Shadow Paging and Logging—two important techniques used in database recovery and transaction management—with simple examples and comparisons.
🧩 1. Shadow Paging
🔍 Concept
Shadow paging avoids logging by maintaining two page tables:
· Current Page Table: used during transaction execution
· Shadow Page Table: a backup that reflects the database state before the transaction began
🛠️ How It Works
· When a transaction starts, a shadow page table is created.
· All updates are made to new copies of pages, not the originals.
· If the transaction commits, the current page table replaces the shadow page table.
· If the transaction aborts, the shadow page table is used to restore the original state.
🧪 Example
	Step
	Action

	1
	T1 starts → Shadow Page Table created

	2
	T1 updates Page 5 → creates new Page 5'

	3
	T1 commits → Current Page Table replaces Shadow Page Table

	4
	If T1 aborted → discard Page 5', revert to Shadow Page Table


✅ Pros
· Simple recovery: no need for logs
· Fast rollback
⚠️ Cons
· High overhead for copying pages
· Poor performance for large databases
📘 2. Logging (Write-Ahead Logging - WAL)
🔍 Concept
Logging records all changes before they’re applied to the database. This ensures recovery in case of failure.
🛠️ How It Works
· Before modifying data, a log entry is written with:
· Transaction ID
· Data item
· Old value
· New value
· If the system crashes, logs are used to redo committed transactions and undo uncommitted ones.
🧪 Example
	Step
	Action

	1
	T2 wants to update X from 100 to 120

	2
	Log: [T2, X, 100, 120] written to disk

	3
	X updated to 120

	4
	T2 commits → log marked as committed

	5
	On crash → use log to redo or undo changes


✅ Pros
· Efficient for large systems
· Supports fine-grained recovery
⚠️ Cons
· Requires careful log management
· More complex than shadow paging
[image: ]
Here’s the diagram comparing Shadow Paging and Write-Ahead Logging (WAL) in database recovery:
[bookmark: _GoBack][image: Shadow Paging and Logging Diagram]
🔍 Diagram Breakdown
🔹 Shadow Paging (Left Side)
· Before Transaction: A page table points to original pages.
· During Transaction: A new page (e.g., Page 3′) is created and linked in a new page table.
· Commit: The new page table replaces the shadow page table.
· Crash Recovery: If a crash occurs before commit, the system restores from the shadow page table (no changes are lost).
🔹 Write-Ahead Logging (Right Side)
· Before Update: A log entry is written with old and new values.
· During Transaction: Changes are made to the database after logging.
· Commit: A commit record is written to the log.
· Crash Recovery: 
· Redo committed transactions using the log.
· Undo uncommitted transactions using the log.
This visual helps highlight the copy-on-write nature of shadow paging versus the log-based redo/undo strategy of WAL.
Would you like a timeline animation or a comparison with MVCC recovery next?

image1.png
sl Comparison Table

Feature

Recovery Method

Performance

Complexity

Rollback

Commit Overhead

Shadow Paging

Use shadow page table
Slower for large updates
Simple

Instant via shadow table

Page fable switch

Logging (WAL)

Use logs to undo/redo
Faster and scalable
More complex

Requires undo from logs

Log flush + commit marker




image2.png
SHADOW PAGING AND LOGGING

Before Transaction After Transaction
Shadow p
Page Table Page Table Pagé Top
Ti commits
Page 1 Page 1 Page 1
Ti starts

Page 2 > Page 2 Page 2

Page 3 Page 3 Page 3"

Page 4 Page 4 Page 4
Restore Restore from

from shadow shadow-page table




