
[bookmark: _heading=h.vjq3j6ecnlw2]What is a Schedule?
A schedule is a series of operations from one or more transactions. A schedule can be of two types:
Serial Schedule: When one transaction completely executes before starting another transaction, the schedule is called a serial schedule. A serial schedule is always consistent. e.g.; If a schedule S has debit transaction T1 and credit transaction T2, possible serial schedules are T1 followed by T2 (T1->T2) or T2 followed by T1 ((T2->T1). A serial schedule has low throughput and less resource utilization.
Concurrent Schedule: When operations of a transaction are interleaved with operations of other transactions of a schedule, the schedule is called a Concurrent schedule. e.g.; the Schedule of debit and credit transactions shown in Table 1 is concurrent. But concurrency can lead to inconsistency in the database. The above example of a concurrent schedule is also inconsistent.
[bookmark: _heading=h.ildr83x2lmiq]Difference between Serial Schedule and Serializable Schedule
	 Serial Schedule
	 Serializable Schedule

	In Serial schedule, transactions will be executed one after other.
	In Serializable schedule transaction are executed concurrently.

	Serial schedule are less efficient.
	Serializable schedule are more efficient.

	In serial schedule only one transaction executed at a time.
	In Serializable schedule multiple transactions can be executed at a time.

	Serial schedule takes more time for execution.
	In Serializable schedule execution is fast.

[bookmark: _heading=h.qkend8kpzxtd]
[bookmark: _heading=h.i9pe22wnvt3t]Concurrency Control in DBMS
There are several problems that arise when numerous transactions are executed simultaneously in a random manner. The database transaction consist of two major operations “Read” and “Write”. It is very important to manage these operations in the concurrent execution of the transactions in order to maintain the consistency of the data.
[bookmark: _heading=h.kjt6tcn1if7f]Dirty Read Problem(Write-Read conflict)
Dirty read problem occurs when one transaction updates an item but due to some unconditional events that transaction fails but before the transaction performs rollback, some other transaction reads the updated value. Thus creates an inconsistency in the database. Dirty read problem comes under the scenario of Write-Read conflict between the transactions in the database
1. The lost update problem can be illustrated with the below scenario between two transactions T1 and T2.
2. Transaction T1 modifies a database record without committing the changes.
3. T2 reads the uncommitted data changed by T1
4. T1 performs rollback
5. T2 has already read the uncommitted data of T1 which is no longer valid, thus creating inconsistency in the database.
[bookmark: _heading=h.nm9iipmfklpi]Lost Update Problem
Lost update problem occurs when two or more transactions modify the same data, resulting in the update being overwritten or lost by another transaction. The lost update problem can be illustrated with the below scenario between two transactions T1 and T2.
1. T1 reads the value of an item from the database.
2. T2 starts and reads the same database item.
3. T1 updates the value of that data and performs a commit.
4. T2 updates the same data item based on its initial read and performs commit.
5. This results in the modification of T1 gets lost by the T2’s write which causes a lost update problem in the database.
[bookmark: _heading=h.aftl50puc36o]Concurrency Control Protocols
Concurrency control protocols are the set of rules which are maintained in order to solve the concurrency control problems in the database. It ensures that the concurrent transactions can execute properly while maintaining the database consistency. The concurrent execution of a transaction is provided with atomicity, consistency, isolation, durability, and serializability via the concurrency control protocols.
· Locked based concurrency control protocol
· Timestamp based concurrency control protocol
[bookmark: _heading=h.g5thff6b4kvt]Locked based Protocol
In locked based protocol, each transaction needs to acquire locks before they start accessing or modifying the data items. There are two types of locks used in databases.
· Shared Lock : Shared lock is also known as read lock which allows multiple transactions to read the data simultaneously. The transaction which is holding a shared lock can only read the data item but it can not modify the data item.
· Exclusive Lock : Exclusive lock is also known as the write lock. Exclusive lock allows a transaction to update a data item. Only one transaction can hold the exclusive lock on a data item at a time. While a transaction is holding an exclusive lock on a data item, no other transaction is allowed to acquire a shared/exclusive lock on the same data item.
There are two kind of lock based protocol mostly used in database:
· Two Phase Locking Protocol : Two phase locking is a widely used technique which ensures strict ordering of lock acquisition and release. Two phase locking protocol works in two phases.
· Growing Phase : In this phase, the transaction starts acquiring locks before performing any modification on the data items. Once a transaction acquires a lock, that lock can not be released until the transaction reaches the end of the execution.
· Shrinking Phase : In this phase, the transaction releases all the acquired locks once it performs all the modifications on the data item. Once the transaction starts releasing the locks, it can not acquire any locks further.
· Strict Two Phase Locking Protocol : It is almost similar to the two phase locking protocol the only difference is that in two phase locking the transaction can release its locks before it commits, but in case of strict two phase locking the transactions are only allowed to release the locks only when they performs commits.
[bookmark: _heading=h.cvxvapew3m82]Timestamp based Protocol
· In this protocol each transaction has a timestamp attached to it. Timestamp is nothing but the time in which a transaction enters into the system.
· The conflicting pairs of operations can be resolved by the timestamp ordering protocol through the utilization of the timestamp values of the transactions. Therefore, guaranteeing that the transactions take place in the correct order.
[bookmark: _heading=h.um3dw0d3sjlq]Advantages of Concurrency
In general, concurrency means, that more than one transaction can work on a system. The advantages of a concurrent system are:
· Less Waiting Time: It means if a process is in a ready state but still the process does not get the system to get execute is called waiting time. So, concurrency leads to less waiting time.
· Response Time: The time wasted in getting the response from the cpu for the first time, is called response time. So, concurrency leads to less Response Time.
· Resource Utilization: The amount of Resource utilization in a particular system is called Resource Utilization. Multiple transactions can run parallel in a system. So, concurrency leads to more Resource Utilization.
· Efficiency: The amount of output produced in comparison to given input is called efficiency. So, Concurrency leads to more Efficiency.
[bookmark: _heading=h.tw2dob91asc]Disadvantages of Concurrency
· Overhead: Implementing concurrency control requires additional overhead, such as acquiring and releasing locks on database objects. This overhead can lead to slower performance and increased resource consumption, particularly in systems with high levels of concurrency.
· Deadlocks: Deadlocks can occur when two or more transactions are waiting for each other to release resources, causing a circular dependency that can prevent any of the transactions from completing. Deadlocks can be difficult to detect and resolve, and can result in reduced throughput and increased latency.
· Reduced concurrency: Concurrency control can limit the number of users or applications that can access the database simultaneously. This can lead to reduced concurrency and slower performance in systems with high levels of concurrency.
· Complexity: Implementing concurrency control can be complex, particularly in distributed systems or in systems with complex transactional logic. This complexity can lead to increased development and maintenance costs.
· Inconsistency: In some cases, concurrency control can lead to inconsistencies in the database. For example, a transaction that is rolled back may leave the database in an inconsistent state, or a long-running transaction may cause other transactions to wait for extended periods, leading to data staleness and reduced accuracy.
[bookmark: _heading=h.59jk6iuropc7]Deadlock in DBMS
In database management systems (DBMS) a deadlock occurs when two or more transactions are unable to the proceed because each transaction is waiting for the other to the release locks on resources. This situation creates a cycle of the dependencies where no transaction can continue leading to the standstill in the system. The Deadlocks can severely impact the performance and reliability of a DBMS making it crucial to the understand and manage them effectively.
[bookmark: _heading=h.4aiaq9l3j26u]What is Deadlock?
The Deadlock is a condition in a multi-user database environment where transactions are unable to the complete because they are each waiting for the resources held by other transactions. This results in a cycle of the dependencies where no transaction can proceed.
[bookmark: _heading=h.n2iui5wwi09c]Characteristics of Deadlock
· Mutual Exclusion: Only one transaction can hold a particular resource at a time.
· Hold and Wait: The Transactions holding resources may request additional resources held by others.
· No Preemption: The Resources cannot be forcibly taken from the transaction holding them.
· Circular Wait: A cycle of transactions exists where each transaction is waiting for the resource held by the next transaction in the cycle.
In a database management system (DBMS), a deadlock occurs when two or more transactions are waiting for each other to release resources, such as locks on database objects, that they need to complete their operations. As a result, none of the transactions can proceed, leading to a situation where they are stuck or “deadlocked.”
Deadlocks can happen in multi-user environments when two or more transactions are running concurrently and try to access the same data in a different order. When this happens, one transaction may hold a lock on a resource that another transaction needs, while the second transaction may hold a lock on a resource that the first transaction needs. Both transactions are then blocked, waiting for the other to release the resource they need.
DBMSs often use various techniques to detect and resolve deadlocks automatically. These techniques include timeout mechanisms, where a transaction is forced to release its locks after a certain period of time, and deadlock detection algorithms, which periodically scan the transaction log for deadlock cycles and then choose a transaction to abort to resolve the deadlock.
It is also possible to prevent deadlocks by careful design of transactions, such as always acquiring locks in the same order or releasing locks as soon as possible. Proper design of the database schema and application can also help to minimize the likelihood of deadlocks.
In a database, a deadlock is an unwanted situation in which two or more transactions are waiting indefinitely for one another to give up locks. Deadlock is said to be one of the most feared complications in DBMS as it brings the whole system to a Halt.
Example – let us understand the concept of deadlock suppose, Transaction T1 holds a lock on some rows in the Students table and needs to update some rows in the Grades table. Simultaneously, Transaction T2 holds locks on those very rows (Which T1 needs to update) in the Grades table but needs to update the rows in the Student table held by Transaction T1.
Now, the main problem arises. Transaction T1 will wait for transaction T2 to give up the lock, and similarly, transaction T2 will wait for transaction T1 to give up the lock. As a consequence, All activity comes to a halt and remains at a standstill forever unless the DBMS detects the deadlock and aborts one of the transactions. [image:]
Deadlock in DBMS

[bookmark: _heading=h.6lypatidwlv3]What is Deadlock Avoidance?
When a database is stuck in a deadlock, It is always better to avoid the deadlock rather than restarting or aborting the database. The deadlock avoidance method is suitable for smaller databases whereas the deadlock prevention method is suitable for larger databases.
One method of avoiding deadlock is using application-consistent logic. In the above-given example, Transactions that access Students and Grades should always access the tables in the same order. In this way, in the scenario described above, Transaction T1 simply waits for transaction T2 to release the lock on Grades before it begins. When transaction T2 releases the lock, Transaction T1 can proceed freely.
Another method for avoiding deadlock is to apply both the row-level locking mechanism and the READ COMMITTED isolation level. However, It does not guarantee to remove deadlocks completely.
[bookmark: _heading=h.6yvso7k123l5]What is Deadlock Detection?
When a transaction waits indefinitely to obtain a lock, The database management system should detect whether the transaction is involved in a deadlock or not.
Wait-for-graph is one of the methods for detecting the deadlock situation. This method is suitable for smaller databases. In this method, a graph is drawn based on the transaction and its lock on the resource. If the graph created has a closed loop or a cycle, then there is a deadlock. For the above-mentioned scenario, the Wait-For graph is drawn below:
[image:]
[bookmark: _heading=h.ehrxuiki6x5o]What is Deadlock Prevention?
For a large database, the deadlock prevention method is suitable. A deadlock can be prevented if the resources are allocated in such a way that a deadlock never occurs. The DBMS analyzes the operations whether they can create a deadlock situation or not, If they do, that transaction is never allowed to be executed.
Deadlock prevention mechanism proposes two schemes:
· Wait-Die Scheme: In this scheme, If a transaction requests a resource that is locked by another transaction, then the DBMS simply checks the timestamp of both transactions and allows the older transaction to wait until the resource is available for execution.
Suppose, there are two transactions T1 and T2, and Let the timestamp of any transaction T be TS (T). Now, If there is a lock on T2 by some other transaction and T1 is requesting resources held by T2, then DBMS performs the following actions:
Checks if TS (T1) < TS (T2) – if T1 is the older transaction and T2 has held some resource, then it allows T1 to wait until resource is available for execution. That means if a younger transaction has locked some resource and an older transaction is waiting for it, then an older transaction is allowed to wait for it till it is available. If T1 is an older transaction and has held some resource with it and if T2 is waiting for it, then T2 is killed and restarted later with random delay but with the same timestamp. i.e. if the older transaction has held some resource and the younger transaction waits for the resource, then the younger transaction is killed and restarted with a very minute delay with the same timestamp.
This scheme allows the older transaction to wait but kills the younger one.

· Wound Wait Scheme: In this scheme, if an older transaction requests for a resource held by a younger transaction, then an older transaction forces a younger transaction to kill the transaction and release the resource. The younger transaction is restarted with a minute delay but with the same timestamp. If the younger transaction is requesting a resource that is held by an older one, then the younger transaction is asked to wait till the older one releases it.
The following table lists the differences between Wait – Die and Wound -Wait scheme prevention schemes:
	Wait – Die
	Wound -Wait

	It is based on a non-preemptive technique.
	It is based on a preemptive technique.

	In this, older transactions must wait for the younger one to release its data items.
	In this, older transactions never wait for younger transactions.

	The number of aborts and rollbacks is higher in these techniques.
	In this, the number of aborts and rollback is lesser.

[bookmark: _heading=h.t758556szn99]Applications
1. Delayed Transactions: Deadlocks can cause transactions to be delayed, as the resources they need are being held by other transactions. This can lead to slower response times and longer wait times for users.
2. Lost Transactions: In some cases, deadlocks can cause transactions to be lost or aborted, which can result in data inconsistencies or other issues.
3. Reduced Concurrency: Deadlocks can reduce the level of concurrency in the system, as transactions are blocked waiting for resources to become available. This can lead to slower transaction processing and reduced overall throughput.
4. Increased Resource Usage: Deadlocks can result in increased resource usage, as transactions that are blocked waiting for resources to become available continue to consume system resources. This can lead to performance degradation and increased resource contention.
5. Reduced User Satisfaction: Deadlocks can lead to a perception of poor system performance and can reduce user satisfaction with the application. This can have a negative impact on user adoption and retention.
[bookmark: _heading=h.plan3u8gzpfq]Features of Deadlock in a DBMS
1. Mutual Exclusion: Each resource can be held by only one transaction at a time, and other transactions must wait for it to be released.
2. Hold and Wait: Transactions can request resources while holding on to resources already allocated to them.
3. No Preemption: Resources cannot be taken away from a transaction forcibly, and the transaction must release them voluntarily.
4. Circular Wait: Transactions are waiting for resources in a circular chain, where each transaction is waiting for a resource held by the next transaction in the chain.
5. Indefinite Blocking: Transactions are blocked indefinitely, waiting for resources to become available, and no transaction can proceed.
6. System Stagnation: Deadlock leads to system stagnation, where no transaction can proceed, and the system is unable to make any progress.
7. Inconsistent Data: Deadlock can lead to inconsistent data if transactions are unable to complete and leave the database in an intermediate state.
8. Difficult to Detect and Resolve: Deadlock can be difficult to detect and resolve, as it may involve multiple transactions, resources, and dependencies.
[bookmark: _heading=h.y4ndc0j0p562]Disadvantages
1. System downtime: Deadlock can cause system downtime, which can result in loss of productivity and revenue for businesses that rely on the DBMS.
2. Resource waste: When transactions are waiting for resources, these resources are not being used, leading to wasted resources and decreased system efficiency.
3. Reduced concurrency: Deadlock can lead to a decrease in system concurrency, which can result in slower transaction processing and reduced throughput.
4. Complex resolution: Resolving deadlock can be a complex and time-consuming process, requiring system administrators to intervene and manually resolve the deadlock.
5. Increased system overhead: The mechanisms used to detect and resolve deadlock, such as timeouts and rollbacks, can increase system overhead, leading to decreased performance.

image2.png
Transaction T2

request

request

Student

image1.png
Wait for Lock (R1)

Wait for Lock (R2)
Deadlock Situation

