SDLC V-Model - Software Testing

The SDLC V-Model is a type of Software Development Life Cycle (SDLC). It isa method that
includes testing and validation alongside each development phase. It creates a structure like
the letter 'V,' which includes various phases that we will discuss in detail.

Phases of SDLC V-Model

The V-Model, which includes the Verification and Validation it is a structural approach to
software development. The following are the different Phases of the V-Model of the SDLC.

Acceptance Test Design

Requirement
Analysis

System Test Design

System Design

Architecture Integration Test Integration
Design Design Testing

Unit Test
Design

Module Design Unit Testing

1. V-Model Verification Phases

This is where the process begins. The first step is to gather and understand the customer’s
needs for the software. The goal is to define the scope of the project clearly to make sure
everyone is on the same page.

It involves a static analysis technique (review) done without executing code. It is the process
of evaluation of the product development phase to find whether specified requirements are
met.

There are several Verification phases in the V-Model:

1. Business Requirement Analysis

This is the first step of the designation of the development cycle where product requirement
needs to be cured from the customer's perspective. These phases include proper
communication with the customer to understand their requirements.

These are the very important activities that need to be handled properly, as most of the time
customers do not know exactly what they want, and they are not sure about it at that time
then we use an acceptance test design planning which is done at the time of business
requirement it will be used as an input for acceptance testing.



2. System Design

In this phase, the overall structure of the software is planned out. The team develops both
the high-level design (how the system will be structured) and detailed design (how the
individual components will work).

Design of the system will start when the overall we are clear with the product requirements,
and then need to design the system completely. This understanding will be at the beginning
of complete under the product development process. these will be beneficial for the future
execution of test cases.

3. Architectural Design

In this stage, architectural specifications are comprehended and designed. Usually, several
technical approaches are put out, and the ultimate choice is made after considering both the
technical and financial viability. The system architecture is further divided into modules that
each handle a distinct function. Another name for this is High-Level Design (HLD).

At this point, the exchange of data and communication between the internal modules and
external systems are well understood and defined. During this phase, integration tests can be
created and documented using the information provided.

4. Module Design

This phase, known as Low-Level Design (LLD), specifies the comprehensive internal design for
every system module. Compatibility between the design and other external systems as well as
other modules in the system architecture is crucial. Unit tests are a crucial component of any
development process since they assist in identifying and eradicating the majority of mistakes
and flaws at an early stage. Based on the internal module designs, these unit tests may now
be created.

5. Coding Phase

This is where the software is actually built. Developers write the code based on the design
created in the previous phase.

The Coding step involves writing the code for the system modules that were created during
the Design phase. The system and architectural requirements are used to determine which
programming language is most appropriate.

The coding standards and principles are followed when performing the coding. Before the
final build is checked into the repository, the code undergoes many code reviews and is
optimized for optimal performance.

2. V-Model Validation Phases

It involves dynamic analysis techniques (functional, and non-functional), and testing done by
executing code. Validation is the process of evaluating the software after the completion of
the development phase to determine whether the software meets the customer's
expectations and requirements.

1. Unit Testing

In Unit testing, unit Test Plans are developed during the module design phase. These Unit
Test Plans are executed to eliminate bugs in code or unit level.



2. Integration testing

After completion of unit testing Integration testing is performed. In integration testing, the
modules are integrated and the system is tested. Integration testing is performed in the
Architecture design phase. This test verifies the communication of modules among
themselves.

3. System Testing

System testing tests the complete application with its functionality, inter-dependency, and
communication. It tests the functional and non-functional requirements of the developed
application.

4. User Acceptance Testing (UAT)

User Acceptance Testing (UAT) is performed in a user environment that resembles the
production environment. UAT verifies that the delivered system meets the user's requirement
and the system is ready for use in the real world.

Importance of V-Model

The V-Model is an important part of the SDLC, and the process is structured and sequential
throughout all the testing. Here is why the V-Model is important:

1. Early Defect Identification

By incorporating verification and validation tasks into every stage of the development
process, the V-Model encourages early testing. This lowers the cost and effort needed to
remedy problems later in the development lifecycle by assisting in the early detection and
resolution of faults.

2. Determining the Phases of Development and Testing

The V-Model contains a testing phase that corresponds to each stage of the development
process. By ensuring that testing and development processes are clearly mapped out, this
clear mapping promotes a methodical and orderly approach to software engineering.

3. Prevents "Big Bang" Testing

Testing is frequently done at the very end of the development lifecycle in traditional
development models, which results in a "Big Bang" approach where all testing operations are
focused at once. By integrating testing activities into the development process and
encouraging a more progressive and regulated testing approach, the V-Model prevents this.
4. Improves Cooperation

At every level, the V-Model promotes cooperation between the testing and development
teams. Through this collaboration, project requirements, design choices, and testing
methodologies are better understood, which improves the effectiveness and efficiency of the
development process.

5. Improved Quality Assurance

Overall quality assurance is enhanced by the V-Model, which incorporates testing operations

at every level. Before the program reaches the final deployment stage, it makes sure that it

satisfies the requirements and goes through a strict validation and verification process.

Principles of V-Model

e Large to Small: In V-Model, testing is done in a hierarchical perspective, for example,
requirements identified by the project team, creating High-Level Design, and Detailed



Design phases of the project. As each of these phases is completed the requirements, they
are defining become more and more refined and detailed.

Data/Process Integrity: This principle states that the successful design of any project
requires the incorporation and cohesion of both data and processes. Process elements
must be identified at every requirement.

Scalability: This principle states that the V-Model concept has the flexibility to
accommodate any IT project irrespective of its size, complexity, or duration.

Cross Referencing: A direct correlation between requirements and corresponding testing
activity is known as cross-referencing.

When to Use of V-Model?

Traceability of Requirements: The V-Model proves beneficial in situations when it's
imperative to create precise traceability between the requirements and their related test
cases.

Complex Projects: The V-Model offers a methodical way to manage testing activities and
reduce risks related to integration and interface problems for projects with a high level of
complexity and interdependencies among system components.

Waterfall-Like Projects: Since the V-Model offers an approachable structure for
organizing, carrying out, and monitoring testing activities at every level of development, it
is appropriate for projects that use a sequential approach to development, much like the
waterfall model.

Safety-Critical Systems: These systems are used in the aerospace, automotive, and
healthcare industries. They place a strong emphasis on rigid verification and validation
procedures, which help to guarantee that essential system requirements are fulfilled and
that possible risks are found and eliminated early in the development process.

Advantages of V-Model

This is a highly disciplined model and Phases are completed one at a time.

V-Model is used for small projects where project requirements are clear.

Simple and easy to understand and use.

This model focuses on verification and validation activities early in the life cycle thereby
enhancing the probability of building an error-free and good quality product.

It enables project management to track progress accurately.

The V-Model provides a clear and structured process for software development, making it
easier to understand and follow.

The V-Model places a strong emphasis on testing, which helps to ensure the quality and
reliability of the software.

The V-Model provides a clear link between the requirements and the final product, making
it easier to trace and manage changes to the software.

The clear structure of the V-Model helps to improve communication between the
customer and the development team.

Disadvantages of the V-Model

The V-Model is a linear and sequential model, which can make it challenging to adapt to
changing requirements or unforeseen events.

The V-Model can be time-consuming, as it requires a lot of documentation and testing.
High risk and uncertainty.



It is not good for complex and object-oriented projects.

It is not suitable for projects where requirements are not clear and contain a high risk of
changing.

This model does not support iteration of phases.

The V-Model places a strong emphasis on documentation, which can lead to an
overreliance on documentation at the expense of actual development work.



