Shadow Paging and Logging—two important techniques used in database recovery and transaction management—with simple examples and comparisons.
🧩 1. Shadow Paging
🔍 Concept
Shadow paging avoids logging by maintaining two page tables:
· Current Page Table: used during transaction execution
· Shadow Page Table: a backup that reflects the database state before the transaction began
🛠️ How It Works
· When a transaction starts, a shadow page table is created.
· All updates are made to new copies of pages, not the originals.
· If the transaction commits, the current page table replaces the shadow page table.
· If the transaction aborts, the shadow page table is used to restore the original state.
🧪 Example
	Step
	Action

	1
	T1 starts → Shadow Page Table created

	2
	T1 updates Page 5 → creates new Page 5'

	3
	T1 commits → Current Page Table replaces Shadow Page Table

	4
	If T1 aborted → discard Page 5', revert to Shadow Page Table


✅ Pros
· Simple recovery: no need for logs
· Fast rollback
⚠️ Cons
· High overhead for copying pages
· Poor performance for large databases
📘 2. Logging (Write-Ahead Logging - WAL)
🔍 Concept
Logging records all changes before they’re applied to the database. This ensures recovery in case of failure.
🛠️ How It Works
· Before modifying data, a log entry is written with:
· Transaction ID
· Data item
· Old value
· New value
· If the system crashes, logs are used to redo committed transactions and undo uncommitted ones.
🧪 Example
	Step
	Action

	1
	T2 wants to update X from 100 to 120

	2
	Log: [T2, X, 100, 120] written to disk

	3
	X updated to 120

	4
	T2 commits → log marked as committed

	5
	On crash → use log to redo or undo changes


✅ Pros
· Efficient for large systems
· Supports fine-grained recovery
⚠️ Cons
· Requires careful log management
· More complex than shadow paging
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Here’s the diagram comparing Shadow Paging and Write-Ahead Logging (WAL) in database recovery:
[bookmark: _GoBack][image: Shadow Paging and Logging Diagram]
🔍 Diagram Breakdown
🔹 Shadow Paging (Left Side)
· Before Transaction: A page table points to original pages.
· During Transaction: A new page (e.g., Page 3′) is created and linked in a new page table.
· Commit: The new page table replaces the shadow page table.
· Crash Recovery: If a crash occurs before commit, the system restores from the shadow page table (no changes are lost).
🔹 Write-Ahead Logging (Right Side)
· Before Update: A log entry is written with old and new values.
· During Transaction: Changes are made to the database after logging.
· Commit: A commit record is written to the log.
· Crash Recovery: 
· Redo committed transactions using the log.
· Undo uncommitted transactions using the log.
This visual helps highlight the copy-on-write nature of shadow paging versus the log-based redo/undo strategy of WAL.
Would you like a timeline animation or a comparison with MVCC recovery next?
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