Regression Testing - Software Testing

Regression Testing involves re-executing a previously created test suite to
verify that recent code changes haven't caused new issues. This verifies that
updates, bug fixes, or enhancements do not break the functionality of the
application.

Start

It

Changes made to software

i

Run regression tests

I

Verify functionality

It

Ensure reliability & integrity

i

End

When to do Regression Testing?

Regression testing is necessary in several scenarios to maintain software

quality:

« When new functionality is added to the system and the code has been
modified to absorb and integrate that functionality with the existing code.

« When some defect has been identified in the software and the code is
debugged to fix it.

« When the code is modified to optimize its working.

Process of Regression Testing

Here is the step-by-step process of the regression testing:



Process Regression testing

Program Identification

failure > Debugging > of bugs }

[

Modification of
source code to
make it bug free

=/

Select the existing
Execute test cases to
test cases covering the Generate new xeCcu

modified & affected e R test cases if required —————————» perform r-w_gnssion
parts of the code testing

1. Identify Code Changes: Analyze the source code to determine which areas
have been modified, such as new features, bug fixes, or optimizations.

2. Debug and Fix Failures: If existing test cases fail due to changes, debug the
code to identify and resolve defects.

3. Modify Code: Apply necessary updates to the code to incorporate changes
or fixes.

4. Select Test Cases: Choose relevant test cases from the existing test suite
that cover modified and affected areas. Add new test cases if needed to
address new functionality.

5. Execute Regression Tests: Run the selected test cases, either manually or
using automated tools, to verify system behavior.

6. Analyze Results: Review test outcomes to identify regressions, document
issues, and recommend fixes.

7. Retest as Needed: If defects are found, fix them and re-run tests to confirm
resolution.

Techniques for Selecting Test Cases for Regression Testing

Selecting the right test cases is critical for efficient regression testing.
Common techniques include:



Selection of Test cases
for Regression Testing

Prioritization
i N
On the basis of technical, On the basis of customer
requirements requirements

{ 1

Prlonty'v Code 1 Priority Code 1
Essential Test Case Important for the customer

Priority Code 2

Important Test Case ey - =

Required to increase the
Priority Code 3 customer satisfaction

Execute, if resources permits .
Priority Code 3

Priority Code 4 Helps to increase the market
Not important Test Case share of the product

Priority Code 5
Redundant Test Case

« Select all test cases: In this technique, all the test cases are selected from
the already existing test suite. It is the simplest and safest technique but
not very efficient.

« Select test cases randomly: In this technique, test cases are selected
randomly from the existing test suite, but it is only useful if all the test
cases are equally good in their fault detection capability which is very
rare. Hence, it is not used in most of the cases.

« Select modification traversing test cases: In this technique, only those test
cases are selected that cover and test the modified portions of the source
code and the parts that are affected by these modifications.

« Select higher priority test cases: In this technique, priority codes are
assigned to each test case of the test suite based upon their bug detection
capability, customer requirements, etc. After assigning the priority codes,
test cases with the highest priorities are selected for the process of
regression testing. The test case with the highest priority has the highest
rank. For example, a test case with priority code 2 is less important than a
test case with priority code.

Regression Testing Example

E-Commerce Website Core Functionality: In this regression test, we will
check:
1. Login functionality.



2. Add to Cart functionality.

3. Logout functionality.

Regression testing ensures that no new changes or fixes break the existing
system.

Basetest.java

package Test;

import org.openqa.selenium.WebDriver;

import org.openqa.selenium.chrome.ChromeDriver;
import org.testng.annotations.AfterMethod;

import org.testng.annotations.BeforeMethod;

public class BaseTestMain {

protected WebDriver driver;
protected String Url = "https://ecommerce.artoftesting.com/";

/7 Set up the ChromeDriver
@BeforeMethod
public void setup() {
// Set the path to your chromedriver executable
System.setProperty("webdriver.chrome.driver”, "C:\\Users\ \path of the
chromedriver\\drivers\\chromedriver.exe");

// Initialize the ChromeDriver
driver = new ChromeDriver();

}

// Close the browser after each test
@AfterMethod
public void teardown() {

if (driver != null) {

driver.quit();

}

}
}



1. Test Login Functionality:

Verify that the user can still log in successfully after updates.
Test Steps:

Open the login page.

Input valid username and password.

Submit the login form.

Verify the user is redirected to the correct URL (i.e., logged in

successfully).
5. Verify that the user session has been created (this can be done optionally

by checking cookies, or session IDs).
LoginPageTest.java
package ArtOfTesting;

W=

import org.openqga.selenium.By;

import org.openqa.selenium.WebDriver;
import org.testng.Assert;

import org.testng.annotations.Test;
import Test.BaseTestMain;

public class LoginPageTest extends BaseTestMain {

@Test

public void TestLogin() {
// Step 1: Navigate to the login page
driver.get(Url);

/) Step 2: Enter valid username and password
driver.findElement(By.name("uname")).clear();

driver.findElement(By.name("uname")).sendKeys("auth_user");

driver.findElement(By.name("pass")).clear();
driver.findElement(By.name("pass")).sendKeys("auth_password");

// Step 3: Click on the Login button
driver.findElement(By.className("Login_btn_ pALc8")).click();

// Step 4: Verity successtul login by checking the URL



Assert.assertEquals(driver.getCurrentUrl(),
"https://ecommerce.artoftesting.com/");

System.out.println("Login Successful");

}
}

2. Test Add to Cart Functionality:

Ensure that users can successfully add products to the cart and the cart
updates accordingly.
Test Steps:

1. Login (reuse the login test).

2. Select a product to add to the cart.

3. Click the "Add to Cart" button.

4. Verify that the cart is updated with the added item.

5. Optionally, check if the correct number of items is displayed in the cart.
AddToCartTest.java

package ArtOfTesting;

import org.openga.selenium.By;

import org.openqa.selenium.WebElement;
import org.openqa.selenium.interactions.Actions;
import org.testng.Assert;

import org.testng.annotations.Test;

import Test.BaseTestMain;

public class AddToCartTest extends BaseTestMain {

@Test
public void TestAddToCart() {
/7 Step 1: Log in (reuse the login test)
driver.get(Url);
driver.findElement(By.className("Login_btn_ pALc8")).click(); // Log in

// Step 2: Navigate to the product

driver.findElement(By.xpath("/html/body/div/div/div[3]/div/div/select")).c
lick();



WebElement filterOption =
driver.findElement(By.className("Header_select_ 8rhX+"));
Actions action = new Actions(driver);
action.sendKeys(filterOption, "Down").perform();
action.sendKeys("ENTER").perform();

/) Step 3: Select a product and add to cart

WebElement bookAddition = driver.findElement(By.cssSelector("#root >
div > div.Products_body__ifIXG > div > div:nth-child(1) >
div.Products_quantity__54g]2 > svg:nth-child(3) > path"));

action.doubleClick(bookAddition).perform();

driver.findElement(By.cssSelector("#root > div >
div.Products_body__ifIXG > div > div:nth-child(1) >
div.Products_priceSection__j7qrQ > button")).click();

// Step 4: Check if the cart is updated (URL check)
driver.findElement(By.className("Header_cart_ Jnfkn")).click();
String cartURL = "https://ecommerce.artoftesting.com/cart";
String currentURL = driver.getCurrentUrl();
Assert.assertEquals(currentURL, cartURL);

System.out.println("Item successfully added to the cart.");

}
}

3. Test Logout Functionality:
Ensure that users can log out successfully and are redirected to the login
page.
Test Steps:
1. Login (reuse the login test).
2. Click the logout button.
3. Verify that the user is logged out and redirected to the login page.
LogoutTest.java
package ArtOfTesting;

import org.openga.selenium.By;

import org.openqa.selenium.WebElement;
import org.openqa.selenium.interactions.Actions;
import org.testng.Assert;



import org.testng.annotations.Test;
import Test.BaseTestMain;

public class LogoutTest extends BaseTestMain {

@Test
public void TestLogout() {
/7 Step 1: Log in (reuse the login test)
driver.get(Url);
driver.findElement(By.name("uname")).clear();
driver.findElement(By.name("uname")).sendKeys("auth_user");

driver.findElement(By.name("pass")).clear();
driver.findElement(By.name("pass")).sendKeys("auth_password");

driver.findElement(By.className("Login_btn_ pALc8")).click();

/) Step 2: Log out by clicking the logout button

WebElement logoutButton =
driver.findElement(By.xpath("/html/body/div/div/div[1]/div/div[2]/button
/div/span"));

Actions actions = new Actions(driver);

actions.doubleClick(logoutButton).perform();

/) Step 3: Verify user is logged out and redirected to login page
Assert.assertEquals(driver.getCurrentUrl(),
"https://ecommerce.artoftesting.com/login");

System.out.println("Logout Successful");

}
}

Running the Regression Tests:

Once the individual tests for login, add to cart, and logout are written, you
can combine them into a regression test suite.
RegressionTestSuite java

package TestSuite;

import ArtOfTesting.LoginPageTest;



import ArtOfTesting.AddToCartTest;
import ArtOfTesting.LogoutTest;
import org.testng.annotations.Test;
import org.testng.TestNG;

public class RegressionTestSuite {

@Test
public void runRegressionTests() {
TestNG testng = new TestNG();
testng.setTestClasses(new Class[] { LoginPageTest.class,
AddToCartTest.class, LogoutTest.class });
testng.run();

}
}

Regression testing aims to ensure that the core features continue to work

after any new changes or updates in the system. Here’s how this applies to

your code:

1. Login Functionality: Ensures that the login feature works as expected after
any backend or Ul changes.

2. Add to Cart: Verifies that the user can still add items to the cart and that
the cart behaves correctly.

3. Logout: Confirms that users can still log out successfully and are
redirected properly.

Output:

=

J] BuseTourMa U LengpomstP ange T §] BanaTestMus J] LoginPageTes 1| AT st ] LogeaTesl javs

package Regressionlesting;

import org.testng.lesthi;
Ampoert org.testng.annotations,. lest;

import ArtOflTesting.loginPageTest;

o public class RegressionTestSuite {
.
.
public weoid runRegressionTests()} {
TestHh testng naw TestHG();
trestng.setTestClasses(new Class[] { LoginPageTest.class, AddToCartTest.class, LogoutTest.class });
runi );
i
¥ Problems W Jsvadoc Declarston (B Cansale W Resuits of numewng cass Regresson lestSuite M g = hEw SIS0 -

<terrminated> Fegression TestSoite [TesthiS] CH Uers' GF GO0 Downlosds! eclpse-jave- 2125-06-R-windi-r36_sfedipse plugins.org eciipse jurtj openjdihotspot e full wirdza 86_64_ 21,07 v

Logout Successful




Regression Testing Tools

In regression testing, we generally select the_Test Cases from the existing
test suite itself and hence, we need not compute their expected output, and it
can be easily automated due to this reason. Automating the process of
regression testing will be very effective and time-saving.

The most commonly used tools for regression testing are:

Selenium: Open-source, supports multiple browsers and programming
languages, and is widely used for automating web application tests.
Ranorex Studio: A comprehensive solution for testing web, desktop, and
mobile applications with both codeless and coded automation options.
testRigor: Al-powered test automation tool that simplifies test creation
with natural language processing and requires no coding skills.

Sahi Pro: A user-friendly tool that supports cross-browser testing and
integrates well with continuous integration systems like Jenkins.
Testlio: A cloud-based solution with a global network of testers, ideal for
on-demand testing, especially for regression testing in real-world
scenarios.



