 DDL - Data Definition Language

Data Definition Language (DDL) is used to create and modify the structure of objects (tables, sequences, locations, aliases, schemas and indexes)in a database using predefined commands and a specific syntax.
DDL is a standardized language with commands to define the storage groups (stogroups), different structures and objects in a database. DDL statements create, modify and remove database objects, such as tables, indexes and stogroups. DDL is also used in a generic sense to refer to any language that describes data.
DDL includes Structured Query Language (SQL) statements to create and drop databases, aliases, locations, indexes, tables and sequences. It also includes statements to alter these objects and impose or drop certain constraints on tables, such as the following:
· UNIQUE
· PRIMARY
· FOREIGN KEY
· CHECK
These constraints are used to enforce uniqueness, referential or domain integrity.

DDL or Data Definition Language actually consists of the SQL commands that can be used for defining, altering and deleting database structures such as tables, indexes and schemas. It simply deals with descriptions of the database schema and is used to create and modify the structure of database objects in the database

At its core, “Data Definition Language (DDL)” is a subset of SQL used to define the database schema. It deals with how data is stored rather than the data itself.
Here’s what makes DDL different:
· It doesn’t manipulate data — it structures it.
· It affects the overall database schema and architecture.
· It includes commands like CREATE, ALTER, and DROP.

Common DDL Commands
	Command
	Description
	Syntax

	CREATE
	Create database or its objects (table, index, function, views, store procedure, and triggers)
	CREATE TABLE table_name (column1 data_type, column2 data_type, ...);

	DROP
	Delete objects from the database
	DROP TABLE table_name;

	ALTER
	Alter the structure of the database
	ALTER TABLE table_name ADD COLUMN column_name data_type;

	TRUNCATE
	Remove all records from a table, including all spaces allocated for the records are removed
	TRUNCATE TABLE table_name;

	COMMENT
	Add comments to the data dictionary
	COMMENT 'comment_text' ON TABLE table_name;

	RENAME
	Rename an object existing in the database
	RENAME TABLE old_table_name TO new_table_name;

Example:
CREATE TABLE employees (
employee_id INT PRIMARY KEY,
first_name VARCHAR(50),
last_name VARCHAR(50),
hire_date DATE
);
In this example, a new table called employees is created with columns for employee ID, first name, last name and hire date.

Common use cases of DDL in SQL
Here’s where DDL shines in practice:
· Setting up new applications – Define core tables, views, and indexes
· Scaling databases – Add or remove fields to meet business growth
· Maintaining database integrity – Enforce {primary key constraint} and foreign key relationships
· Version control – Apply schema updates with change scripts
“A well-structured DDL strategy keeps your system scalable, maintainable, and secure.”
Best practices for writing DDL statements
Writing DDL is both art and science. Follow these best practices:
· Use meaningful names for tables and columns
· Comment your scripts for better understanding
· Test in staging environments before pushing to production
· Implement backups before any DROP or ALTER
· Stick to data modeling principles to avoid messy changes later

Data Definition Language (DDL)
123

Data Definition Language (DDL) is a subset of SQL used to define and manage database structures. It includes commands that allow users to create, modify, and delete database objects such as tables, indexes, and views. DDL commands are essential for setting up and maintaining the schema of a database.
Key DDL Commands
CREATE
The CREATE command is used to create new database objects. For example, to create a new table:
CREATE TABLE employees (
employee_id INT PRIMARY KEY,
first_name VARCHAR(50),
last_name VARCHAR(50)
);
This command defines a table named employees with three columns: employee_id, first_name, and last_name.
ALTER
The ALTER command modifies the structure of an existing database object. For example, to add a new column to an existing table:
ALTER TABLE employees
ADD COLUMN email VARCHAR(100);
This command adds an email column to the employees table.
DROP
The DROP command deletes an existing database object. For example, to delete a table:
DROP TABLE employees;
This command removes the employees table from the database.
TRUNCATE
The TRUNCATE command removes all records from a table but retains the table structure. For example:
TRUNCATE TABLE employees;
This command deletes all rows in the employees table12.
RENAME
The RENAME command changes the name of an existing database object. For example, to rename a table:
RENAME TABLE employees TO staff;
This command renames the employees table to staff12.
Importance of DDL
DDL commands are crucial for database administration and management. They allow administrators to define the schema, enforce data integrity, and manage the overall structure of the database. By using DDL commands, one can ensure that the database is well-organized and optimized for performance13.
In summary, DDL is a powerful tool for defining and managing database structures. Understanding and using DDL commands effectively is essential for anyone involved in database design and administration13.

2. DQL - Data Query Language
DQL statements are used for performing queries on the data within schema objects. The purpose of the DQL Command is to get some schema relation based on the query passed to it. This command allows getting the data out of the database to perform operations with it. When a SELECT is fired against a table or tables the result is compiled into a further temporary table, which is displayed or perhaps received by the program.

The Data Query Language, or DQL for short, is the group of commands responsible for querying data from a database. The principal DQL command in SQL is the SELECT command, which retrieves data from one or more tables.
Let’s take the following table. It contains bank account details and is named Accounts:
	ID
	Name
	Balance

	1
	John Doe
	2000

	2
	Sally Swanson
	1800

	3
	Richard Poor
	5

If we wanted to retrieve the names of all users with a bank account, we would use this SELECT command:
	SELECT Name
FROM Accounts

The above command is a typical statement from the DQL sublanguage. What if, however, we wanted to get the names of all users with a balance greater than $1500? In that case, we need to add the WHERE clause to the statement:

DQL Command
	Command
	Description
	Syntax

	SELECT
	It is used to retrieve data from the database
	SELECT column1, column2, ...FROM table_name WHERE condition;

	FROM
	Indicates the table(s) from which to retrieve data.
	SELECT column1
FROM table_name;

	WHERE
	Filters rows before any grouping or aggregation
	SELECT column1
FROM table_name
WHERE condition;

	GROUP BY
	Groups rows that have the same values in specified columns.
	SELECT column1, AGG_FUNCTION(column2)
FROM table_name
GROUP BY column1;

	HAVING
	Filters the results of GROUP BY
	SELECT column1, AGG_FUNCTION(column2)
FROM table_name
GROUP BY column1
HAVING condition;

	DISTINCT
	Removes duplicate rows from the result set
	SELECT DISTINCT column1, column2, ...
FROM table_name;

	ORDER BY
	Sorts the result set by one or more columns
	SELECT column1
FROM table_name
ORDER BY column1 [ASC | DESC];

	LIMIT
	By default, it sorts in ascending order unless specified as DESC
	SELECT * FROM table_name LIMIT number;

Example:
SELECT first_name, last_name, hire_date
FROM employees
WHERE department = 'Sales'
ORDER BY hire_date DESC;
This query retrieves employees' first and last names, along with their hire dates, from the employees table, specifically for those in the 'Sales' department, sorted by hire date.

3. DML - Data Manipulation Language
The SQL commands that deal with the manipulation of data present in the database belong to DML or Data Manipulation Language and this includes most of the SQL statements. It is the component of the SQL statement that controls access to data and to the database. Basically, DCL statements are grouped with DML statements.

Data Manipulation Language (DML) in SQL
123

A data manipulation language (DML) is a computer programming language used for adding (inserting), deleting, and modifying (updating) data in a database. A DML is often a sublanguage of a broader database language such as SQL, with the DML comprising some of the operators in the language.[1] Read-only selecting of data is sometimes distinguished as being part of a separate data query language (DQL), but it is closely related and sometimes also considered a component of a DML; some operators may perform both selecting (reading) and writing.
A popular data manipulation language is that of Structured Query Language (SQL), which is used to retrieve and manipulate data in a relational database.[2] Other forms of DML are those used by IMS/DLI, CODASYL databases, such as IDMS and others.

Data Manipulation Language (DML) is a subset of SQL used for managing data within database tables. DML commands are essential for adding, updating, and deleting data in a database. These commands are crucial for interacting with the data stored in a database and are often used in conjunction with other SQL sublanguages like DDL (Data Definition Language) and DCL (Data Control Language).
Key DML Commands
INSERT
The INSERT command is used to add new records to a table. It specifies the table name, the columns to insert data into, and the values to be inserted.
INSERT INTO table_name (column1, column2, ...)
VALUES (value1, value2, ...);
Example:
INSERT INTO employees (first_name, last_name, email)
VALUES ('John', 'Doe', 'john.doe@example.com');
This command inserts a new employee record into the employees table.
UPDATE
The UPDATE command modifies existing records in a table. It specifies the table name, the columns to update, the new values, and a condition to identify the records to be updated.
UPDATE table_name
SET column1 = value1, column2 = value2
WHERE condition;
Example:
UPDATE employees
SET email = 'jane.doe@example.com'
WHERE first_name = 'Jane' AND last_name = 'Doe';
This command updates the email address of an employee named Jane Doe1.
DELETE
The DELETE command removes records from a table. It specifies the table name and a condition to identify the records to be deleted.
DELETE FROM table_name
WHERE condition;
Example:
DELETE FROM employees
WHERE employee_id = 123;
This command deletes the employee record with the ID 123 from the employees table1.
LOCK
The LOCK command is used to control concurrency by locking a table. This ensures that no other transactions can modify the table while it is locked.
LOCK TABLE table_name IN lock_mode;
Example:
LOCK TABLE employees IN EXCLUSIVE MODE;
This command locks the employees table in exclusive mode, preventing other transactions from modifying it1.
CALL
The CALL command is used to execute a stored procedure or a subprogram written in PL/SQL or Java.
CALL procedure_name(arguments);
Example:
CALL update_employee_salary(123, 5000);
This command calls a stored procedure named update_employee_salary to update the salary of the employee with ID 1231.
EXPLAIN PLAN
The EXPLAIN PLAN command describes the access path to data. It is used to understand how a query will be executed by the database engine.
EXPLAIN PLAN FOR SELECT * FROM table_name;
Example:
EXPLAIN PLAN FOR SELECT * FROM employees;
This command provides the execution plan for the SELECT query on the employees table1.
Conclusion
DML commands are fundamental for managing data within a database. They allow users to insert, update, delete, and lock data, as well as execute stored procedures and understand query execution plans. Mastering these commands is essential for effective database management and manipulation23.

Data Manipulation Language (DML) is a group of commands used to manage and work with data in storage systems like databases, spreadsheets, or data files. It allows users to directly interact with the data by adding new entries, updating existing records, retrieving specific information, or deleting unnecessary data. Widely used by data professionals, developers, and system administrators, DML plays a key role in ensuring data remains accurate, current, and ready for use in various applications. It is very important in areas like reporting, data analysis, and running business processes efficiently.
Key Characteristics of Data Manipulation Language (DML)
Here are some key characteristics of DML that make it an essential component of data management:
1. Data Manipulation
DML is specifically designed for managing and interacting with data directly within a database. With DML, you can:
· Add new data (like adding a new record).
· Change existing data (like changing a value).
· Read or retrieve data (like reading a report).
· Delete data (like deleting old records).
2. Ease of Use for Data Manipulation
DML commands are typically easy to read, even for beginners. You do not have to be good at coding to:
· View or filter data using simple queries.
· Add new entries into a table.
· Perform small modifications to existing records with ease.
· This ease of use allows people from different backgrounds to work with data.
3. Non-Structural
DML simply works with the contents of a data system, and it does not affect the design or structure. For example:
· You cannot create or remove a table using DML.
· You can only manipulate the data within that table.
· The structure is defined and handled separately via design or commands.
4. Temporary Until Saved
Most changes executed with DML commands are temporary until you have committed to saving them intentionally.
· You can commit your changes if you are satisfied with them.
· If you don’t want to save your changes, you can simply roll them back, even if the change was accidental.
· This allows peace of mind and flexibility when working with important data.
5. Supports Filters and Conditions
DML makes it easy to apply filters and conditions when working with data. This allows users to target specific records based on criteria. For example:
· Display only students who passed.
· Update only products that are out of stock.
· Delete records that are older than 2 years.
· This capability helps provide a much more focused approach for data handling.

Common DML Commands
	Command
	Description
	Syntax

	INSERT
	Insert data into a table
	INSERT INTO table_name (column1, column2, ...) VALUES (value1, value2, ...);

	UPDATE
	Update existing data within a table
	UPDATE table_name SET column1 = value1, column2 = value2 WHERE condition;

	DELETE
	Delete records from a database table
	DELETE FROM table_name WHERE condition;

	LOCK
	Table control concurrency
	LOCK TABLE table_name IN lock_mode;

	CALL
	Call a PL/SQL or JAVA subprogram
	CALL procedure_name(arguments);

	EXPLAIN PLAN
	Describe the access path to data
	EXPLAIN PLAN FOR SELECT * FROM table_name;

Example:
INSERT INTO employees (first_name, last_name, department)
VALUES ('Jane', 'Smith', 'HR');
This query inserts a new record into the employees table with the first name 'Jane', last name 'Smith' and department 'HR'.

Difference between DDL and DML
Now, don’t confuse DDL with DML (Data Manipulation Language).
Quick comparison:
	Feature
	DDL
	DML

	Purpose
	Define structure
	Manage data

	Example Commands
	CREATE, ALTER, DROP
	INSERT, UPDATE, DELETE

	Affects
	{Database schema}
	Data records

Advantages of Data Manipulation Language (DML)
Data Manipulation Language has different benefits of working with data stored in a database.
· Simple Data Manipulation: You can add, view, modify, or delete data instantly, without risking the initial data structure.
· Real-Time Data Updates: DML commands allow immediate changes, with current data anytime.
· Saves Time: With simple commands like SELECT, UPDATE, data manipulation becomes faster and cuts down on time.
· Supports Automation: DML is frequently employed in scripts or applications for automation purposes of data handling.
Procedural vs Non-Procedural DML
	Feature
	Procedural DML
	Non-Procedural DML

	Meaning
	It is a step-by-step method that is used to handle data.
	It is a result-based method to handle data.

	Focus
	Procedural DML focuses on how to do the work.
	Non-Procedural focuses on what to get.

	User Control
	It provides more control for the user.
	It provides less control to the user as it is handled by the system.

	Complexity
	More complex and detailed.
	Simpler and more user-friendly.

	Example Languages
	PL/SQL, T-SQL.
	Standard SQL (e.g., SELECT).

	Use Case Example
	Writing stored procedures and loops.
	Running direct queries to fetch data.

Difference Between DML and Other SQL Commands
	Feature
	DML
	DDL
	DCL
	TCL

	Full Form
	It stands for Data Manipulation Language.
	It stands for Data Definition Language.
	It stands for Data Control Language.
	It stands for Transaction Control Language.

	Purpose
	The purpose of DML is to handle data (insert, update, delete).
	The DDL command is used to define the structure.
	The DCL command controls the access.
	The TCL command helps to manage transactions (commit, rollback).

	Affects Data or Structure
	Data only.
	Structure only.
	Permissions.
	Transaction flow.

	Examples
	SELECT, INSERT, UPDATE, DELETE.
	CREATE, ALTER, DROP.
	GRANT, REVOKE.
	COMMIT, ROLLBACK.

Challenges in Data Manipulation Language
Let’s explore the common challenges in Data Manipulation Language that can impact data integrity, performance, and error handling.
1. Data Loss: A simple miss or mistake could cause an important piece of information to be lost.
2. Performance Issues: Long and complex queries can slow a large database.
3. Human Error: A simple wrong character could miss a change to the data.
4. Security Issues: While deleting and updating data, one could accidentally expose data, events, and other sensitive information with improper use.
5. Need to have conditions: If a user forgets to include a WHERE condition, many or even all records in the database could be unintentionally altered.
Best Practices for Using DML Commands in SQL
Let’s explore some best practices for using DML commands in SQL to ensure your data stays accurate, safe, and well-managed.
1. Always Use the WHERE Clause: Avoid affecting all records unintentionally by including a proper WHERE condition in your UPDATE or DELETE command.
2. Backup Before Modifying Data: Create a backup of your data before running any critical UPDATE or DELETE commands to prevent permanent loss in case of an error.
3. Test on Sample Data First: Practice your DML commands on test or dummy tables before applying them to production data to avoid costly mistakes.
4. Keep Transactions Short and Controlled: Use COMMIT and ROLLBACK effectively to manage your changes. Keeping transactions short reduces locking issues and improves performance.
5. Use Descriptive Column Names: Choose clear and meaningful column names to make your queries easier to write, understand, and maintain over time.
Real-World Use Cases of Data Manipulation Language (DML)
1. E-Learning Portals: DML is used to add and update course details, manage student records, and track learning progress.
2. Banking Systems: DML helps add and update customer accounts, modify balances, and remove records of closed accounts.
3. E-commerce Sites: DML supports adding new products, updating listings and prices, and deleting items from expired or discontinued categories.
4. Healthcare Databases: DML is applied to update patient information, add medical reports or test results, and delete outdated or irrelevant records.
5. Attendance Systems: DML enables recording daily attendance, updating logged hours, and deleting incorrect or duplicate entries.

4. DCL - Data Control Language

DCL(Data Control Language) work is to deal with sql commands that are used to permit a user to access,modify and work on a database. it is used to access stored data. It gives access,revoke access and change the permission as per the requirement.

DCL (Data Control Language) includes commands such as GRANT and REVOKE which mainly deal with the rights, permissions and other controls of the database system. These commands are used to control access to data in the database by granting or revoking permissions.

· It helps in how sql can use a user authority to modify or retrieve data and protect against unauthorised access.
· It complements data manipulation language(DML) and data definition language(DDL).
· It is the simplest among the three command
· It is basically used for enforcing data security.
· DCL is used to control user access in a database.
· This command is related to the security issues.
· Using DCL command, it allows or restricts the user from accessing data in database schema.
·

Common DCL Commands
	Command
	Description
	Syntax

	GRANT
	Assigns new privileges to a user account, allowing access to specific database objects, actions, or functions.
	GRANT privilege_type [(column_list)] ON [object_type] object_name TO user [WITH GRANT OPTION];

	REVOKE
	Removes previously granted privileges from a user account, taking away their access to certain database objects or actions.
	REVOKE [GRANT OPTION FOR] privilege_type [(column_list)] ON [object_type] object_name FROM user [CASCADE];

Example of DCL
GRANT SELECT, UPDATE ON employees TO user_name;
This command grants the user user_name the permissions to select and update records in the employees table.

Implementing GRANT Statement
Consider a scenario where you are the database administrator, and a student table is in the database. Suppose you want a specific user Aman to only SELECT (read)/ retrieve the data from the student table. Then you can use GRANT in the below GRANT statement.
1. GRANT SELECT ON student TO Aman;
This command will allow Aman to implement the SELECT queries on the student table. This will enable the user to read or retrieve information from the student table.
Note: Implementing the above statement will also limit Aman's operations. Aman won't be able to modify the data stored in the table. It will prevent the user from user to insert, to update, or deleting the data in the student table in the database.
REVOKE Command
As the name suggests, revoke is to take away. The REVOKE command enables the database administrator to remove the previously provided privileges or permissions from a user over a database or database object, such as a table, view, or procedure. The REVOKE commands prevent the user from accessing or performing a specific operation on an element in the database.
In simple language, the REVOKE command terminates the ability of the user to perform the mentioned SQL command in the REVOKE query on the database or its component. The primary reason for implementing the REVOKE query in the database is to ensure the data's security and integrity.
Let us use an example to better understand how to implement the REVOKE command in SQL.
Implementing REVOKE Command
Consider a scenario where the user is the database administrator. In the above implementation of the GRANT command, the user Aman was provided permission to implement a SELECT query on the student table that allowed Aman to read or retrieve the data from the table. Due to certain circumstances, the administrator wants to revoke the abovementioned permission. To do so, the administrator can implement the below REVOKE statement:
1. REVOKE SELECT ON student FROM Aman;
This will stop the user Aman from implementing the SELECT query on the student table. The user may be able to implement other queries in the database.
Benefits of Implementing DCL Commands
There are several advantages of implementing Data Control Language commands in a database. Let's see some most common reasons why the user implements DCL commands on the database.
1. Security: the primary reason to implement DCL commands in the database is to manage the access to the database and its object between different users. This limits the actions that can be performed by specific users on the different elements in the database. It ensures the security and integrity of the data stored in the database.
2. Granular control: DCL commands provide granular control to the data administrator over the database. It allows the administrator to provide or remove specific privileges or permissions from other users using a database for information. Thus, it enables the admin to create different levels of access to the database.
3. Flexibility: The data administrator can implement DCL commands on specific commands and queries in the database. It allows the administrator to grant or revoke user permissions and privileges as per their needs. It provides flexibility to the administrator that allows them to manage access to the database.
Disadvantages of Implementing DCL Commands
Along with the benefits of implementing DCL commands in the database, they have some disadvantages. Some of the common disadvantages of implementing DCL commands are as follows:
1. Complexity: It increases the complexity of database management. If many users are accessing the database, keeping track of permission and privileges provided to every user in the database becomes very complex.
2. Time-Consuming: In most organizations, several users access the database, and different users have different access levels to organization data. It is time-consuming to assign the permissions and privileges to each user separately.
3. Risk of human error: Human administrators execute DCL commands and can make mistakes in granting or revoking privileges. Thus, giving unauthorized access to data or imposing unintended restrictions on access.
4. Lack of audit trail: There may be no built-in mechanism to track changes to privileges and permissions over time. Thus, it is extremely difficult to determine who has access to the data and when that access was granted or revoked.

Data Control Language (DCL) is a subset of SQL (Structured Query Language) used to control access and permissions in a database. It primarily focuses on managing rights, permissions, and other controls to ensure secure access to data.
Key Features of DCL:
1. Authorization Management: Controls who can access or modify data.
2. Security: Ensures data is protected from unauthorized access.
3. User Privileges: Grants or revokes specific rights to users or roles.
Common DCL Commands:
1. GRANT: Used to provide specific privileges to users or roles.
· Example:
Sql
Copy code
GRANT SELECT, INSERT ON Employees TO User1;
This allows User1 to perform SELECT and INSERT operations on the Employees table.
2. REVOKE: Used to remove previously granted privileges.
· Example:
Sql
Copy code
REVOKE SELECT ON Employees FROM User1;
This removes the SELECT privilege from User1 on the Employees table.
Use Case:
DCL is essential for database administrators to ensure that sensitive data is accessed only by authorized individuals, maintaining data integrity and security.

5. TCL - Transaction Control Language
Transactions group a set of tasks into a single execution unit. Each transaction begins with a specific task and ends when all the tasks in the group are successfully completed. If any of the tasks fail, the transaction fails. Therefore, a transaction has only two results: success or failure.

Transaction Control Language (TCL) is a subset of SQL commands used to manage database transactions, ensuring data integrity and consistency. Key functions of TCL include:
· Commit: Saves all changes made during the current transaction.

· Rollback: Reverts changes made during the current transaction if an error occurs.

· Savepoint: Sets a point within a transaction to which you can later roll back.

TCL commands are primarily used with Data Manipulation Language (DML) statements like INSERT, UPDATE, and DELETE to manage changes effectively. Overall, TCL plays a crucial role in organizing SQL statements into logical transactions

Common TCL Commands
	Command
	Description
	Syntax

	BEGIN TRANSACTION
	Starts a new transaction
	BEGIN TRANSACTION [transaction_name];

	COMMIT
	Saves all changes made during the transaction
	COMMIT;

	ROLLBACK
	Undoes all changes made during the transaction
	ROLLBACK;

	SAVEPOINT
	Creates a savepoint within the current transaction
	SAVEPOINT savepoint_name;

Example:
BEGIN TRANSACTION;
UPDATE employees SET department = 'Marketing' WHERE department = 'Sales';
SAVEPOINT before_update;
UPDATE employees SET department = 'IT' WHERE department = 'HR';
ROLLBACK TO SAVEPOINT before_update;
COMMIT;
In this example, a transaction is started, changes are made, and a savepoint is set. If needed, the transaction can be rolled back to the savepoint before being committed.

Needs of Transaction Control Language
The Transaction Control Language manages the changes in the data which are made by the DML operations. The alteration made by the DML commands such as UPDATE, INSERT or DELETE is not permanent and these changes can be canceled before the present session gets closed. To control the changes and processing of data, TCL is used simultaneously with the Data Manipulation Language. As we perform many operations on the data, the database might become inconsistent between the transactions.
So the Transaction Control Language (TCL) is used to maintain consistency and manage the transaction in a database. After the commit is performed the database state is changed from one to another consistent state. The Transactions are used on all the DDL and DML queries automatically.
How does Transaction Control Language Work?
A transaction in a database is a logical unit of processing which may comprise of one or more database operations. A series of low-level changes into a logical update are grouped together by using a transaction. For example, a transaction might be updating a single value or updating of a complex procedure such as the insertion of multiple rows to different tables. Normally, a transaction is started and then as the individual DML commands are executed, they become the part of the transaction and when the logical procedure is over, the transaction gets committed. The commit command ensures that the changes are made permanent in the database. If the commit operation fails, the transaction gets rolled back and all the changes are removed.

TCL Commands
TCL includes the following commands:
1. COMMIT
1. The COMMIT command is used to save all the transactions to the database that have been performed during the current transaction.
1. Once a transaction is committed, it becomes permanent and cannot be undone.
1. This command is typically used at the end of a series of SQL statements to ensure that all changes made during the transaction are saved.
Syntax:
COMMIT;
2. ROLLBACK
1. The ROLLBACK command is used to undo all the transactions that have been performed during the current transaction but have not yet been committed.
1. This command is useful for reverting the database to its previous state in case an error occurs or if the changes made are not desired.
Syntax:
ROLLBACK;
3. SAVEPOINT
1. The SAVEPOINT command is used to set a point within a transaction to which we can later roll back.
1. The SAVEPOINT command in SQL allows us to set a point within a transaction to which we can roll back without affecting the entire transaction.
1. This command allows for partial rollbacks within a transaction, providing more control over which parts of a transaction to undo.
Syntax:
SAVEPOINT savepoint_name;
Uses of TCL Commands
1. COMMIT: Used after data modifications (INSERT, UPDATE, DELETE) to save changes to the database.
COMMIT in SQL
The COMMIT command in SQL is used to save all changes made during the current transaction permanently.
1.
1. ROLLBACK: Used to revert changes if something goes wrong, ensuring data integrity.
1. SAVEPOINT: Used to create intermediate points within a transaction to which you can roll back, providing finer control over transaction management.
1. SET TRANSACTION: Used to configure transaction behavior, ensuring proper isolation and consistency as per requirements.
Advantages of TCL
1. Data Integrity: Ensures that either all operations within a transaction are completed successfully or none are, maintaining consistency.
1. Error Recovery: Allows for rolling back incomplete transactions in case of errors, preventing partial updates.
1. Savepoints: Provides intermediate checkpoints within transactions, offering more granular control over rollbacks.
1. Transaction Management: Facilitates complex transaction management, ensuring correct execution sequences and isolation.
Disadvantages of TCL
1. Performance Overhead: Frequent commits and rollbacks can introduce performance overhead due to additional logging and management operations.
1. Complexity: Managing transactions, especially in large and distributed systems, can become complex and error-prone.
1. Resource Locking: Long transactions can hold locks on resources, potentially leading to contention and reduced concurrency.
History of TCL Technology
The concept of TCL and transactional control in databases has evolved along with relational database management systems (RDBMS). Key milestones include:
1. 1970s: The development of the relational model by Edgar F. Codd, which laid the foundation for transactional operations.
1. 1980s: Introduction of SQL standards, including TCL commands, as relational databases like IBM's System R and later commercial products like Oracle and SQL Server were developed.
1. 1990s and beyond: Continuous improvements in transaction control mechanisms, isolation levels, and recovery techniques in modern RDBMS like MySQL, PostgreSQL, and NoSQL databases.
Operation of TCL Technology
1. Start a Transaction: Typically, a transaction starts implicitly when a DML operation (INSERT, UPDATE, DELETE) is performed, or explicitly with a BEGIN TRANSACTION statement.
1. Perform Operations: Execute a series of database operations. Changes are held in a pending state and are not visible to other transactions until committed.
1. Use Savepoints: Optionally, create savepoints to mark specific points within the transaction.
1. Commit or Rollback: Use COMMIT to save all changes permanently. Use ROLLBACK to undo changes. If savepoints are used, you can roll back to a specific savepoint without affecting preceding operations.
1. End Transaction: The transaction ends upon a COMMIT or ROLLBACK, releasing any held resources and locks.
TCL commands are essential for maintaining the ACID (Atomicity, Consistency, Isolation, Durability) properties of transactions, which are crucial for reliable and predictable database behavior.
Example of TCL Commands
Consider the following Table Student:
	Name
	Marks

	John
	79

	Jolly
	65

	Shuzan
	70

Example Using COMMIT and ROLLBACK
Let's update the name of a student from 'Jolly' to 'Sherlock' in the STUDENT table and ensure the change is committed.
UPDATE STUDENT
SET NAME = ‘Sherlock’
WHERE NAME = ‘Jolly’;

COMMIT;
ROLLBACK;
By using this command you can update the record and save it permanently by using COMMIT command.

Now after COMMIT:
	Name
	Marks

	John
	79

	Sherlock
	65

	Shuzan
	70

If commit was not performed then the changes made by the update command can be rollback.

Now if no COMMIT is performed.
UPDATE STUDENT
SET NAME = ‘Sherlock’
WHERE STUDENT_NAME = ‘Jolly’;

After update command the table will be:
	Name
	Marks

	John
	79

	Sherlock
	65

	Shuzan
	70

Now if ROLLBACK is performed on the above table:
rollback;
After Rollback:
	Name
	Marks

	John
	79

	Jolly
	65

	Shuzan
	70

In the context of SQL, TCL stands for Transaction Control Language.
TCL is a subset of SQL. It’s just one of the various initialisms we can find in SQL. Others include DDL (Data Definition Language), DML (Data Manipulation Language), DCL (Data Control Language), and DQL (Data Query Language).
What Does TCL Do?
Transaction Control Language is a subset of SQL that’s used to manage transactions in a relational database.
TCL includes commands such as COMMIT, ROLLBACK, and SAVEPOINT, although the actual commands required to perform a given task depends largely on the RDBSs being used. For example some RDMBSs use BEGIN TRANSACTION while others use START TRANSACTION to do the same thing.
TCL commands are important for maintaining the consistency, integrity, and reliability of the database in the event of errors or failures during transactions.

Most Important SQL Commands
There are also a few other SQL Commands we often rely on when writing powerful queries. While they don’t fit neatly into the five main categories, they’re absolutely essential for working with data effectively.
	Command
	Description

	SELECT
	Retrieves data from one or more tables.

	INSERT
	Adds new rows (records) to a table.

	UPDATE
	Modifies existing data in a table.

	DELETE
	Removes specific rows from a table.

	CREATE TABLE
	Creates a new table in the database.

	ALTER TABLE
	Modifies the structure of an existing table (e.g., add or remove columns).

	DROP TABLE
	Permanently deletes a table and its data.

	TRUNCATE TABLE
	Removes all rows from a table but keeps its structure intact.

	WHERE
	Filters records based on a condition.

	ORDER BY
	Sorts the result set in ascending or descending order.

	GROUP BY
	Groups rows that have the same values in specified columns.

	HAVING
	Filters grouped data (used with GROUP BY).

	JOIN
	Combines rows from two or more tables based on a related column.

	DISTINCT
	Removes duplicate values from the result set.

	IN / BETWEEN / LIKE
	Used for advanced filtering conditions.

	UNION
	Combines the result of two or more SELECT queries.

	GRANT
	Gives user privileges or permissions.

	REVOKE
	Removes user privileges.

	COMMIT
	Saves all changes made in the current transaction.

	ROLLBACK
	Undoes changes if something goes wrong in a transaction.

	SAVEPOINT
	Sets a point in a transaction to roll back to if needed.

From:
SQL Commands | DDL, DQL, DML, DCL and TCL Commands - GeeksforGeeks
Data Manipulation Language (DML): Overview, Types & Example
What Are DDL, DML, DQL, and DCL in SQL? | LearnSQL.com
Data manipulation language - Wikipedia
TCL Full Form - Transaction Control Language - GeeksforGeeks
DCL Commands in SQL - Tpoint Tech
SQL Data Control Language (DCL)
SQL TCL Commands (SavePoint, RollBack, and Commit)
What is TCL?
Other suggested links for reading: What is Data Definition Language (DDL) In DBMS?
DDL Commands & Syntax - GeeksforGeeks
What is Data Definition Language (DDL)?
Transaction Control Language | Working & Command with Example of TCL
