.2.2 Distributed Query Processing

A query in a distributed database management system is submitted at a site. This
query is then converted to a relational algebraic query and optimised using local
and global query optimisation processes. Local query optimisation is the same
as that of a centralised DBMS; however, global query optimisation involves the
selection of sites for query evaluation, cost of data communication, and cost of
query processing. The process of distributed query processing is explained with
the help of the following example.

Example: Consider a query submitted at the Headquarters seeking to find the
Percentage of fee share of Regional Centre Noida in the financial year 2022-23.
This query would require computing the fee collected by RC Noida to the total
fee collected between the dates 01 April 2022 and 315 March 2023. This query
may consist of two subqueries:

(a) Finding the total fee collected for the financial year 2022-23.
(b) Finding the total fee collected at RC Noida in the financial year 2022-23.
In addition, you may assume that the financial records are ordered

chronologically.

One of the possible ways of processing the queries would be to process both the
sub-queries at the Headquarters. If both these sub-queries can be processed
during the same query processing cycle, then it may be a good choice. However,
if both the sub-queries are processed separately, then other options may be
explored. What if subquery (a) is processed at Headquarters and subquery (b) is
processed at the RC Noida site? This will require a transfer of results from
subquery (b) from the RC Noida site to the headquarters site, where the result
will be displayed to the user who made the query.

A detailed discussion on distributed database management systems is beyond the
scope of this Unit. You may refer to the further readings for more details on this
topic.

16.3 ACTIVE DATABASES

Active databases, as the name suggests, comprise dynamic actions on the
occurrence of certain events. Such actions were part of the SQL 99 standard and
are called triggers. Let us define the model that can be used for an active
database:

Active Database Model

Consider the Student and Result relations given in Figure 3.

Student

Enrollment No. | Name | Programme | Cumulative Grade Point Status
Average
Result
Enrollment CourseCode Grade
No.

Figure 3: An example

Assuming that the Cumulative Grade Point Average is to be updated for each student
when related data is created in the Result relation. The following events will cause a
database action to be activated:

Action Triggering Event: In the database of Figure 3, on updating the Result table, the
Cumulative Grade Point Average (CGPA) of a Student needs to be updated, as well.
Assuming that once a Record is entered in the Result table, then it cannot be deleted,
and only the Grade attribute can be modified in the Result relation, the following may
be the events that may trigger the action of an update on CGPA for the Student
relation:

e Addition of a tuple in the Result relation

e Modification of a Grade in the Result Relation.
Once the trigger event occurs, the next step is to check the condition, if any. In the

case of the Student database given in Figure 3, the referential integrity constraints on
the Enrollment number and CourseCode (each student will register for a set of
courses) will make sure that only the valid entry is made in the Result table. In
addition, the check constraint on Grade ensures that a valid Grade letter is entered in
the Result table. However, an interesting observation here is that the state of a student
must be "Active" in case his/her CGPA is to be updated. This can fit as a condition for
activating the trigger.

Issues relating to Active databases: Some of the issues relating to active databases
relate primarily to the process of creating and maintaining the triggers. Such databases
must include a set of rules or commands that should be able to deactivate or drop the
old or redundant rules, as there can be a very large number of rules which may be
changed during the lifetime of the database. Next, since triggers can be activated
either before, during or after a condition, a huge number of events may be scheduled,
causing the database to act slowly as a response to normal record addition and deletion
processes. Interestingly, it adds another issue, considering that addition of results by a
teacher in the student's database triggered the update of about 50 students' GPA.
However, the teacher realised that s/he had used an incorrect file to update student
records and deleted his/her result. This will lead to the firing of a very large number of
triggers that would be required to undo the changes in the GPA of the students.

A detailed discussion on active databases is beyond the scope of this Unit. You may
refer to further readings for more details.

& Check Your Progress 1

1) How is DDBMS different from RDBMS?

2) Suggest the data fragmentation of the student table if all RCs need only the
enrolment number and name of all the PGDCA students.

3) What is an active database? What is a triggering event?

16.4 XML AND DATA REPRESENTATION

The eXtensible Markup Language (XML) is one of the popular data
representation languages. It uses user-defined tags to represent a document. A
typical XML document relating to the student's table, as shown in Figure 3, is
shown below:

<school>
<class>

<class_no>XII</class no>

<class_teacher>John</class_teacher>

<student>
<enrolmentNo>2301002297</enrolmentNo>
<name>Ritesh Jain</name>
<programme>PGDCA</programme>
<cgpa>7.5</cgpa>
<status>Pass</status>

<result>
<coursecode>BCS011</coursecode>
<grade>A</grade>
<coursecode>BCS013</coursecode>
<grade>B+</grade>
</result>
</student>
<student>

<enrolmentNo>2301002301</enrolmentNo>
<name>Amitesh</name>
<programme>PGDCA</programme>
<cgpa>8.5</cgpa>
<status>Distinction</status>
<result>
<coursecode>BCS01 1</coursecode>
<grade>A+</grade>
<coursecode>BCS013</coursecode>

<grade>A</grade>
</result>
</student>
</class>
</school>

Figure 4: A sample XML document

You may please observe that instead of using a separate table, in the XML
document, the results of the students are merged along with the student
information. Thus, XML representation has the potential to store all the
information about an entity in one place. Such a representation, though it may
be useful for searching from a point of view as no join operation is required, may
lead to redundancy of information. In addition to the use of tags, XML allows
users to store attributes along with a tag. For example, the enrolment number can
be stored as an attribute of the student as:

<student enrolmentNo = “2301002301”>
<name> ...
</student>

The attribute may be useful for searching for information on the related field.

Just like the database management system has a different schema, XML also can
be used to validate the structure of the XML data. Figure 5 is a possible
document type definition (DTD) that would validate the document given in
Figure 4.

<IDOCTYPE school [

<!ELEMENT school (class+)>

<IELEMENT class (class_no, class_teacher, student+)>
<!ELEMENT student (enrolmentNo, name, programme, cgpa, status, result *)>
<!ELEMENT result ((coursecode, grade)+)>
<!ELEMENT class_no(#PCDATA)>

<!ELEMENT class_teacher(#PCDATA)>
<IELEMENT enrolmentno(#?CDATA)>
<!ELEMENT name (#PCDATA)>

<!ELEMENT programme (#PCDATA)>
<!ELEMENT cgpa (#PCDATA)>

<!ELEMENT status (#PCDATA)>

<IELEMENT coursecode (##CDATA)>
<!ELEMENT grade (##CDATA)>

1>

Figure 5: Document Type Definition for XML of Figure 4
Please note the following points in the DTD, as shown in Figure 5:
e A school consists of data from one or more classes.

e FEach class stores the class number and class teacher's name.
e A class have one or more students.

10

e For each student, you store the enrolment number, name, programme,
his/her CGPA and present status (Distinction, Merit, Pass,
Unsuccessful).

e In addition, the result of each student is stored. This result can be in
zero or more subjects.

e The filed type #PCDATA means parsed character data, which stores
the text parsed by the parser into the fields.

XML has become a popular format for data exchange and storage. Several tools
have been developed to verify, display as tree nodes and query the XML
documents. A detailed discussion of these tools is beyond the scope of this Unit.
However, we present a few basic features of XQuery, which is a standard query
language for XML documents.

A XQuery expression uses five basic keywords for querying. These are for, let,
where, order by and return. The for clause selects a sequence of nodes in a
document, /et is used to bind a variable name to a sequence, where is used for
the selection of nodes, order by is used for giving an order to the sequence, and
return is used to specify what values are to be returned.

For example, the query:

for $x in /school/class/student
where $x/cgpa > 8
return </name>

This query will return the name of the student with a CGPA of 8 or more. You
may refer to the further readings for more details on XQuery.

16.5 BLOCKCHAIN DATABASES

Conceptually, blockchain is a paradigm of storage of data in a distributed
manner, which may also protect data from fraudulent transactions and updates.
Blockchain technology was used to store distributed ledgers and bitcoins.
However, this technology is not limited to only these applications. In this
section, we will present some of the basic features of blockchain with the help
of an example. However, to understand the principles of blockchain, you should
study the paper "Bitcoin: A Peer-to-Peer Electronic Cash System" by Satoshi
Nakamoto in 2008.

Let us discuss the components of the blockchain technology. A Blockchain will
have the following components:

1. Distributed set of Authorised Nodes: The role of a node is to keep the
ledger of data. A ledger consists of data logs, which are timestamped. A
blockchain is a sequence of blocks of data, which is maintained at each
of these authorised nodes.

2. A block contains:

a. Block Number: It is a unique sequence number given to every

block on the blockchain.
b. Nonce: It is a random number that is used only once in a block.

Transaction logs: A sequence of transaction logs that are to be
recorded in a block.

d. Computed Hash value: A cryptographic hash function is applied
to the content of a block to compute a hash value of the block.
This hash value is also stored in the block.

e. Hash value of Previous Block.

3. A blockchain is constructed by linking the blocks. In addition, each block
contains the hash value of previous block, which is used to ensure data
security.

A hypothetical blockchain is shown in Figure 6.

Block Content Block Content

Block Content > Block Content

A4
A4

| Nonce | 12345 | | Nonce |451268| | Nonce |912348 | 32315

| Block No. 1 | | Block No. 2 | | Block No. 3 | Block No. 4

Hash of Previous Hash of Previous Hash of Previous Hash of Previous
Block > Block > Block > Block
ToA 1000 AtoC 100 EtoF 50 Fto G 50
AtoB 500 CtoD 200 DtoF 50 GtoH 50
BtoC 200 DtoE 100 AtoG 50
Hash of Block 1 »a Hash of Block 2 va Hash of Block 3 va Hash of Block 4

Figure 6: A Hypothetical Blockchain Data
The blockchain processes involve the following:

1. A network consensus protocol, which ensures security, trust, and
concurrence amongst the network of nodes of the blockchain.

2. The hashing process ensures the integrity of the transaction ledgers; in
other words, it ensures that the transaction ledgers are not tampered with.
In Figure 6, each transfer of money may represent one entry of the
transaction ledger.

3. Uses a digital signature to certify consent for the transaction.

Let us discuss some of these concepts in more detail.

Cryptographic Hash Function: At the most elementary level, a blockchain
consists of a cryptographic Hash function. This hash function is a kind of secure
fingerprint of a Block of data of blockchain. One of the popular hash algorithms
is Secure Hash Function 256 (SHA256), which produces a 256-bit long hash
value for the content of a block irrespective of the size of the block (which can
vary from one character to millions of characters). The hash function has the
following properties:

11

12

e It maps the block contents of any size to a hash value called Hash of a
fixed size; for example, SHA 256 maps block content of any size to 256
bits Hash.

e For a given content, the hash function will always produce the same
Hash. In addition, it is expected that if the contents of two blocks are
different even by a single character, then the hash function should
produce different Hash values for the blocks.

e In case you change the content of a block slightly, then the value of the
Hash function changes significantly. In addition, if you know a part of
the hash value, you cannot predict the rest of the hash value.

e The cryptographic hash function is also called one-way encryption, as
you can use the block contents to create the Hash value, but you cannot
use the Hash value to find the block contents. Interestingly, many
password-based authentication systems store the password using one-
way encryption. This is why your system administrator simply provides
you a link to change the password, but not the password itself.

Please also note that in case there is a change in the content of a block, its hash
value will also change. This feature of the hash value may be very useful in
finding the tampering of data of a block, which is discussed next.

How to identify data tampering or corruption in a Blockchain?

As discussed earlier, any minor change of any value in a block at a particular
node will result in change in its computed hash value. This will cause change in
the stored hash value of previous block in all the subsequent blocks. For example,
consider in Block No. 2 of Figure 6, the transaction log of A to C is modified to
200 from the present value of 100. This will result in change in the computed
hash value of Block no. 2. Further, this will result in change in hash value of
previous block of Block 3, which will result in change in the computed hash
values of Block no 3. A similar change will occur in Block 4, too. Thus, the
previously stored hash values of Block 2, Block 3 and Block 4 will not match
the computed new hash values of these blocks.

But how will it be recognised that the blocks have different hash values? Here,
the consensus protocol will play its role. Since each blockchain block is stored
on all the blockchain network nodes, changes in one site can easily be
recognised, as the other nodes with the stored copy of the blockchain will not
agree with this blockchain, thus identifying the tampering.

Use of Nonce: Nonce is part of the block content and is a short form of random
Number used once. This number is mined using an algorithm such that the Hash
value generated for the block is unique.

Validity of Transactions: You may observe that in Figure 6, most of the
transactions show the transfer of money from one account to another. For
example, in Block 1, there is a transaction - A to C 500. But does A have that
much amount? Well, that can be established from the first transaction in this
block, which says "To A 1000". Thus establishing that A has sufficient funds for

the transfer. Such transactions are sometimes called Coinbase transactions and
can be used to ascertain the validity of transactions.

Use of Digital Signature: The digital signatures are used to ensure that the
transactions are performed by the authorised person. For example, consider a
new transaction, "A to E 50", to be added to Block 4; how will it be ensured that
this transaction has been performed by A? For this, A needs to have a pair of
private and public keys; let us call them PrivateKeyA and PublicKeyB. Both
these keys can be very long in length. A must maintain the PrivateKeyA as a
secret key, whereas he can share the PublicKeyA with other stakeholders. One
key characteristic of this private-public key pair is that if you know the
PublicKeyA, you cannot derive the PrivatekeyA. A can create this transaction
"A to E 50" by using the PublickeyA and PublickeyE as:

"PublickeyA toPublickeyE 50"

Next, A needs to sign this message using the PrivatekeyA.
This transaction can be verified by using the PublickeyA, which ensures that the
transaction has been created by an authorised person only. Please note here that
in Figure 6, we have shown transactions using alphabets like A, B, C, etc., but
in the actual blockchain, they will be public keys.

You may refer to the further readings for more details on Blockchain technology.

= Check Your Progress 2

1) Create an XML document consisting of Marks of two students in at least one
subject. Also, make the DTD for validating this XML document.

2) What is the role of nonce in a blockchain?

3) Consider that in Figure 6, in Block 3, the E to F transaction is modified to 100.
What changes would it cause in the blockchain?

16.6 MULTIMEDIA DATABASE

Multimedia data is an integration of textual, graphical, audio, video, and animation data.
In general, multimedia data may include lengthy textual documents, pictures, drawings,
digital audio clips, movies, and animations. A multimedia database should be able to
store large multimedia data efficiently and provide the feature of querying the
multimedia data.

14

Querying is a very interesting domain in the context of multimedia data, as most
searches in such data require retrieval of data based on some content. For example, you
may be interested in all the videos related to "Database Integrity and Normalization"
from a multimedia database or videos of a particular presenter. Please note that such
queries would require indexing on the objects and related contents.

How can you create these indexes? One way to create indexes would be to create a large
amount of metadata for each object. This metadata should use standardised keywords,
title, credentials of creators, summary information, etc. However, in many situations,
the metadata would not be available, leading to the generation and verification of the
metadata. The second type of indexes are those that can be created using automatic
analysis.

Characteristics of Multimedia Data:

Let us now discuss some of the basic characteristics of different types of multimedia
data.

Textual Data: In general, the textual data consists of articles, which include
paragraphs and headings. This data is stored using ASCII or Unicode standards.
Further, you may define certain keywords on these articles that can be used for
searching.

Image Data: An image is stored in digital form using picture elements called pixels.
The size of the picture depends on the number of colours used. For example, a black
and white picture would just require 1 bit for every pixel, whereas a true coloured
picture may require 24 bits (8 bits each for three basic colours) to store one element.
Further, the resolution of a picture is represented using pixels per inch. Therefore, the
size of a good-quality picture is quite substantial. You can use different kinds of
compression standards to reduce the size of a picture. Some of the common image
files include formats like GIF, PNG, JPEG, etc. A search on images may be to find the
images related to the same objects. To answer such a query, every image can be
divided into segments that have similar characteristics. Further, this segment
characteristics information can be grouped to identify certain basic characteristics of
an image. Various images are compared based on the similarity of characteristics of
those images. In addition, a number of labels, indexes, etc., can also be linked to the
segments of images, helping in finding meaningful information about the images. You
may have noticed that present image recognition software are able to link many
images together based on their characteristics.

Video and Animation Data: Video and animation data may be considered as a large
sequence of frames that are displayed in real-time to form a live movie. In general,
video data may be divided into video segments, which may be related to a group of
objects or activities. For example, an eLearning video may be divided into segments,
with each segment involving a sequence of learning concepts. Some of the popular
compression formats used for video are MPEG, AVI, etc. A query of video data may
be related to identifying the portion of a video related to a specific learning objective.

Audio data: Audio data is recorded audio messages. These messages may be identified
for similarity of voice. A query on audio data may try to group the audio of a person
based on recognition of voice.

Issues and Characteristics of Analysis of Multimedia Data

e Multimedia data must be stored, labelled, and indexed so you can define some
similarity measures on that data.

e Statistics can be used to define the characteristics of image data using the
values of colour, texture, etc.

e Further, the object's shape can be one feature of object recognition. This may

include the identification of facial features.

e In the present time, the recognition of an object in an image, video or
animation is a major challenge. The key barriers to object recognition are:

o The angle from which an image has been taken may vary the shape of
an object

o The scale and size of the picture may affect the recognition of objects.

o Rotated, transformed, and occluded images are difficult to recognise,
as it is difficult to keep a database of all transformations of an image.

e An important development in the area of object recognition is the
development of a scale-invariant feature transform (SIFT) by David Lowe.
SIFT extracts features from images such that they are not affected by rotation
and scaling. You may refer to this algorithm in further readings.

e Another important concept relating to the recognition of images is the tagging
of images. Tagging is useful in searching for images. You must have observed
on certain social media that you may be tagged in some images that include
you. At present, the tagging algorithms are being enhanced for better
accuracy. In general, these algorithms use machine learning and statistics to
analyse the image content with already tagged image libraries.

e Digital audio is difficult to index and retrieve, as it does not have any typical
features or characteristics that can be used to identify the content specifically.

e A multimedia database manages different data formats and, thus, requires
many storage and Input/Output technologies. These technologies may include
technologies for text and images, like scanners, digital cameras, printers, etc.;
technologies for audio, video, and animation, like microphones, video
cameras, DVDs, Musical Instrument Digital Interface (MIDI), good quality
displays and speakers etc.

Multimedia data is part of many digital systems, such as Patient health monitoring data,
geographical data, students' data, etc.; therefore, effective multimedia data management
systems are required to handle such vast data.

16.7 USE OF DATABASES IN WEB APPLICATIONS

A database system is a persistent collection of an organisation's data, which is shared
and integrated among various applications. Database technology supports non-
redundant storage of data, which allows the following features:

e Structured storage of data in the form of tables

e Secure data insertion, modification, and deletion.
e Support for concurrent database transactions.

e Easy but controlled access to data.

These features are very useful for any web application, too. Therefore, many web
applications use database management systems (DBMS) to store data and access it
securely for display on the web. These DBMSs are normally managed on a separate
server, called a database server, and communicate with the web server to store or
retrieve data. The web server then communicates this information through the relevant
web pages to communicate with the web clients.

For example, when you register on an eCommerce website, the information you fill in
the registration form is stored in a registration database. This registration information is
accessed when you log in again on that website. On the eCommerce website, you may

15

16

also search for product information, put some items in the shopping cart, order the items
from the cart, and so on. All these activities are supported by several databases.
However, these activities are obscure, as you just interact with the eCommerce website
through a browser interface. This section focuses on how the database can be accessed
by a web server; however, our approach will be to discuss the process rather than the
use of a scripting language for coding.

Some of the key characteristics that should be supported by the web server—database
server interconnection are:

e The information exchange between the two servers must be secure.

The two servers should have pools of connection for transfer of information.
Concurrent read and write operations should be supported by the database server.
The response time for an operation should be as low as possible.

In general, these servers may either be supporting a 2-tier or a 3-tier client-server
architecture.

Steps for Creating a Web Database Application

The first requirement for creating a web application is that your web server has the
required drivers to connect to the DBMS of interest. You are required to perform the
following steps to create a web application that uses a database as a backend.

Connecting Web Server to a Database Server

On receiving a request from a web application client, a web application may request
data from a database server. In general, a web server is required to establish a
connection with the database server if it has not already done so. You require the
following parameters for a connection:

e A database driver for the DBMS of interest.

e Access credentials on the DBMS and the database (e.g. username and password).
e The URL of the database server and its port number.

For example, assume that you are developing a web application using Java Server
Pages (JSP) and you want to connect to a MySQL database. Further, your username is
student and password dbms. In addition, the MySQL host is a local host at the URL
and port number - jdbc.mysql://localhost and 3306, respectively. Further, assume that
the database which is to be accessed is named: class_schedule and the table of the
database is class (teacherName, dateofclass, timeofclass, classroom), which have been
created by you using SQL command using the username student. The following
command would be needed by you to create an active connection:

Connection connection = DriverManager.getConnection
(“jdbc:mysql://localhost:3306/class_schedule”, “student”, “dbms”);

You may have to perform several other commands, too. You may refer to further
readings for more details.

Creating a form for data input and inserting data into the database

You may need to create a form using HTML or any scripting language and use GET or
POST methods to transfer the data to the web server, which may execute the commands
for inserting data into the database (only after establishing a connection with the
database).

For example, the following commands will help you insert the data into the database:
String sqlinsert = "insert into class_schedule values (?, ?, 7, ?)";
PreparedStatement preparedstat = connection.prepareStatement (sqlinsert);
preparedstat.setString(1, teacherName);
preparedstat.setString(2, dateofclass);

preparedstat.setString(3,_timeofclass;
preparedstat.setString(4, classroom);

prep.executeUpdate();
preparedstat.close();

The commands shown above are just to demonstrate the programming. Please note
that the variable name connection is the same as the variable name used while
establishing the connection. The insert statement consists of four '?', filled up by the
data obtained from the HTML form using the setString functions.

Accessing data from the database and displaying it as a webpage

For this purpose, you may create a query to access the database (after establishing a
connection). The data obtained from the query may be put in a variable, which can be
accessed record by record or complete data at a time to create the required webpage.

For example, you may display the content of all the classes using the following set of
commands. This command may result in a number of rows of information being
created by the output System.out.println function call.
String sqlselect = "select * from class_schedule ";
Statement statement = connection.createStatement();
ResultSet results=statement.executeQuery (sqlselect);
while(results.next())

System.out.println(results.getString(1)+" "+rs.getString(2)+" "+

rs.getString(3)+" "+rs.getString(4));

Many more statements are required to implement a web database. You may refer to the
documentation of the web tools, languages and databases you use to implement a web
application. While using the connection, the term jdbc was used. Let us discuss such
terms in more detail.

Open Database Connectivity (ODBC) and JAVA Database Connectivity (JDBC)

There are many commercial DBMSs like DB2 (IBM), Oracle and MySQL (Oracle),
SQL Server, MS-Access (Microsoft), PostgreSQL (Open Source) etc. Each DBMS has
its own interface for programming (called Application Programming Interface or, in
short, API) and data storage and indexing mechanisms. ODBC is a standard interface
(API) that allows you to connect to a database of any DBMS and manipulate data using
SQL commands. If you are using JAVA to write the interface functions to a DBMS,
then you require JDBC. These interfaces provide a set of drivers that allow you to
connect and access data from the database.

Closing of database connection: In general, it is recommended to close the connection
after the required database operation has been performed.

& Check Your Progress 3

1) What are the characteristics of multimedia data?

2) List four application areas of multimedia databases.

17

18

3) What are the steps required to access a database from a web application?

16.6 SUMMARY

This Unit introduced you to some of the advanced technologies. The unit discusses the
concepts relating to the distributed database management systems (DDBMS). A
DDBMS replicates the fragmented data on various database sites. This unit explains the
concepts of horizontal and vertical fragmentation of data. A query in distributed
database may be submitted at any site of the database. This unit introduces how a
distributed query will be processed. The unit also explains the triggering events and
dynamic actions in the context of active database with the help of an example. XML is
one of the popular ways of representing semi-structure data in a very simple format.
This unit explained the data representation and validation in XML. The unit also
presented a brief introduction to blockchain technology. The focus in the unit was to
introduce you to basic concepts with the help of an example. Finally, the unit presents
a brief introduction to multimedia database and web databases.

16.7 SOLUTIONS / ANSWERS

Check Your Progress 1

1) A DDBMS allows transparency to a user about the location of the data, which
may be distributed among various sites of the database. DDBMS makes sure that
data is made available to the user (if she has the access rights to use the data) even
if one site is down. This is possible because DDBMS keeps track of the data
replications. In addition, DDBMS is responsible for concurrent transaction
management in distributed settings. The RDBMS, on the other hand, does not
distribute data and, therefore, is less complex than DDBMS.

2) Insuch a case, you may only require the following fragment:
SELECT EnrNo, Name
FROM Student
WHERE Programme = ‘PGDCA’

3) An active database is a database that has a set of active actions that are to be
performed upon the occurrence of an event. Some of these triggering events can
be the addition or deletion of a record or modification of a record.

Check Your Progress 2

1)

2)

3)

The following is the XML document:
<studentMarks>
<student>
<rollno>12345</rollno>
<name>Aman</name>
<marksinsubject>
<subject>Mathematics</subject>
<marks>75</marks>
<subject>Physics</subject>
<marks>85</marks>
</marksinsubject>
</student>
<student>
<rollno>54321</rollno>
<name>Arvin</name>
<marksinsubject>
<subject>Mathematics</subject>
<marks>65</marks>
</marksinsubject>
</student>
</studentMarks>
The DTD would be as follows:
<IDOCTYPE studentMarks [
<!ELEMENT (student (rollno, name, marksinsubject+))+>
<IELEMENT marksinsubject ((subject, marks)+)>
<!IELEMENT rollno (#PCDATA)>
<IELEMENT name (##CDATA)>
<!IELEMENT subject (#PCDATA)>

<!ELEMENT marks (#PCDATA)>
>

The nonce means the number used once. It is a random number
appended to the blockchain content to ensure that no two blocks have
the same hash value.

The change in the Block 3 E to F transaction to 100 will change the hash
value of Block 3; this will no longer match the hash value of the previous
block stored in Block 4. Further, the consensus protocol will not accept values
from this block for any purpose.

Check Your Progress 3

1)

2)

The following are the basic characteristics of multimedia data:

Textual Data: includes long strings such as textual articles, can include
multilingual UNICODE formats, and requires a keyword-based search.
Image Data: large data requiring compression, use formats like GIF, PNG,
JPEG, etc. images can be segmented and tagged for the purpose of similarity
Video and Animation Data: has a large sequence of frames, video segments
may be created, and popular compression formats are MPEG, AV, etc.
Audio data: may be identified for similarity of voice.

Medical databases
Bioinformatics

19

20

3)

Multimedia for Home
The following steps are required to create a web database:

You should have a valid database with proper records on a database server.

Create a connection string using the URL and port number of the database
server. This sting should also include a valid username and password.

Open the connection, query the database using the parameters submitted by
the user, and generate the results.

Format and display the results on the client, which may be a browser
window.

ODBC helps in accessing the contents of the database using SQL commands,
simplifying the programming of the databases. JDBC is an application
programming interface that allows Java programmers to access any database.

	Unit-13
	Unit-14
	Unit-15
	Unit-16

