Minimization and Prioritization of test cases in regression testing

In regression testing, minimization and prioritization are

two distinct but complementary strategies used to optimize the testing process, saving time
and resources while maximizing fault detection. Minimization permanently reduces the size of a
test suite by eliminating redundant or obsolete test cases, while prioritization orders test cases
to execute the most important ones first.

Test case minimization

The goal of test case minimization (or test suite reduction) is to reduce the size of a test suite by
permanently removing redundant or obsolete test cases. This creates a smaller, more efficient
suite that maintains the same level of code coverage.

Techniques for minimization:

Greedy algorithms: These algorithms use a heuristic approach to find a minimal set of test
cases that cover all testing requirements. They work by repeatedly selecting a test case that
covers the most currently uncovered requirements until all requirements are met.

Integer Linear Programming (ILP): This method uses a mathematical equation to find the
smallest possible representative test set. While it can produce the most optimal result, it is also
highly complex and resource-intensive.

Hybrid approaches: Some techniques combine multiple methods. For example, a genetic
algorithm might be used to find an optimal test suite that considers execution time and
coverage, or a multi-objective approach might combine different criteria.

Call-stack coverage: This technique focuses on reducing the test suite by ensuring that the
remaining test cases cover the same unique call stacks as the original suite.

Considerations:

A key risk of minimization is that a discarded test case might have been the one that could have
detected a specific fault.

The effectiveness of a minimization strategy should be measured by how much it reduces the
test suite while preserving fault-detection capability.

Test Case Prioritization

test case prioritization refers to prioritizing test cases in the test suite based on different
factors. Factors could be code coverage, risk/critical modules, functionality, features, etc.
Why should test cases be prioritized?

As the size of software increases, the test suite also grows bigger and requires more effort to
maintain the test suite. To detect bugs in software as early as possible, it is important to
prioritize test cases so that important test cases can be executed first.

Types of Test Case Prioritization :

e General Prioritization: In this type of prioritization, test cases that will be useful for the
subsequent modified versions of the product are prioritized. It does not require any
information regarding modifications made to the product.

o Version-Specific Prioritization: Test cases can also be prioritized such that they are useful on
a specific version of the product. This type of prioritization requires knowledge about
changes that have been introduced in the product.

Prioritization Techniques

1. Coverage-based Test Case Prioritization :

This type of prioritization is based on code coverage i.e. test cases are prioritized based on

their code coverage.

e Total Statement Coverage Prioritization - In this technique, the total number of
statements covered by a test case is used as a factor to prioritize test cases. For example, a
test case covering 10 statements will be given higher priority than a test case covering 5
statements.

e Additional Statement Coverage Prioritization - This technique involves iteratively
selecting a test case with maximum statement coverage, then selecting a test case that
covers statements that were left uncovered by the previous test case. This process is
repeated till all statements have been covered.

e Total Branch Coverage Prioritization - Using total branch coverage as a factor for ordering
test cases, prioritization can be achieved. Here, branch coverage refers to coverage of each
possible outcome of a condition.

e Additional Branch Coverage Prioritization - Similar to the additional statement coverage
technique, it first selects a text case with maximum branch coverage and then iteratively
selects a test case that covers branch outcomes that were left uncovered by the previous
test case.

e Total Fault-Exposing-Potential Prioritization - Fault-exposing-potential (FEP) refers to the
ability of the test case to expose fault. Statement and Branch Coverage Techniques do not
take into account the fact that some bugs can be more easily detected than others and
also that some test cases have more potential to detect bugs than others.

e FEP depends on:

1. Whether test cases cover faulty statements or not.
2. Probability that faulty statement will cause test case to fail.

2. Risk-based Prioritization

This technique uses risk analysis to identify potential problem areas which if failed, could lead
to bad consequences. Therefore, test cases are prioritized keeping in mind potential problem

areas. In risk analysis, the following steps are performed :

List potential problems.
Assigning probability of occurrence for each problem.
Calculating the severity of impact for each problem.

After performing the above steps, a risk analysis table is formed to present results. The table
consists of columns like Problem ID, Potential problem identified, Severity of Impact, Risk
exposure, etc.

3. Prioritization using Relevant Slice

In this type of prioritization, slicing technique is used — when program is modified, all existing
regression test cases are executed in order to make sure that program yields same result as
before, except where it has been modified. For this purpose, we try to find part of program
which has been affected by modification, and then prioritization of test cases is performed for
this affected part. There are 3 parts to slicing technique :

Execution slice - The statements executed under test case form execution slice.
Dynamic slice - Statements executed under test case that might impact program output.
Relevant Slice - Statements that are executed under test case and don't have any impact
on the program output but may impact output of test case.

4. Requirements - based Prioritization

Some requirements are more important than others or are more critical in nature, hence test
cases for such requirements should be prioritized first. The following factors can be
considered while prioritizing test cases based on requirements :

Customer assigned priority - The customer assigns weight to requirements according to
his need or understanding of requirements of product.

Developer perceived implementation complexity - Priority is assigned by developer on
basis of efforts or time that would be required to implement that requirement.
Requirement volatility - This factor determines frequency of change of requirement.
Fault proneness of requirements - Priority is assigned based on how error-prone
requirement has been in previous versions of software.

Minimization vs. prioritization: a comparison

Aspect Test Case Minimization Test Case Prioritization

Strategy Permanently eliminate Reorder the execution sequence of

redundant test cases to reduce all test cases to run the most
the overall size of the test important ones first.

suite.

Goal Reduce the number of tests Maximize the rate of fault
and execution time while detection during the early stages of
maintaining a specific coverage testing.
level.

Test suite The overall test suite size is The size of the test suite is not

size permanently reduced. reduced, but a subset may be

selected for early execution.

Primary risk A discarded test case could If testing is terminated early,
have been crucial for findinga lower-priority tests may not be
future fault. executed, potentially missing less-
critical bugs.

Application Useful for reducing long-term Valuable in fast-paced or agile
maintenance costs for large projects with limited time for
test suites. complete test execution.

How to use both strategies together

Minimization and prioritization are not mutually exclusive and can be used in combination for a
highly efficient regression testing strategy.

Perform initial minimization: Use a minimization technique to permanently remove obsolete or
highly redundant test cases from the test suite to reduce maintenance overhead.

Prioritize the remaining suite: For each regression test cycle, apply a prioritization technique
(e.g., risk-based or version-based) to the minimized test suite.

Execute the prioritized subset: Run the most important test cases first. This ensures high-risk
areas are tested early and provides faster feedback to developers.

Decide on further execution: Based on the results and available time, you can decide whether
to continue executing lower-priority tests or stop testing once the primary objectives are met.

