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  Fluid Dynamics 

UNIT-1: Kinematics- Velocity at a point of a fluid, Eulerian and Lagrangian 

 methods, Steam lines, Path lines and Streak lines, Velocity potential, 

 Irrotational and rotational motions, Vorticity and circulation, Equations of 

 continuity, Boundary surfaces, Acceleration at a point of a fluid, Components 

 of acceleration in cylindrical and spherical polar co-ordinates. 

1.Fluid dynamics is the science of treating the study of fluids in motion.  By the 

term fluid, we mean a substance that flows i.e. which is not a solid. Fluids may be 

divided into two categories 

 (i) Liquids which are incompressible i.e. their volume do not change when 

  the pressure changes 

 (ii) Gases which are compressible i.e. they undergo change in volume 

whenever the pressure changes. The term hydrodynamics is often applied to the 

science of moving incompressible fluids.  However, there is no sharp distinction 

between the three states of matter i.e. solids, liquids and gases. 

In the microscopic view of fluids, matter is assumed to be composed of molecules 

which are in random relative motion under the action of intermolecular forces. In 

solids, the spacing of the molecules is small, spacing persists even under strong 

molecule forces. In liquids, the spacing between molecules is greater even under 

weaker molecule forces and in gases, the gaps are even larger. 

If we imagine that our microscope, with which we have observed the molecular 

structure of matter, has a variable focal length, we could change our observation of 

matter from the fine detailed microscopic view point to a longer range macroscopic 

viewpoint in which we would not see the gaps between the molecules and the matter 

would appear to be continuously distributed. We shall take this macroscopic view of 

fluids in which physical quantities associated with the fluids within a given volume 

V are assumed to be distributed continuously and, within a given sufficiently small 

volume V uniformly. This observation is known as the Continuum hypothesis. It 

implies that at each point of a fluid, we can prescribe a unique velocity, a unique 

pressure, a unique density etc. Moreover, for a continuous or ideal fluid, we can 

define a fluid particle as the fluid contained within an infinitesimal volume whose size 

is so small that it may be regarded as a geometrical point. 

1.1 Stresses: In general two types of forces act on a fluid element. One of them is 

body force and the other is surface force. The body force is proportional to the mass 

of the body on which it acts while the surface force is proportional to the surface area 

and acts on the boundary of the body. 
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Suppose F


  is the surface force acting on an elementary surface area dS  at a point P  

of the surface S .  

                                      

Let 
1F  and 

2F   be resolved parts of F


 in the directions of tangent and normal at P . 

The normal force per unit area is called the normal stress and is also called pressure. 

The tangential force per unit area is called the shearing stress. 

1.2 Viscosity:  It is the internal friction between the particles of the fluid which 

offers resistance to the deformation of the fluid. The friction is in the form of 

tangential and shearing forces (stresses). Fluids with such property are called inviscid 

or ideal or perfect fluids. 

Actually, all fluids are real, but in many cases, when the rates of variation of fluid 

velocity with distances are small, viscous effects may be ignored. By the definition of 

body force and shearing stress, it is clear that body force per unit area at every point 

of the surface of an ideal fluid acts along the normal to the surface at that point. Thus 

ideal fluid does not exert any shearing stress. 

Thus, we conclude that viscosity of a fluid is that property by virtue of which it is able 

to offer resistance to shearing stress. It is kind of molecular frictional resistance. 

1.3 Velocity of Fluid at a Point: Suppose that at time t, a fluid particle is at the 

point P having  position vector r


(i.e. rPO


 ) 

 

Q(r+r, t+t) 

P(r, t) 

fig: 1.1 

Normal 
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and at the time  tt   the same particle at point Q has a position vector .rr

  

the particle velocity  q


 at the point P


 is r

  

 dt

rd

t

r

t

rrr
q

tt








 







 00
lim

)(
lim

 

where the limit is assumed to exist uniquely. Clearly q


 is in general dependent on 

both r


and t , so we may write 

)),,((

),,,,(),(

zyxordinatecohasPkzjyixr

tzyxqtrqq








 

Suppose, 

kwjviuq


  
and since 

k
dt

dz
j

dt

dy
i

dt

dx

dt

rd
q







, 

Therefore 

dt

dz
w

dt

dy
v

dt

dx
u  ,,

 
 

Remarks.  (i) A point where  ,0


q  is called a stagnation point. 

  (ii) where the flow is such that the velocity at each point is independent of 

time i.e. the flow is such that the velocity at each point is independent of time i.e. the 

flow pattern is same at each instant, then the motion is termed as steady motion, 

otherwise it is unsteady. 

 

1.4 Flux across any surface: The flux i.e. the rate of flow across any surface S is 

defined by the integral   

                                      

dSnq
S

 )ˆ.(




 
where  is density, q


is the velocity of the fluid and n̂  is the outward unit normal at 

any point of S . 

Also, we define 

.surfacetheofareavelocitynormaldensityFlux   

2. Eulerian and Lagrangian Methods (Local and Total range of change): We 

have two methods for studying the general problem of fluid dynamics 

2.1 Eulerian Method: In this method, we fix a point in the space occupied by the 

fluid and observation is made of whatever changes of velocity, density, pressure etc 

take place at that point. i.e. point is fixed and fluid particles are allowed to pass 
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through it. If ),,( zyxP is the point is fixed and fluid particles are do not depend upon 

the time parameter ,t therefore zyx  ,, do not exist (dot denotes derivative w.r.t. time). 

Let ),,,( tzyxf  be a scalar function associated with some property of the fluid (e.g. 

its density) i.e. ),,(),,,( trftzyxf


  where kzjyixr ˆˆˆ 


is the position vector of 

the point P , then 

 

  t

trfttrf

t

f

t 





),(),(
lim

0










                                                             )1(  

 

Here, 
t

f




is called the local time rate of change. 

2.2 Lagrangian Method:- In this case, observations are made at each point and each 

instant, i.e., any particle of the fluid is selected and observation is made of its 

particular motion and it is pursued throughout its course. 

Let a fluid particle be initially at the point ).,,( cba After lapse of time ,t  let the same 

fluid particle be at ).,,( zyx  It is obvious that zyx ,, are functions of .t But since the 

particles which have initially different positions occupy different positions after the 

motion is allowed. Hence the co-ordinates of the final position i.e. ),,( zyx  depend on 

),,( cba also. Thus 

  
 tcbafztcbafytcbafx ,,,),,,,(),,,,( 321 

 

For this case, if ),,,( tzyxf be scalar function associated with the fluid, then 

  
t

trfttrrf

dt

df t






),(),(lim
0




 

                                                   
(2) 

where zyx  ,,  exist. 

Here 
dt

df
 is called an individual time rate or total rate or particle rate of change. Now, 

we establish the relation between these two-time rates ).2(&)1(  

We have 

   ),,,( tzyxff   

Therefore,  

   
t

f

dt

dz

z

f

dt

dy

y

f

dt

dx

x

f

dt

df



















  
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t

f
k

dt

dz
j

dt

dy
i

dt

dx
k

z

f
j

y

f
i

x

f




































 ˆˆˆ.ˆˆˆ  

   
t

f
qf







.  

where 

   
),,(ˆˆˆ wvuk

dt

dz
j

dt

dy
i

dt

dx
q 


 

Thus 

   fq
t

f

dt

df





 .


                                                             (3)      

Remarks. (i) The relation 




























.

.

.

q
tdt

d

fq
tdt

df

fq
t

f

dt

df







 

The operator 








Dt

D
bydenotedalso

dt

d
is called the Lagrangian operator or material 

derivative i.e. time rate of change in Lagrangian view. Sometimes, it is called 

‘differentiation following the fluid’ 

(ii) Similarly, for a vector function ),,,( tzyxF


 associated with some property of the 

fluid(e.g. its  velocity, acceleration), we can show that 

 
fq

t

F

dt

fd 






 .

 

Hence the relation )3( holds for both scalar and vector functions associated with the 

moving fluid. 

(iii) The Eulerian method is sometimes also called the flux method. 

(iv) Both Lagrangian and Eulerian methods were used by Euler for studying fluid 

dynamics. 

(v) Lagrangian methods resemble very much with to dynamics of a particle. 
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(vi) The two methods are essentially equivalent, but depending upon the problem, one 

has to judge whether the Lagrangian method is more useful or the Eulerian. 

3. Streamlines, Pathlines and Streaklines  
3.1 Streamlines: It is a curve drawn in the fluid such that the direction of the 

tangent to it at any point coincides with the direction of the fluid velocity vector q


 at 

that point. At any time ,t  let ),,( wvuq 


 be the velocity at each point ),,( zyxP of the 

fluid. The direction ratios of the tangent to the curve at ),,( zyxP  are ),,( dzdydxrd 


since the tangent and the velocity at P have the same direction, therefore 0


 rdq  

 i.e.    0ˆˆˆ)ˆˆˆ(


 kdzjdyidxkwjviu  

 i.e.  vdxudyudzwdxwdyvdz  0  

  
w

dz

v

dy

u

dx
  

These are the differential equations for the streamlines. 

i.e. their solution gives the streamlines. 

 

In the figure, if ,.........,, 321 qqq


denote the velocities at neighbouring points 

.......,, 433221 PPPPPP  collectively give the approximate form of the streamlines. 

3.2. Pathlines: When the fluid motion is steady so that the pattern of flow does not 

vary with time, the paths of the fluid particles coincide with the streamlines. But in 

case of unsteady motion, the flow pattern varies with time and the paths of the 

particles do not coincide with the streamlines. However, the streamline through any 

point P does touch the pathline through P . Pathlines are, the curves described by the 

fluid particles during their motion i.e. these are the paths of the particles. 

The differential equations for pathlines are  

Streamline 

4q


 

3q


 2q


 

1q


 
4P  

3P  
2P  

 1P  

fig: 1.2 
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  q
dt

rd 


  i.e. w
dt

zd
v

dt

yd
u

dt

xd




,,                                                    (1) 

Where now (x,y,z) are the Cartesian co-ordinates of the fluid particle and not a fixed 

point of space. The equation of the pathline  which passes through the point 

 ,,, 00 zyx o fixed in space, at time 0t  say, is the solution of )1(  which satisfy initial 

condition that 000 ,, zzyyxx   when .0t  The solution gives a set of equations 

of the form 

                                

 

 

 












tzyxzz

tzyxyy

tzyxxx

,,,

,,,

,,,

0,00

000

000

                                                                     )2(  

Which, as t  takes all values greater than zero, will trace out the required pathline. 

Remarks: (i) Streamlines give the motion of each particle at a given instant whereas 

pathlines give the motion of a given particle at each instant. 

We can make these observations by using a suspension of aluminium dust in the 

liquid. 

(ii) If we draw the streamlines through every point of a closed curve in the fluid, we 

obtain a stream tube.  A stream tube of very small cross-section is called a stream 

filament. 

 

(iii) The components of velocity at the right angle to the streamline is always zero. 

This shows that there is no flow across the streamlines. This, if we replace the 

boundary of the stream tube by a rigid boundary, the flow is not affected. The 

principle of conservation of mass then gives that the flux across any cross-section of 

the stream tube should be the same. 

3.3 Streaklines: In addition to streamlines and pathlines, it is useful for 

observational purposes define a streakline. This is the curve of all fluid particles 

fig: 1.3 
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which at some time have coincided with a particle which at some time have coincided 

with a particular fixed point of space. Thus, a streakline is observed when a neutrally 

buoyant marker fluid is continuously injected into the flow at a fixed point of space 

from time . The marker fluid may be smoke if the main flow involves a gas 

such as air, or a dye such as potassium permanganate ( 4KMnO ) if the main flow 

involves a liquid such as water. 

 

 

If the co-ordinates of a particle of marker fluid are ),,( zyx  at time t  and the particle 

coincided with the injection point ),,( 000 zyx  at some time  , where ,t  then the 

time-history (streakline) of this particle is obtained by solving the equations for a 

pathline, subject to the initial condition that 000 ,, zzyyxx  at .t  As  takes 

all possible values in the angle ,t   the locations of all fluid particles on the 

streakline through ),,( 000 zyx are obtained. Thus, the equation of the streakline at time 

t  is given by 

fig.:1.4 
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 

 

 












tzyxzz

tzyxyy

tzyxxx

,,,

,,,

,,,

0,00

000

000

     

)( t 

 

Remark: (i) For a steady flow, streaklines also coincide with streamlines and 

pathlines. 

(ii) Streamlines, pathlines and streaklines are termed as flowlines for a fluid. 

4. Velocity Potential 

Suppose that kwjviuq ˆˆˆ 


 is the velocity at any time t  at each point ),,( zyxP  of 

the fluid. Also suppose that the expression wdzvdyudx   is an exact differential, 

say d  

Then,    wdzvdyudxd    

i.e.    

wdzvdyudxdt
t

dz
z

dy
y

dx
x
































  

where ),,,( tzyx   is some scalar function, uniform throughout the entire field of 

flow. 

Therefore, 

                   0,,, 



















tz
w

y
v

x
u


 

but 

         0




t


  ),,,( tzyx   

hence  

              kwjviuq ˆˆˆ























 k

z
j

y
i

x
ˆˆˆ 

     

where   is termed as the velocity potential and the flow of such type is called flow of 

potential kind. 

In the above definition, the negative sign q


 is a convention and it ensures that 

flow takes place from higher to lower potentials. The level surfaces 

consttzyx ),,,( , are called equipotentials or equipotential surfaces. 
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4.1. Theorem: At all points of the field of flow the equipotentials (i.e.  

 equipotential surfaces) are cut orthogonally by the streamlines. 

Proof. If the fluid velocity at any time t  be ),,,( wvuq 


 then the equations of 

streamlines are 

                                                
w

dz

v

dy

u

dx
                                                               )1(  

 The surfaces are given by  

                                              0. rdq


 i.e.    0 wdzvdyudx                              )2(  

Are such that the velocity is at right angles to the tangent planes. The curves )1( and 

the surfaces )2(  cut each other orthogonally. Suppose that the expression on the left-

hand side )2(  is an exact differential. Say, ,d  then 

                                        wdzvdyudxd                                                         )3(  

where  is velocity potential. 

The necessary and sufficient condition for the relations. 

                                        
z

w
y

v
x

u
















,,  

i.e. q


 to hold is 

                     0)(


 curlqcurl                                                                         )4(  

The solution of )2(  i.e. 0d is 

                        constzyx ),,(                                                                                  )5(  

The surfaces )5(  are called equipotentials. Thus the equipotentials are cut 

orthogonally by the stream lines. 

Note: When ,0


qcurl  the flow is said to be irrotational or of a potential kind, 

otherwise it is rotational. For irrotational flow, q


 

4.3. Example. The velocity potential of a two-dimensional flow is .cxy  Find the 

stream lines 

Solution. The stream lines are given by 

                                   
w

dz

v

dy

u

dx
  
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Where                            ),,( wvuq 


 

For an irrotational motion (i.e. motion of potential kind) 

We have 

                      )(0  curlqcurl


             

i.e.                    ,q


 where   is the velocity potential. 

 

From here,  

                   

)0,,(,,),,( cxcy
zyx

wvu 























 

i.e.                       0,,  wcxvcyu  

Therefore, streamlines are  

                        
0

dz

cx

dy

cy

dx






 

i.e.                     0,0  dzydyxdx  

i.e                      Kzayx  ,22
 

which are rectangular hyperbolae. 

4.4. Example. If the speed of the fluid is everywhere the same, the streamlines are 

straight. 

Solution. The streamlines are given by the differential equations. 

                                
w

dz

v

dy

u

dx
  

Where u, v, and w are constants.  The solutions are 

                     ,constuyvx       ,constwyvz   

The intersections of these planes are necessarily straight lines. Hence the result. 

4.5. Example. Find the stream lines and path lines of the particles for the two 

dimensional velocity field.  

                           0,,
1




 wyv
t

x
u  
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Solution.  For  streamlines, the differential equations are  

                            
w

dz

v

dy

u

dx
  

Therefore, 

                             
0

1
dz

y

dy

x

dx
t   

Here t constant = 0t  (at given instant), therefore the solutions are 

                            210 ,loglog)1( czcyxt   

Or                         ,logloglog 01
ayx

t




2cz   

Or                         2

1
,0 czayx

t



 

Which are the required stream lines. 

For path lines, we have 

                            w
dt

dz
v

dt

dy
u

dt

dx
 ,,               

Therefore, 

                        0,,
1





dt

dz
y

dt

dy

t

x

dt

dx
                

                  0,,
1




 dzy
dt

dy

t

dt

x

dx
 

                    ,log)1log(log atx  ,loglog bty  cz   

                     czbeytax t  ,),1(  

                     czbey a

ax





,  

Which are the required path lines. 

4.6. Note. In case of path lines, t  must be eliminated since these give the motion at 

each instant (i.e. independent of t). 

4.7 Example. Obtain the equations of the streamlines, path lines and streaklines which 

pass through )0,,( ll at 0t for the two dimensional flow 
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0,,1
000











 w

t

y
v

t

t

t

x
u

 

Where l  and 0t  are constants having respectively the dimensions of length and time. 

Solution. We define the dimensionless co-ordinates ZYX ,,  and time T by writing 

                                 
0

,,,
t

t
T

l

z
Z

l

y
Y

l

x
X   

Such that                  dt
t

dTdz
l

dZdy
l

dYdx
l

dX
0

1
,

1
,

1
,

1
  

And                          0,),1(
00

 w
t

Yl
vT

t

Xl
u  

Streamlines are given by 

                              
w

dz

v

dy

u

dx
  

                      
0)1(

00 ldZ

Yl

ldYt

TXl

ldXt



 

                       
0)1(

dZ

Y

dY

TX

dX



 

Integrating these, we get 

                                 Z constant )(1 sayC                                                               )1(   

And ,loglog)1(log 2CYTX  where 2C is constant 

        )1(

2

TYCX                                                                                                     )2(   

As variables ZYX ,, and T are independent and 1C and 2C constants, equations )1( &

)2(  give the complete family of stream lines at all times .0Ttt    In particular, 

0,1  ZYX and 1,00 21  CCT  and we get stream line as XY   i.e. 

xy  and 0z  

Pathlines are given by   0,),1( 
dT

dZ
Y

dT

dY
tX

dT

dX
 

Now, ZYX ,, are the dimensionless co-ordinates of a fluid particle and are functions 

of T. 
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Therefore,          dTt
dT

dX
)1(        1

2

log
2

log K
T

TX 







  

                             2
1

2TT

eKX



                                                                              )3(  

                     Y
dT

dY
   dT

dT

dY
  2loglog KTY   

               TeKY 2                                                                                                  )4(  

                    0dZ  3KconstZ                                                                        )5(  

These are the parametric equations  of path lines. The path line through )0,1,1(P   

i.e. 0,0,1  TZYX  is obtained when 0,1 321  KKK  

                 0,,2

2




ZeYeX T

T
T

 

Elimination of T gives. 

                            0,
log

2

1
1

2
12

1































ZYeeX
YT

T

T
T

 

The pathline which passes through 0,1  ZYX  when T  is given by 

                         ,
2

1

2

1
.exp 22









 TTX  

                        0),.(exp  ZTY   

These are the parametric equations of the streaklines true for all values of .T At 

,0T the equations give 

                       ,
2

exp
2












X  ),exp( Y 0Z  

Eliminating , we have. 

                       Ylog i.e. Ylog  

Therefore, 

                         0,)(
2

1exp 2

log
1

2
1

2
1














































 ZYYeX

Y


  



 

18 

 

4.8. Article. To obtain the differential equations for streamlines in 

cylindrical and spherical co-ordinates. 

We know that the streamlines are obtained from the differential equations 

                                0


 rdq                                                                                  )1(  

Where q


 is the velocity vector and r


is the position vector of a liquid particle. 

If the motion is irrotational, then  

                                    q


 

Therefore, the differential equations )1( become 

                                    0


 rd                                                                             )2(  

)(i  In cylindrical co-ordinates ),,,( zr   we have  

                                  ),,( dzrddrrd 


 

And 

                                    





















zrr
grad






 ,

1
,  

Thus, the different equations )2(  become 

                                   0),,(,
1

,






















dzrddr

zrr







               

                                 

z

dz

r

rd

r

dr












 








.1

                                                        )3(   

)(ii    In spherical co-ordinates ),,,( r  we have 

                            ),,(  drddrrd 


 

And                      






























sin

1
,

1
,

rrr
grad  

The differential equations )2(  become. 

                            0)sin,,(
sin

1
,

1
,






























drrddr

zrrr
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                         




























sin

1

sin

.1
r

dr

r

rd

r

dr
                                                  )4(  

Equations  )3(  & )4(  are required differential equations. 

4.9. Example. Show that if the velocity potential of an irrotational fluid motion is 

,cos
2


r

A
  where ),,( r  are the spherical polar co-ordinates of any point, the 

lines of flow lie on the surface ,sin 2kr  k being a constant. 

Solution. The differential equations for lines of flow (streamlines) are 

                            




























sin

1

sin

.1
r

dr

r

rd

r

dr
 

From first two members, we have 

                             












 




 sin1cos

2
2

3

r

A
r

rd

r
A

dr
 

                                         




 sin

2

cos

rddr
                       





sin

cos
2

d

r

dr
  

                          kr logsinlog2log        2sinkr   

Hence the result. 

4.10. Note. In the above example, the velocity potential, in Cartesian co-ordinates, can 

be written as  

                             ,tan.)( 12
3

222








 

x

y
zzyxA  

Where                         

                           ,cossin rx   ,sinsin ry   cosrz   

Are spherical  polar substitutions. 

Also, the streamlines 2sinkr   can be written as 223 sinkrr    

                    )()( 222
3

222 yxkzyx    
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                    
3

2)( 223
2

222 yxkzyx   

  Which are the streamlines in Cartesian co-ordinates. 

4.11. Example. At the point in an incompressible fluid having spherical polar co-

ordinates ),,,( r  are velocity components are )0,sin,cos2( 23   MrMr  where M 

is a constant. Show that velocity is of potential kind. Find the velocity potential and 

the equations of streamlines. 

Solutions. Here  ˆsinˆˆ drrdrdrrd 


 

                           )ˆ0,ˆsinˆcos2 23 rMrrMrq   


 

Then,  

                         

0sincos2

ˆsinˆˆ

sin

1

23

2



















MrMr

r

rrr

r
qcurl


 

                                    =   

 0̂)]sin2sin2(ˆsin0.ˆ0.ˆ[
sin

1 33

2
  


MrMrrrr

r
 

Therefore, the flow is of potential kind. 

Now, using the relation  ,ˆ
sin

1ˆ1
ˆ 






















 













rr
r

r
q


 we have 

 





















  











 ˆ

sin

1ˆ1
ˆˆsinˆcos2 23

rr
r

r
MrrMr  

From here  

                     0,sin,cos2 23 












 












MrMr

r
 

Therefore, 

                        








 dddr

r
d














  

                               dMrdrMr )sin()cos2( 23    

                              =  cos2Mrd   
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 Integrating, we get 

                                            cos2 Mr  

 This is the required velocity potential. 

 The streamlines are given by 

                                      




























sin

1

sin

.1
r

dr

r

rd

r

dr
 

 Or                              
0

sin

sincos2 33









dr

Mr

rd

Mr

dr



 

  From the last term,      const                        

  From the first two terms, we get 

                                               



dd

r

dr
cot2

sin

cos2
  

  Integrating, we get 

                                            constr  2sinloglog  

                                        ,sin 2Ar     const  

         The equation const  shows that the streamlines lie in planes which pass 

through the axis of symmetry .0  

Check Yourself: 

Problem 1. Determine the streamlines and the path of the particles  

                 
t

x
u




1
, 

t

y
v




1
,

t

z
w




1
                                                    

Answer: ( Ayx   , Bzx  ) & ( )1(),1(),1( tcztbytax  ) 

Problem 2. The velocity q


in a three-dimensional flow field for an incompressible 

fluid is given by  kzjyixq ˆˆˆ2 


 .Determine the equations of the stream lines 

passing through the point ).1,1,1(          

Answer: 1&1 22  xzxy  

Problem 3. Find the equation of the stream lines for the flow )6(ˆ)3(ˆ 2 xjyiq 


 at 

the point ).1,1(  
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Answer: 23 32  yx  

Problem 4. The velocity field at a point in a fluid is given as .0,, 







 y

t

x
q


 

Obtain 

path lines and streak lines. 

Solution. Here .0,, 







 y

t

x
q


 

The differential equations of path lines are given by 

                           
 k

dt

dz
j

dt

dy
i

dt

dx

dt

rd
q ˆˆˆ




jyi
t

x ˆˆ 
 

                      

,
t

x

dt

dx


 

,y
dt

dy


 

.0
dt

dz

  

By integrating )1( , we have 

                
t

x

dt

dx
 

t

dt

x

dx
 Atx logloglog  .Atx                          )4(  

Let ),,( 000 zyx  be the co-ordinates of the chosen fluid particle at time 
,0tt   

Then 

                                 00 Atx     .
0

0

t

x
A   

From ),4(  we have 

                                        dt
y

dy
                        

Or                                   Bty loglog  
tBey    

At                                      00 , ttyy   0

0

t
eyB


                                                 )5(  

From ),5( we have  

                                         0

0

tt
eyy


  

By integrating ),3( we have 

                                       cz
dt

dz
 0  i.e., z is independent of .0zzt   
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Hence the path lines are given by 

                                ,
0

0 t
t

x
x 








  ,0

0

tt
eyy


 0zz                                                      )6(  

Let the fluid particle ),,( 000 zyx pass through a fixed point ),,( 111 zyx at an instant in 

time Tt  , 

Where .0 tTt   Then the relation )6( reduces to 

                              ,
0

0
1 T

t

x
x 








  ,0

01

tT
eyy


  01 zz   

Or                           ,0
1

0 t
T

x
x 








  ,0

10

Tt
eyy


  10 zz                                                )7(        

where T  is the parameter. Substituting the relation )7(  into )6( , we have 

                                ,1 t
T

x
x 








 ,1

Tteyy  1zz   

Which gives the equation of streak lines passing through the point ).,,( 111 zyx  

Problem 5.   Consider the velocity field given by .̂ˆ)1( jxiAtq 


 Find the equation 

of stream line at 0tt   passing through the point ).,( 00 yx Also obtain the equation of 

the path line of a fluid element which comes to ),( 00 yx at .0tt  Show that, if 0A

(i.e. steady flow), the stream lines and path lines coincide. 

Answer:        Equation of stream line;   ))(1(2 00

2

0

2 yyAtxx              

                      Equation of path line;      )(
2

)(
2

0

2

00 tt
A

ttxx     

                        









2

00

2

0000 2
6

)(
2

1
)( tttt

A
ttxttyy    
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5. Irrotational and Rotational Motion, Vortex Lines 

5.1. Vorticity. If ),,( wvuq 


 be the velocity vector of a fluid particle, then the 

vector 


 is defined by  

                                qqcurl


  

Is called the vortex vector or vorticity and it’s component are ),,,( 321   given by 

                               ,1
z

v

y

w









 ,2

x

w

z

u









  

y

u

x

v









3  

5.2. Vortex Motion (or Rotational Motion). The fluid motion is said to be rotational 

   if 0


 qcurl  

5.3. Irrotational Motion. If ,0


 qcurl  then the fluid motion is said to be 

irrotational or of potential kind and then .q


 

5.4 Vortexline. It is a curve in the fluid such that the tangent at any point on the 

curve has the direction of the vorticity vector .


 

 The differential equations of vortexlines are given by 0


 rd  

           i.e.            
321 

dzdydx
  

5.5. Vortex Tube. It is the locus of vortex line drawn at each point of a closed curve 

i.e. vortex tube is the  surface formed by  drawing vortex lines through each point of a 

closed curve in the fluid. 

A vortex tube with small cross section is called a vortex filament. 

5.6 Flow. Let A and B be two points in the fluid. 

Then 
A

B

rdq


. is called the flow along any path from A to B 

If motion is irrotational then q


 and flow=   

B

A

B

A

BAdrd )()(. 


 

5.7. Circulation. It is the flow round a closed curve. If C be the closed curve in a 

moving fluid then circulations   
S SC

dSndSqcurlnrdq ..ˆ.ˆ. 


 

If the motion is irrotational, then q


 and thus, 



 

25 

 

                             
SC

BAdrd ,0)()(. 


 

Where A is any point on the curve C. This shows that for an irrotational motion, 

circulation is zero. 

5.8. Theorem:- The necessary and sufficient condition such that the vortex 

lines are at right angles to the stream lines, is 

                                                





















zyx
uwvu


,,),,(  

i.e. ,q


 where  and  are functions of zyx ,,  and t  

Proof. Necessary condition:-  We know that the differential equation 

 0.


rdq  is integrable if 

0.... 

















y

R

z

Q
P

 

0. qcurlq


                            (exactness condition) 

i.e.           ,0.


q  qcurl


  

This shows that the streamlines are at right angles to the vortex lines. Thus the 

streamlines and vortex lines are at right angles to each other if the differential 

equation 0.


rdq is integrable. 

The exactness condition 0. qcurlq


implies that .q


 

But .0)(


 curlqcurl  Thus the vortex lines do not exist. The equations 

0. rdq


are therefore not exact. 

So, there exists an integrating factor  (function of tzyx ,,, ) such that 

                                         0.1  rdq


  is integrable. 

If this differential equation is integrable, then we can write 

 ,.1  drdq  
 where   is scalar function of tzyx ,,,  

 rdrdq


..1    

 q

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Sufficient condition:- Let us take q


 q
1   

Then, )(  curlqcurl


 

   )()(


 

Therefore, 

                  ).().(. qqq


   

                        0).( 1   qq


  

This shows that the directions of streamlines and vortex lines are at right angles to 

each other. 

6. Equation of Continuity 

6.1. Equation of Continuity by Euler’s Method (Equation of conservation of 

mass): Equation of continuity is obtained by using the fact that the mass contained 

inside a given volume of fluid remains constant throughout the motion. Consider a 

region of fluid in which there is no inlets or outlets through which the fluid can enter 

or leave the region. Let S be the surface enclosing volume V of this region and let n̂

denotes the unit vector normal to an element S of S drawn outwards. 

Let, q


 be the fluid velocity and   be the fluid density. 

 

First, we consider the mass of fluid which leaves V by flowing across an element S

of S in time .t This quantity is exactly that which is contained in a small cylinder of 

cross-section S of length .)ˆ.( tnq 


 

Thus, mass of the fluid is = volumedensity Stnq  .)ˆ.(


. Hence the rate at which 

n̂  

S 

V 

S  

fig.1.5 
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 fluid leaves V  by flowing across the element S is .)ˆ.( Snq 


 

     

 Summing over all such elements ,S we obtain the rate of flow of fluid coming out of 

V across the entire surface .S Hence, the rate at which mass flow out of the region V

is 

                                  

S

dSnq )ˆ.(




=

S

dSnq ˆ).(




 

                                                     = 
V

dVqdiv )(


                                                 )1(  

Now, the mass M of the fluid possessed by the volume V of the fluid is 

                                                     

                                            M   = 
V

dV   

Where ),,,( tzyx   with ),,( zyx  the Cartesian co-ordinate of a general point of 

,V a fixed region of space, Since the space co-ordinate are independent of time t , 

therefore the rate of increase of mass withinV is  

          













 

V

dV
dt

d

dt

dM
 dV

t
V

 


                                         )2(  

 

But the considered region is free from source or sink i.e. the mass is neither created 

nor be destroyed, therefore the total rate of change of mass is zero and thus from 

)2(&)1( ,we get 

                                

dV
t

V

 


+

0)(  dVqdiv
V




 

                              0)( 








 dVqdiv

t
V





 

s  

n̂  q

 tnq )ˆ.(


 

fig.1.6 
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Since V is arbitrary, we conclude that at any point of the fluid which is neither a 

source nor a sink, 

                       0)( 



qdiv

t





                                                                       )3(  

Equation )3(  is known as equation of continuity. 

Corollary ).1(  We know that 

            ).()(  gradqqdivqdiv


  

Therefore, )3(  takes the form 

              0).().( 






qq

t


                                                                     )4(   

Corollary ).2(  We know that the differential operator 
Dt

D
 is given by 

                  
).( 




 q

tDt

D 

 

Therefore, from )4( , we obtain the equation of continuity as 0).(  


Dt

D
 

Corollary ).3(  Equation )5(  can be written as  

                                  0
1

 qdiv
Dt

D 


 

                          0)(log  qdiv
Dt

D 
                                                          )6(  

Corollary ).4(  When the motion of fluid is steady, then 0




t


and thus the equation 

of continuity )3(  becomes         

                                             0)( qdiv


  

Here  is not a function of time i.e. ),,( zyx                                           )7(  

Corollary ).5(  When the fluid is incompressible, then  =const and thus .0
Dt

D
 

The equation of continuity becomes 

                                           0qdiv


                                                                   )8(        
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Which is same for homogeneous and incompressible fluid. 

Corollary ).6(  If in addition to homogeneity and incompressibility, the flow is of 

potential kind such that ,q


 then the equation of continuity becomes single 

word 

                         0)( div                   0).(                    02            

)9(  

Which is known as the Laplace equation 

6.2. Equation of continuity in Cartesian co-ordinates:- Let ),,( zyx be the 

rectangular Cartesian co-ordinates. 

Let     kwjviuq ˆˆˆ 


                                                                            )1(  

And k
z

j
y

i
x

ˆˆˆ













                                                                       )2(  

Then, the equation of continuity     0)( 



qdiv

t





 can be written as 

     0)()()( 


















w

z
v

y
u
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


                                                 )3(       

i.e.    0
















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
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
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


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u
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y
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x
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t



                        )4(  

which is the required equation of continuity in Cartesian co-ordinates. 

Corollary )1(   If the fluid motion is steady, then   0




t


 and the equation )3(

 
becomes 

                              0)()()( 













w

z
v

y
u

x


 
                                    )5(  

Corollary )2(  If the fluid is incompressible, then const and the equation of 

continuity is 0.  q


 

i.e.                                  0














z

w

y

v

x

u
                                            )6(  

Corollary )3(
 
If the fluid is incompressible and of potential kind, then equation of 

continuity is 
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                                      02    

i.e.                           

                                 ,0
222
















zyx


    where         q


  

6.3. Equation of continuity in orthogonal curvilinear co-ordinate: Let ),,( 321 uuu  

be the orthogonal curvilinear co-ordinates and 321
ˆ,ˆ,ˆ eee  be the unit vector tangent to 

the co-ordinate curves. 

Let                      332211
ˆˆˆ eqeqeqq 


                                            )1(   

 

The general equation of continuity is 

                                                0)..( 



q

t





                                  )2(       

We know from vector calculus that for any vector point function ),,,( 321 ffff 


 























 )()()(

1
. 321

3

213

2

132

1321

fhh
u

fhh
u

fhh
uhhh

f                           )3(  

Where 321 ,, hhh are scalars. 

Using )3( , the equation of continuity )2( becomes 

2ê
 

O 

1ê
 

3ê
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











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                     )4(  

Corollary ).1( When motion of fluid is steady, then equation )4( becomes  

0)()()( 321

3
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1
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Corollary ).2(  When motion of fluid is incompressible, the equation of continuity is 

)( const  

0)()()( 321

3
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Corollary ).3(  When fluid is incompressible and irrotational then )( const  

 q

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 and the equation of continuity becomes 
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Now, we shall write equation )4( in cylindrical & spherical polar co-ordinate. 

6.4. Equation of continuity in cylindrical co-ordinates ).,,( zr   

Here, 

                        
zuuru  321 ,, 

 and 
1,,1 321  hrhh

 

The equation of continuity becomes 
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Corollary ).1(  When the fluid motion is steady, then equation )8( becomes 
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Corollary ).2(  For incompressible fluid, equation of continuity is 
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Corollary ).3(  When the fluid is incompressible and is of potential kind, then equation 

)8(  takes the from 

                     0
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Where ;q


  is expressed in cylindrical co-ordinates. 

6.5. Equation of continuity in spherical co-ordinates ).,,( r  

Here,              

                   
),,( 321 uuu

).,,( r  and     
sin,,1 321 rhrhh 

 

The equation of continuity becomes 
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Corollary ).1(  For steady case, equation )12(  becomes 

        

0)()(sin)(sin 321
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Corollary ).2(  For incompressible fluid, we have 
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Corollary ).3(  When fluid is incompressible and of potential kind, then equation of 

continuity is 
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    Where ;q


  is expressed in spherical co-ordinates. 

6.6. Symmetrical forms of motion and equation of continuity for them. We have 

the following three types of symmetry which are special cases of cylindrical polar co-

ordinates ),,,( zr  every physical quantity is independent of both 

 

and z so that 
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                     0
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
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and ),( trqq
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  

For this case, the equation of continuity in cylindrical co-ordinates, reduces to 

                 0)(
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
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rrt
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If the flow is steady, then equation )1( becomes 

                0)( 1 



rq

r
              ),()( 1 tFconstrq   (say). 

Further, if the fluid is incompressible then ),(1 tGconstrq   (say). 

)(ii Spherical Symmetry:- In this case, the motion of fluid is symmetrical about the 

centre and thus with the choice of spherical polar co-ordinates ),,,( r  every 

physical quantity is independent of both .&

 

so that 
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The equation of continuity, for such symmetry, reduces to 
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For steady motion, it becomes 
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1 tFconstrq    (say) 

And for incompressible fluid, it has the from ),(2

1 tGconstrq   say 

)(iii  Axial Symmetry:- )(a  In cylindrical co-ordinates ),,,( zr   axial symmetry 

means that every physical quantity is independent of   i.e. 0





and thus the 

equation of continuity becomes 
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)(b In spherical co-ordinates ),,,( r axial symmetry means that every physical 

quantity is independent of  i.e. 0





 and the equation of continuity, for this case, 

reduce to 
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6.7. Example. If )(s is the cross-sectional area of a stream filament, prove that the 

equation of continuity is 

                                .0)()( 








q

st
   where s is an element of arc of the 

filament and q is the fluid speed. 

Solution. Let P and Q be the points on the end section of the stream filament. 

 

The rate of flow of fluid out of volume of filament is 

                           sq
s

qq PPQ  )()()(



                                   )1(  

Where we have retained the terms upto first order only, since s is infinitesimally 

small 

Now, the fluid speed is along the normal to the cross-section. At time ,t  the mass 

within the segment of filament is s and its rate of increase is 

                                                   s
t

s
t
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Using law of conservation of mass, we have from )2(&)1(  
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
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which is the required equation at any point P of the filament. 

6.8. Deduction:- For steady incompressible flow, 0)( 





t
 and equation )3(

reduces to 

s  
Q P 

)( ssf   
)(sf  
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Which shows that for steady incompressible flow product of velocity and cross-

section of stream filament is constant. This result means that the volume of fluid a 

crossing every section per unit time is constant 

                                   







 c

t

vol
c

dist
cq

.

1

.
  

6.9. Example. A mass of a fluid moves in such a way that each particle describe a 

circle in one plane about a fixed axis, show that the equation of continuity is  

                                      0)( 














t
 

Where   is the velocity of a particle whose azimuthal angle is   at time .t  

Solution. Here, the motion is in a plane i.e. we have a two dimensional case and the 

particle describe a circle  

                                

 

Therefore, .., constrconstz   

         0,0 









rz
                                                                 )1(  

i.e. there is only rotation. 

We know that the equation of continuity in cylindrical co-ordinates ),,( zr   is  
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Using ),1(  we get 
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Hence the result. 

6.10. Example. A mass of fluid is in motion so that the lines of motion lie on the 

surface of co-axial cylinders, show that the equation of continuity is 

                    
  0)(

1
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
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Where zvv ,  are the velocities perpendicular and parallel to z.  

Solution. We know that the equation of continuity in cylindrical co-ordinates ),,( zr   

is given by 

,0)()(
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 where ),,( zr vvvq 


 

Since the lines of motion (path lines) lie on the surface of cylinder, therefore the 

component of velocity in the direction of rd


is zero i.e. 0rv  

Thus, the equation of continuity in the present case reduces to 
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Hence the result. 

6.11. Example. The particles of a fluid move symmetrically in space with regard to a 

fixed centre, prove that the equation of continuity is 

                            0)( 2

2















ur

rrr
u

t


 

Where u is the velocity at a distance r  

Solution. First, derive the equation of continuity in spherical co-ordinates. Now, the 

present case is the case of spherical symmetry, since the motion is symmetrical w.r.t. 

a fixed centre. 
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Therefore, the equation of continuity is 

                           0)(
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Hence the result 

6.12. Example. If the lines of motion are curves on the surfaces of cones having their 

vertices at the origin and the axis of z for common axis, prove that the equation of 

continuity is  

                             0)(
cos2

)( 




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


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Solution. First derive the equation of continuity in spherical co-ordinates ),,( r  as 
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In the present case, it is given that lines of motion lie on the surfaces of cones, 

therefore velocity perpendicular to the surface is zero i.e. 02 q  

Therefore, the equation of continuity becomes. 
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1
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Hence the result. 
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6.13. Example. Show that polar form of equation of continuity for a two dimensional 

incompressible fluid is 

                                 0)( 






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ru
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If ,
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2r
u


  then find v  and the magnitude of the velocity ,q


 where ),( vuq 


 

Solution. First derive the equation of continuity in polar co-ordinates ),( r  in two 

dimensional as    
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In the present case .const  

Therefore, the equation of continuity reduces to 

                       ,0)()( 
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hence the result. 
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Integrating w.r.t. ,  we get 

                         
2
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r
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


    and thus 
2
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22 )(||
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vuqq
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

 

6.14. Equation of Continuity by Lagrange’s Method. Let initially a fluid element be 

at ),,( cba  at time 0tt   when its volume is 0dV  and density is 0 . After time ,t  let 

the same fluid element be at ),,( zyx  when its volume is dV  and density is  . Since 

mass of the fluid element remains invariant during its motion, we have 

                             
dVdV  00     i.e.     

dzdydxdcdbda  0  

or                         dcdbda
cba

zyx
dcdbda

),,(

),,(
0




    
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or                           0 J    

       where  
),,(

),,(

cba

zyx
J




  

which is the required equation of continuity. 

6.15. Remark. By simple property of Jacobians, we get 

                     qJ
dt

dJ 
.  

Thus )1(  gives   0)( J
dt

d
 0

dt

dJ
J

dt

d



 

0.  qJJ
dt

d 




   
0.  qJ

dt

d 




  or 
0.  q

Dt

D 




 

Which is the Euler’s equation of continuity. 

7. Boundary Surfaces 

Physical condition that should be satisfied on given boundaries of the fluid in motion, 

are  called boundary conditions. The simplest boundary condition occurs where an 

ideal and incompressible fluid is in contact with rigid impermeable boundary, e.g., 

wall of a container or the surface of a body which is moving through the fluid. 

Let P be any point on the boundary surface where the velocity of fluid is q


 and 

velocity of the boundary surface is .u


 

 

The velocity at the point of contact of the boundary surface and the liquid must be 

tangential to the surface otherwise the fluid will break its contact with the boundary 

surface. Thus, if n̂ be the unit normal to the surface at the point of contact, then 

                                       0ˆ).( nuq


nunq ˆ.ˆ.


                                                       )1(  

In particular, if the boundary surface is at rest, then 0u


and the condition becomes 

n̂  

uq


  

u


 
q̂  

P  
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                                                        0ˆ. nq


                                                                )2(  

Another type of boundary condition arrives at a free surface where liquid borders a 

vacuum e.g. the interface between liquid and air is usually regarded as free surface. 

For this free surface, pressure p satisfies 

                                         P                                                                                 )3(  

Where   denotes the pressure outside the fluid i.e. the atmospheric pressure. 

Equation )3( is a dynamic boundary condition. 

Third type of boundary condition occurs at the boundary between two immissible 

ideal fluids in which the velocities are 21 & qq


 and pressures are 21 & pp  respectively. 

Now, we find the condition that a given surface satisfies to be a boundary surface. 

7.1. Article. To obtain the differential equation satisfied by boundary surface of a 

fluid in motion. 

                                                              Or 

To find the condition that the surface. 

                                        0),,,(),(  tzyxFtrF


 

May represent a boundary surface :- 

If q


be the velocity of fluid and u


be the velocity of the boundary surface at a point P

of contact, then 

                    0ˆ).( nuq


nunq ˆ.ˆ.


                                                                          )1(  

Where uq


 is the relative and n̂ is a unity vector normal to the surface at P . 

The equation of the given surface is 

                                                   0),,,(),(  tzyxFtrF


                                         )2(  

           We know that a unit vector normal to the surface )2(  is given by 

                                                
||

ˆ
F

F
n




  

Thus, from ),1( we get         FuFq  ..


                                                                 )3(          

Since the boundary surface is itself in motion, therefore at time ),( tt   its equation is 

given by 

                                   0),(  ttrrF 


                                                                 )4(  
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From ),4(&)2(  we have 

                                0),(),(  trFttrrF


  

i.e. 0),(),(),(),(  trFttrFttrFttrrF
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By Taylor’s series, we can have 

                              0)},({),().( 



 trF

t
tttrFr


  

    

FrzyxF
z

F
z

y

F
y

x

F
xzyxFzzyyxxF 














 .),,(.......),,(),,(


 

 

                  0),(. 














t

F
ttrF

t

r




 


 

Taking limit as 0t , we get 
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                  0).( 
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
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t

F 
   i.e. 0

Dt

DF
                                                             )5(  

Which is the required condition for any surface F to be a boundary surface  

Corollary (1) If ),,,( wvuq 


then the condition )5(  becomes 
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In case, the surface is rigid and does not move with time, then 0




t

F
 and the 

boundary condition is                     0
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Corollary )2(  The boundary condition 

                                     0



















z

F
w

y

F
v

x

F
u

t

F
 

is a linear equation and its solution gives 
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w

dz

v

dy

u

dxdt


1
                         |

dt

d

Dt

D
 in Lagrangian view 

                     w
dt

dz
v

dt

dy
u

dt

dx
 ,,        

Which are the equations of path lines. 

Hence once a particle is in contact with the surface, it never leaves the surface. 

Corollary )3(  From equation ),5( we have 
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Which gives the normal velocity. 

also from ),1( we get 
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Which gives the normal velocity of the boundary surface. 

7.2.Example. Show that the ellipsoid 
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Is a possible form of the boundary surface of a liquid. 

Solution. The surface 0),,,( tzyxF can be a possible boundary surface, if it satisfies 

the boundary condition. 
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Where wvu ,, satisfy the equation of continuity 
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Here, 
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Thus, from )1( , we get 
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Which will hold. if we take 
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It will be a justifiable step if equation )2( is satisfied. 
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which is true. 

Hence the given ellipsoid is a possible form of boundary surface of a liquid. 

8.Acceleration at a Point of a Fluid 

Suppose that a fluid particle is moving along a curve ,C initially it being at point 

)0( 0 tA  with position vector .Ar


 Let P and 'P be its position at time t and tt   with 

position vector r


and rr

 respectively. 
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Therefore, PPr 




 

The points ',, PPA  are geometrical points of region occupied by fluid and they 

coincide with the locations of the same fluid particle at time tttt ,,0
respectively. 

Let f


 be the acceleration of the particle at time t when it coincide with P . By 

definition 
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Using Taylor’s expansion, we get 
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But r

 is merely the displacement of the fluid particle in time ,t therefore, 
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Where R.H.S. of )7(&)4( are evaluated at ).,( trP


 Hence, from ),2( the acceleration 

of fluid at P in vector form is given by 
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8.1. Remark. We have obtained the acceleration i.e. rate of change of velocity q


. The 

same procedure can be applied to find the rate of change of any physical property 

associated with the fluid, such as density. Thus, if ),( trFF
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 is any scalar or vector 

quantity associated with the fluid, it’s rate of change at time t is given by 
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is also called material derivative. 
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In particular, if ,F the density of the fluid, then 
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Which is the general equation of motion for unsteady flow. 

8.2. Components of Acceleration in Cartesian co-ordinates. Let wvu ,,  be the 

Cartesian components of q
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Which are the required Cartesian components of .f


 

In tensor form with co-ordinates ix  and velocity components ),3,2,1( iqi  the above 

set of equations can be written as 
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8.3. Components of Acceleration Curvilinear co-ordinates. Before obtaining the 

acceleration components in curvilinear co-ordinates; we obtain a more suitable form 

of equation ).1( as 
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Adding    )3( , )4( , )5( , we get 
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Now, let ),,( 321 uuu  denote the orthogonal curvilinear co-ordinates. 
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Also let ),,,(),,,(),,,( 321321321  
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usual meaning. We know that the expression for the operator  in curvilinear co-
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Which are the components of acceleration in curvilinear co-ordinates. 

Now, we write the components of acceleration in cylindrical ),,( zr   and spherical 

),,( r  co-ordinates. 

8.4. Components of Acceleration in Cylindrical Co-ordinates ),,( zr  . 
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If we define the differential operator 
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Equation )9( gives the required components of acceleration in cylindrical co-

ordinates. 

 

8.5. Components of Acceleration in Spherical Co-ordinates ).,,( r  
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Equation )10(  gives the required comps of acceleration in spherical co-ordinates. 
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