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Fluid Dynamics

UNIT-1: Kinematics- Velocity at a point of a fluid, Eulerian and Lagrangian
methods, Steam lines, Path lines and Streak lines, Velocity potential,
Irrotational and rotational motions, Vorticity and circulation, Equations of
continuity, Boundary surfaces, Acceleration at a point of a fluid, Components
of acceleration in cylindrical and spherical polar co-ordinates.

1.Fluid dynamics is the science of treating the study of fluids in motion. By the
term fluid, we mean a substance that flows i.e. which is not a solid. Fluids may be
divided into two categories

(i) Liquids which are incompressible i.e. their volume do not change when
the pressure changes

(ii) Gases which are compressible i.e. they undergo change in volume
whenever the pressure changes. The term hydrodynamics is often applied to the
science of moving incompressible fluids. However, there is no sharp distinction
between the three states of matter i.e. solids, liquids and gases.

In the microscopic view of fluids, matter is assumed to be composed of molecules
which are in random relative motion under the action of intermolecular forces. In
solids, the spacing of the molecules is small, spacing persists even under strong
molecule forces. In liquids, the spacing between molecules is greater even under
weaker molecule forces and in gases, the gaps are even larger.

If we imagine that our microscope, with which we have observed the molecular
structure of matter, has a variable focal length, we could change our observation of
matter from the fine detailed microscopic view point to a longer range macroscopic
viewpoint in which we would not see the gaps between the molecules and the matter
would appear to be continuously distributed. We shall take this macroscopic view of
fluids in which physical quantities associated with the fluids within a given volume
V are assumed to be distributed continuously and, within a given sufficiently small
volume 6V uniformly. This observation is known as the Continuum hypothesis. It
implies that at each point of a fluid, we can prescribe a unique velocity, a unique
pressure, a unique density etc. Moreover, for a continuous or ideal fluid, we can
define a fluid particle as the fluid contained within an infinitesimal volume whose size
is so small that it may be regarded as a geometrical point.

1.1 Stresses: In general two types of forces act on a fluid element. One of them is
body force and the other is surface force. The body force is proportional to the mass
of the body on which it acts while the surface force is proportional to the surface area
and acts on the boundary of the body.




Suppose F is the surface force acting on an elementary surface area dS at a point P
of the surface S

Let F, and F, be resolved parts of F in the directions of tangent and normal atP .

The normal force per unit area is called the normal stress and is also called pressure.
The tangential force per unit area is called the shearing stress.

1.2 Viscosity: It is the internal friction between the particles of the fluid which
offers resistance to the deformation of the fluid. The friction is in the form of
tangential and shearing forces (stresses). Fluids with such property are called inviscid
or ideal or perfect fluids.

Actually, all fluids are real, but in many cases, when the rates of variation of fluid
velocity with distances are small, viscous effects may be ignored. By the definition of
body force and shearing stress, it is clear that body force per unit area at every point
of the surface of an ideal fluid acts along the normal to the surface at that point. Thus
ideal fluid does not exert any shearing stress.

Thus, we conclude that viscosity of a fluid is that property by virtue of which it is able
to offer resistance to shearing stress. It is kind of molecular frictional resistance.

1.3 Velocity of Fluid at a Point: Suppose that at time t, a fluid particle is at the
point P having position vector 7 (i.e. OP=F)

Q(r+or, t+ot)

P(r, t)




and at the time t+Jt the same particle at point Q has a position vector r + or.
the particle velocity g at the point P is SF

. (r+or)—-r . o dr
g=Im ——=Ilm —=—
&0 X a0 St dt

where the limit is assumed to exist uniquely. Clearly g is in general dependent on
both r and t, so we may write

d=aq(r,t)=4(x y,z1),
F=Xi +Yj +zk (P has co—ordinate(x, y, z))

Suppose,
G =ui +Vj +wk
and since
dr _dx- dy- dz-

g=—=—1+ +—Kk
| dt dt dtJ dt

Therefore
dx dy dz
U=—,Vv=—"2, W=—
dt dt dt
Remarks. (i) A point where ¢ =0, is called a stagnation point.

(ii) where the flow is such that the velocity at each point is independent of
time i.e. the flow is such that the velocity at each point is independent of time i.e. the
flow pattern is same at each instant, then the motion is termed as steady motion,
otherwise it is unsteady.

1.4 Flux across any surface: The flux i.e. the rate of flow across any surface S is
defined by the integral

[ p(anyds
S
where p is density, G is the velocity of the fluid and i is the outward unit normal at

any point of S.
Also, we define

Flux = density x normal velocity x area of the surface.

2. Eulerian and Lagrangian Methods (Local and Total range of change): We
have two methods for studying the general problem of fluid dynamics

2.1 Eulerian Method: In this method, we fix a point in the space occupied by the
fluid and observation is made of whatever changes of velocity, density, pressure etc
take place at that point. i.e. point is fixed and fluid particles are allowed to pass




through it. If P(x,y, z)is the point is fixed and fluid particles are do not depend upon
the time parameter t, therefore X, y, z do not exist (dot denotes derivative w.r.t. time).
Let f(x,y,z,t) be a scalar function associated with some property of the fluid (e.g.
its density) i.e. f(x,y,zt)=f(F,t), where F=xi +yj+zK is the position vector of
the point P, then

—=Ilim
ot 8&—0

of f(F,t+8)— f(F)0) "
&

Here, g—ft is called the local time rate of change.

2.2 Lagrangian Method:- In this case, observations are made at each point and each
instant, i.e., any particle of the fluid is selected and observation is made of its
particular motion and it is pursued throughout its course.

Let a fluid particle be initially at the point (a,b,c). After lapse of time t, let the same
fluid particle be at (x,y,z). It is obvious that x,y,z are functions of t.But since the

particles which have initially different positions occupy different positions after the
motion is allowed. Hence the co-ordinates of the final position i.e. (x,y,z) depend on

(a,b,c) also. Thus
x=f,(a,bc,t), y=f,(ab,ct), z= f,(a,b,c,t)
For this case, if f(x,y,z,t)be scalar function associated with the fluid, then

lim £ (F +6F,t+ &) — £ (F,1)
ﬂ _ a0 (2)
dt A

where x,y,z exist.

Here % is called an individual time rate or total rate or particle rate of change. Now,
we establish the relation between these two-time rates (1) & (2).
We have
f=1(xYy,1z1)
Therefore,

df _of dx of dy  of dz of

— = +——+
dt oxdt oydt ozdt ot




ot
of
=Vi.g+—
q ot
where
. dx. dy. dz,.
=—J+—=]+—k=(,v,w
=G T g wvw
Thus
df of
— =—+q.Vf 3
Gt o @)

Remarks. (i) The relation

ﬁ:ﬁ+q.Vf
dt ot

= £=(ﬁ+q.V]f
dt (ot
d o0 ._

—=—+04V
dt ot i

The operator %[alsodenoted by%jis called the Lagrangian operator or material

derivative i.e. time rate of change in Lagrangian view. Sometimes, it is called
‘differentiation following the fluid’

(i) Similarly, for a vector function F(x,y,z,t) associated with some property of the
fluid(e.g. its velocity, acceleration), we can show that

ﬂ:ﬁﬂivf
dt ot

Hence the relation (3)holds for both scalar and vector functions associated with the
moving fluid.

(iii) The Eulerian method is sometimes also called the flux method.

(iv) Both Lagrangian and Eulerian methods were used by Euler for studying fluid
dynamics.

(v) Lagrangian methods resemble very much with to dynamics of a particle.




(vi) The two methods are essentially equivalent, but depending upon the problem, one
has to judge whether the Lagrangian method is more useful or the Eulerian.

3. Streamlines, Pathlines and Streaklines
3.1 Streamlines: It is a curve drawn in the fluid such that the direction of the
tangent to it at any point coincides with the direction of the fluid velocity vector g at

that point. At any timet, let g = (u,v,w) be the velocity at each point P(x, y, z) of the
fluid. The direction ratios of the tangent to the curve at P(x, y, z) are dr = (dx,dy, dz)

since the tangent and the velocity at P have the same direction, therefore Gxdr =0
i.e. (uf+vj+WI2)x(dxf+dyj+dzI2):6
i.e. vdz — wdy = 0 = wdx — udz = udy — vdx

dx_dy_dz

u v w
These are the differential equations for the streamlines.

I.e. their solution gives the streamlines.

Streamline

fig: 1.2

In the figure, if G;,0,,05,..cc.... denote the velocities at neighbouring points

PP, PR, RP,....... collectively give the approximate form of the streamlines.

3.2. Pathlines: When the fluid motion is steady so that the pattern of flow does not
vary with time, the paths of the fluid particles coincide with the streamlines. But in
case of unsteady motion, the flow pattern varies with time and the paths of the
particles do not coincide with the streamlines. However, the streamline through any
point P does touch the pathline through P . Pathlines are, the curves described by the
fluid particles during their motion i.e. these are the paths of the particles.

The differential equations for pathlines are




oF . dx dy dZ
—=(ie —=Uu—=Vv,—=

(I gz 1
dt gt et e @)

Where now (x,y,z) are the Cartesian co-ordinates of the fluid particle and not a fixed
point of space. The equation of the pathline which passes through the point

(X, Yo, Z, ), fixed in space, at time t =0 say, is the solution of (1) which satisfy initial
condition that X=X,,Y=Y,,Z=2, when t=0. The solution gives a set of equations
of the form

X= X(Xo’ Yoo Zo't)
y= Y(XO, Yor Zo’t) 2
= Z(XO, yo’, Zo,t)

Which, as t takes all values greater than zero, will trace out the required pathline.

Remarks: (i) Streamlines give the motion of each particle at a given instant whereas
pathlines give the motion of a given particle at each instant.

We can make these observations by using a suspension of aluminium dust in the
liquid.

(it) If we draw the streamlines through every point of a closed curve in the fluid, we
obtain a stream tube. A stream tube of very small cross-section is called a stream
filament.

fig: 1.3

-
—

(iii) The components of velocity at the right angle to the streamline is always zero.
This shows that there is no flow across the streamlines. This, if we replace the
boundary of the stream tube by a rigid boundary, the flow is not affected. The
principle of conservation of mass then gives that the flux across any cross-section of
the stream tube should be the same.

3.3 Streaklines: In addition to streamlines and pathlines, it is useful for
observational purposes define a streakline. This is the curve of all fluid particles

10




which at some time have coincided with a particle which at some time have coincided
with a particular fixed point of space. Thus, a streakline is observed when a neutrally
buoyant marker fluid is continuously injected into the flow at a fixed point of space
from time 7 =—oc0.The marker fluid may be smoke if the main flow involves a gas
such as air, or a dye such as potassium permanganate (KMnO,) if the main flow

involves a liquid such as water.

I 2. S
Optical Flow Trajectories Streaklines

If the co-ordinates of a particle of marker fluid are (x,y,z) at time t and the particle
coincided with the injection point (X,,Y,,Z,) at some time ¢, where z <t, then the

time-history (streakline) of this particle is obtained by solving the equations for a
pathline, subject to the initial condition that x=x,,y =Y, Z=12,at t=7. As 7 takes

all possible values in the angle —oo <7 <t, the locations of all fluid particles on the
streakline through (x,, Y,.Z,) are obtained. Thus, the equation of the streakline at time
t is given by

11




X:X(XO’yO'ZO’t)
y=y(xo’y0’zo’t) (o <7 <t)
= Z(XO, y0,1ZO’t)

Remark: (i) For a steady flow, streaklines also coincide with streamlines and
pathlines.

(i) Streamlines, pathlines and streaklines are termed as flowlines for a fluid.

4. Velocity Potential
Suppose that qzuf+vj+wI2 is the velocity at any time t at each point P(x,y,z) of
the fluid. Also suppose that the expression udx+vdy +wdz is an exact differential,

say —de¢

Then. —d¢=udx+vdy+wdz

—(%dx+%dy+%dz+@dq:udx+vdy+wdz
i OX oy 0z ot

where ¢ = g(x,y,z,t) is some scalar function, uniform throughout the entire field of
flow.

Therefore,
u =—_a¢,v:—_a¢,w——_a¢,%:0
ox oy oz ot
but
%:o = $=p(x, ¥, 2,1)
hence

- o ~ N (3¢;~ a¢’\ a¢"
=ul+Vj+wWk=—| i +—=—jJ+—Lk|= -V
q ) (ax ayJ 0z ] ¢

where ¢ is termed as the velocity potential and the flow of such type is called flow of
potential kind.

In the above definition, the negative sign g = -V ¢ is a convention and it ensures that

flow takes place from higher to lower potentials. The level surfaces
#(x,y,z,t) =const, are called equipotentials or equipotential surfaces.

12




4.1. Theorem: At all points of the field of flow the equipotentials (i.e.
equipotential surfaces) are cut orthogonally by the streamlines.
Proof. If the fluid velocity at any time t be §=(u,v,w), then the equations of

streamlines are

dx dy dz
—=—=— o
u Vv w
The surfaces are given by
G.dr =0 i.e. udx+vdy+wdz=0 2

Are such that the velocity is at right angles to the tangent planes. The curves (1)and
the surfaces (2) cut each other orthogonally. Suppose that the expression on the left-
hand side (2) is an exact differential. Say, —dg, then

—d¢ = udx+vdy + wdz (©)]
where ¢ is velocity potential.
The necessary and sufficient condition for the relations.

_~0p ,_-0¢  _—0¢
ox oy oz

u

i.e. G=-V¢ toholdis
curl g = curl (-V¢) =0 (4)
The solution of (2) i.e. dg=0is

#(X, Y, z) = const ®)

The surfaces (5) are called equipotentials. Thus the equipotentials are cut
orthogonally by the stream lines.

Note: When curlg=0, the flow is said to be irrotational or of a potential kind,
otherwise it is rotational. For irrotational flow, g = -V ¢

4.3. Example. The velocity potential of a two-dimensional flow is ¢ =cxy. Find the
stream lines

Solution. The stream lines are given by

13




Where g=(u,v,w)

For an irrotational motion (i.e. motion of potential kind)

We have
curlg=0=curl (-V¢)
ie. q=-V¢, Where ¢ is the velocity potential.
From here,
(u,v,w)=- %%% =—(cy,cx,0)
OX oy oz
i.e. u=-cy, v=—cx, w=0

Therefore, streamlines are

dx _ dy _dz
-cy —-cx O
i.e. xdx—ydy =0, dz=0
i.e x> -y =a’, z=K

which are rectangular hyperbolae.

4.4. Example. If the speed of the fluid is everywhere the same, the streamlines are
straight.

Solution. The streamlines are given by the differential equations.

dx_dy _dz

u Vv w
Where u, v, and w are constants. The solutions are

VX — Uy =const, VZ — Wy =const,
The intersections of these planes are necessarily straight lines. Hence the result.

4.5. Example. Find the stream lines and path lines of the particles for the two
dimensional velocity field.

X
u=——,v=y,w=0
1+t y

14




Solution. For streamlines, the differential equations are

de_dy _dz
Y
Therefore,
Qg 8y _d
X y O

Here t =constant =t, (at given instant), therefore the solutions are

(@+ty)logx=Ilogy+c,, z=c,

or logx*™ =logy+loga, z=c,

Or X" =ay, z=c,
Which are the required stream lines.

For path lines, we have

dx dy dz
—=U, ==V, —=W
dt dt dt
Therefore,
%=L,ﬂ=y,%:0
dt 1+t dt dt
_ ot dy_ g
X 1+t dt
= logx =log(1+t)+loga, logy=t+logh, £=C
= x=a(l+t), y=be',z=c
= y:bei,z:c

Which are the required path lines.

4.6. Note. In case of path lines, t must be eliminated since these give the motion at

each instant (i.e. independent of t).

4.7 Example. Obtain the equations of the streamlines, path lines and streaklines which

pass through (1,1,0) at t = 0for the two dimensional flow

15




Where | and t, are constants having respectively the dimensions of length and time.

Solution. We define the dimensionless co-ordinates X,Y,Z and time T by writing

x=Xy=Yz_27_1L
I I I t,
Such that dX = I}dx, dyY = I}dy, dz = %dz, dT = tldt
0
And u:ﬁ(lJrT),v:Y—l,W:O
tO tO
Streamlines are given by
ox_dy_az
u v
N tIdX  tldY ldZ
XI@+T) VI 0
dX dy dz
: = =
XA+T) Y 0O
Integrating these, we get
Z =constant =C,(say) @
And 109 X =(@+T)log¥ +log C,, \yhere C:js constant
= X=Cy®D (2)

As variables X,Y,Z and T are independent and C,and C, constants, equations (1) &
(2) give the complete family of stream lines at all times t=t,T. In particular,
X =1=Y,Z=0and T=0=C,=0,C,=1 and we get stream line as Y =X I.e.
y=xand z=0

Pathlines are given by 3—)_;= X(1+t), d—Y=Y, 9z =0

dT dT

Now, X,Y,Z are the dimensionless co-ordinates of a fluid particle and are functions
of T.

16




2

Therefore, 3—)_; =1+t)dT =log X = (T + T?J +log K,

T+T2
— X =Ke 2 (©)
d_Y=Y :>d—Y:dT =logY =T +log K,
dT dT
= Y =K,e' (4)
dZ=0=Z =const =K, (5)

These are the parametric equations of path lines. The path line through P(1,1,0)
i.e. X=1=Y,Z=0,T =0 is obtained when K, =K, =1,K, =0

T+ﬁ
- X=e 2Y=e',Z=0

Elimination of T gives.

0 eT(l%j _ [eT F%) :Y(h%Iong 0

The pathline which passes through X =Y =1,Z =0 when T =7 is given by

X =exp.[T pipe _7_112}
2 2

Y=exp.(T-7),Z=0

These are the parametric equations of the streaklines true for all values of T.At
T =0, the equations give

2

X = exp(—r—%), Y =exp(-7),Z=0

Eliminating z, we have.
—r=logYie r=-logY

Therefore,

X = exp[_ T(“%D B S B PP

17




4.8. Article. To obtain the differential equations for streamlines in
cylindrical and spherical co-ordinates.
We know that the streamlines are obtained from the differential equations

Gxdr =0 @)
Where q is the velocity vector and r is the position vector of a liquid particle.
If the motion is irrotational, then
4=-V¢
Therefore, the differential equations (1) become
Vgxdf =0 (2)
() In cylindrical co-ordinates (r,#, z), we have
dr =(dr,rd6,dz)

And

Thus, the different equations (2) become

[%,l%,%}(dr, rd@,dz) =0
or rof oz

dr rd@ dz

a¢7 5. o9 ay @

(it) In spherical co-ordinates (r,8,y), we have

df = (dr, rd@,dy)

And V¢ =gradg = %E% 1 9
ar 'rad rsin@ oy

The differential equations (2) become.

(% E% L a¢j><(dr rdé, rsin &dy) =0
or'r o6 rsind oz

18




rsinédw

dr rd@ B
Vo K% r o

rsmé?

(4)

Equations (3) & (4) are required differential equations.

4.9. Example. Show that if the velocity potential of an irrotational fluid motion is

¢ = Azy/cose, where (r,0,y) are the spherical polar co-ordinates of any point, the
-
lines of flow lie on the surface r =ksin® @, k being a constant.

Solution. The differential equations for lines of flow (streamlines) are

dr rd49 B rsinébh//
0¢ Py
/ y rsm& oy
From first two members, we have
dr rdo
~v? r’cosé y( smH)
dr__2rdg dr _ cos&dé
= — = . dn 5 co:
cosd sind r sin o
= logr=2logsin&+logk = r=ksin’*6

Hence the result.

4.10. Note. In the above example, the velocity potential, in Cartesian co-ordinates, can
be written as

p=AX+y + 22)_% z.tanl(z}
X
Where
x=rsingcosy, y=rsindsiny, ,_ 059
Are spherical polar substitutions.

Also, the streamlines T =ksin® @ can be written as I~ =kr”sin®@

= (x2+y2+zz)% =k(x* +vy?)

19




= x2+y2+22:k%(x2+y2)%
Which are the streamlines in Cartesian co-ordinates.

4.11. Example. At the point in an incompressible fluid having spherical polar co-
ordinates (r,6,y), are velocity components are (2Mr > coséd, Mr?sin 6,0) where M

is a constant. Show that velocity is of potential kind. Find the velocity potential and
the equations of streamlines.

Solutions. Here df =dr f +rd@d+ rsin &y v
G =2Mr—3coséf +Mr2sin96,07)

Then,

A

f ro rsin Gy
T Do Doy
0

2Mr—23cos® Mr?siné

curlq = ——
r siné@

[£.0+ rd.0+ rsin Oy (—2Mr =sin 6 + 2Mr3sin 6)] = 0

r’siné

Therefore, the flow is of potential kind.

Now, using the relation §=-V¢=— %f+1%é+#%y} , we have
or r oo rsiné oy

2Mr—3cosOr + Mr=2sin96 = %f—l%é—éﬁy}
or r oo rsiné oy

From here

%:ZMF3 cosd, _oh Mr 2 sin 0,%:0
or 00 oy

Therefore,

d¢:%dr+%d9+%dyf
or 06 oy

= (—2Mr~ cos@)dr — (Mr~*sin 6)d@

=d (M r2 cos¢9)

20




Integrating, we get

¢ =Mr~cosd
This is the required velocity potential.
The streamlines are given by

dr rdé rsin &dy

4r %'86’ rsing /oy

dr . rdg  rsinAdy
2Mr—3cos® Mr3sing 0

Or

From the last term,  y =const

From the first two terms, we get

dr _ 2cosé

r sin @

dé =2cotodé

Integrating, we get
log r = logsin® @+ const
= r=Asin’6@, =const

The equation w =const shows that the streamlines lie in planes which pass
through the axis of symmetry 6 =0.

Check Yourself:

Problem 1. Determine the streamlines and the path of the particles

X y z

u= Y W=
1+t 1+t 1+t
Answer: (x=Ay , x=Bz) & (x=a(@+t),y=b(l+t),z=c(l+t))

Problem 2. The velocity ¢in a three-dimensional flow field for an incompressible

fluid is given by §=2xi —yj—zk .Determine the equations of the stream lines
passing through the point (1,1,1).

Answer: xy® =1&xz*> =1

Problem 3. Find the equation of the stream lines for the flow G = —i(3y?)— j(6x) at
the point (1,1).
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Answer: 3x° =y*® +2

Problem 4. The velocity field at a point in a fluid is given as q:[%, y,Oj. Obtain

path lines and streak lines.
Solution. Here ¢ = (% y,Oj.

The differential equations of path lines are given by

g=dr O Qv. dzp Xio i
dt dt dt dt

dx _x dy_ dz_O

N dt t' dt ' odt

By integrating (1), we have

dx

dx X
E:tjj

X

— I%: logx =logt+log A= Xx= Al

(4)

Let (X, Yo:2,) be the co-ordinates of the chosen fluid particle at time t =t,

Then
X, =Aty=> A= )t(—oo

From (4), we have

[~
or logy=t+logB= y=B¢
At y=Y,t=t,=> B=ye™
From (5), we have

y=Ye "

By integrating (3), we have

dz
dt
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Hence the path lines are given by

' :[f_ojt’ y=Yee ™, 2=7, ®)
0

Let the fluid particle (X,,Y,,Z,)pass through a fixed point (x,,y,,z,)at an instant in
time t=T,

Where t, <T <t. Then the relation (6) reduces to

X
X = [t_OJT’ Y, = yoeT_tO y L =1

0

X i
Or Xo = (?1}[0, Yo = yleto T’ Ly =1y (7)

where T is the parameter. Substituting the relation (7) into (6), we have
X g
x:(?ljt, y=ye ', z=2

Which gives the equation of streak lines passing through the point (x, y;, z,).

Problem 5. Consider the velocity field given by g = (1+ At)i +j. Find the equation
of stream line at t =t, passing through the point (x,, Y,). Also obtain the equation of

the path line of a fluid element which comes to (X, Y,)at t=t,.Show that, if A=0
(i.e. steady flow), the stream lines and path lines coincide.

Answer: Equation of stream line; x? —x,> = 21+ At)(y - Y,)

Equation of path line;  x—x, = (t—t,) +§(t2 -t,%)

1 A
y—Yo=( —to)[x0 +5(t-t) +E{t2 +1t, —2t02}}
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5. Irrotational and Rotational Motion, Vortex Lines
5.1. Vorticity. If §=(u,v,w) be the velocity vector of a fluid particle, then the

vector & is defined by
E=curlg=Vxg
Is called the vortex vector or vorticity and it’s component are (&,&,,&;,) given by

oW oV ou  ow _ov ou

&1 =E—§1 <o = o &3 "% oy

5.2. Vortex Motion (or Rotational Motion). The fluid motion is said to be rotational
if £=curlg=0
5.3. Irrotational Motion. If £=curlg=0, then the fluid motion is said to be

irrotational or of potential kind and then G=-V¢.

5.4 Vortexline. It is a curve in the fluid such that the tangent at any point on the
curve has the direction of the vorticity vector .

The differential equations of vortexlines are given by & xdr =0

o O _dy d
& & &

5.5. Vortex Tube. It is the locus of vortex line drawn at each point of a closed curve

i.e. vortex tube is the surface formed by drawing vortex lines through each point of a

closed curve in the fluid.

A vortex tube with small cross section is called a vortex filament.

5.6 Flow. Let A and B be two points in the fluid.

A
Then Iq.dF is called the flow along any path from A to B
B

B B
If motion is irrotational then §=-V¢ and flow= —IV¢.dF — —Id¢ =¢(A)—¢(B)
A A

5.7. Circulation. It is the flow round a closed curve. If C be the closed curve in a
moving fluid then circulations T" = §q.df = ifﬁ.curl gds = j A.&dS.
© S S

If the motion is irrotational, then ¢ =—-V ¢ and thus,
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T =—fVgdr =§dg=g(A)-¢(B) =0,
Cc S
Where A is any point on the curve C. This shows that for an irrotational motion,
circulation is zero.

5.8. Theorem:- The necessary and sufficient condition such that the vortex
lines are at right angles to the stream lines, is

(u,v,w)=u o¢ 96 09
o ox' oy oz

I.e. = Ve, where pand ¢ are functions of x,y,z and t
Proof. Necessary condition:- We know that the differential equation

g.dr =0 is integrable if

oz oy
gcurlg=0 (exactness condition)
i 6. =0, &=curlg

This shows that the streamlines are at right angles to the vortex lines. Thus the
streamlines and vortex lines are at right angles to each other if the differential

equation §.df = 0is integrable.
The exactness condition g.curl g = 0implies that ¢ = -V 4.

But curlg=curl(-V¢)=0. Thus the vortex lines do not exist. The equations
g.dr =0 are therefore not exact.

So, there exists an integrating factor . (function of X, Y, z,t) such that
471G.dF =0 is integrable.

If this differential equation is integrable, then we can write
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Sufficient condition:- Let us take § = 4V¢ = Vi = 10
Then, curlg = curl(uV ¢)
= E=Vx(UVg) = f(VxVP)+VuxVé=VuxVe
Therefore,
6.8 =(VuxVe).a=Vu(Vsxa)
=Vu.(uGxq)=0

This shows that the directions of streamlines and vortex lines are at right angles to
each other.

6. Equation of Continuity

6.1. Equation of Continuity by Euler’s Method (Equation of conservation of
mass): Equation of continuity is obtained by using the fact that the mass contained
inside a given volume of fluid remains constant throughout the motion. Consider a
region of fluid in which there is no inlets or outlets through which the fluid can enter
or leave the region. Let S be the surface enclosing volume V of this region and let i
denotes the unit vector normal to an element &S of S drawn outwards.

Let, g be the fluid velocity and p be the fluid density.

>

I\

fig.1.5

First, we consider the mass of fluid which leaves V by flowing across an element &5
of S in time &. This quantity is exactly that which is contained in a small cylinder of
cross-section &S of length (G.A)A.

Thus, mass of the fluid is = density x volume = p(qG.A)&.SS . Hence the rate at which
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fluid leaves V by flowing across the element &S is p(G.A)sS.

& O
a, \__Jana
s

fig.1.6

Summing over all such elements &S, we obtain the rate of flow of fluid coming out of

V across the entire surface S.Hence, the rate at which mass flow out of the region V
is

j (G.A)dS j (0G).AdS

= j div(6)dV )

Now, the mass M of the fluid possessed by the volume V of the fluid is

M =[pdv

Where p=p(x,y,z,t) wWith (x,y,z) the Cartesian co-ordinate of a general point of
Vv, a fixed region of space, Since the space co-ordinate are independent of timet,
therefore the rate of increase of mass withinV is

dM  d ap
sl loav]- % @

But the considered region is free from source or sink i.e. the mass is neither created
nor be destroyed, therefore the total rate of change of mass is zero and thus from
D & (2) ,we get

| %Py j div(pg)dV =0
\Y at \
+

=N j {%p +div(pd)HV =0

\
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Since V is arbitrary, we conclude that at any point of the fluid which is neither a
source nor a sink,

op ., -
—+div =0 3
a5 (pA) €©)
Equation (3) is known as equation of continuity.
Corollary (1). We know that

div(pq) = pdivg +q.(gradp)

Therefore, (3) takes the form

0 _ _
2+ p(V.A) +(dV)p=0 (4)

Corollary (2). We know that the differential operator DRt IS given by

D o .
= =2+

V)
Dt ot

Therefore, from (4), we obtain the equation of continuity as % +p(V.p)=0

Corollary ). Equation ®) can be written as

150, divi=0
p Dt

D :
—(l divg =0
= = et gl (6)

Corollary (4). When the motion of fluid is steady, then 2—? =0and thus the equation
of continuity (3) becomes
div(pq) =0

Here pis not a function of time i.e. p= p(x,y,2) (7)

Corollary (5). When the fluid is incompressible, then p =const and thus %’? =0.

The equation of continuity becomes

divg =0 ®)
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Which is same for homogeneous and incompressible fluid.

Corollary (6). If in addition to homogeneity and incompressibility, the flow is of
potential kind such that g=—-Vv¢, then the equation of continuity becomes single

word
V=0

div(—V¢) =0 V.(V#) =0

= =

9)
Which is known as the Laplace equation

6.2. Equation of continuity in Cartesian co-ordinates:- Let (x,y,z)be the
rectangular Cartesian co-ordinates.

Let §=ui+Vj+wk )
Andv=L7+25.9% 2)
ox oy oz

Then, the equation of continuity %0 +div(pq) =0 can be written as

op O 0 0
L — + — + — :O 3
o (pu) & (pv) p (pw) ©)
ie. a—’O+ua—’OJrva—erWa—p+,o £u+£v+gw =0 (4)
ot OX oy 0z oXx oy oz

which is the required equation of continuity in Cartesian co-ordinates.

Corollary (1) If the fluid motion is steady, then aa—’f=0 and the equation (3)

becomes

0 0 0

— + — + — :0 5

e ay(pv) e ©)
Corollary (2) If the fluid is incompressible, then p=constand the equation of
continuity is V.g=0

ou v ow

i.e. —+—+—=0 (6)
oXx oy oz

Corollary (3) If the fluid is incompressible and of potential kind, then equation of
continuity is
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V=0

0,00, _,

— 4+

o oy o where Gg=-V¢

6.3. Equation of continuity in orthogonal curvilinear co-ordinate: Let (u,,u,,u,)
be the orthogonal curvilinear co-ordinates and € ,é,,€, be the unit vector tangent to
the co-ordinate curves.

Let 0 =0 + 0,6, + 056, @

D>
=

The general equation of continuity is

%”w.(p.q) ~0 @

We know from vector calculus that for any vector point function f =(f,, f,, f.),

1
hh,hy | 0

V.t =

[ (hhf1)+ (hhlf) (hlhf) ©)

Where hy, h,, hyare scalars.

Using (3), the equation of continuity (2) becomes
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8,0 1

ot hh |0

{—( ,M,00,) —(hahlpqz)+ (hlthqs}
(4)

Corollary (1). When motion of fluid is steady, then equation (4) becomes

0 0 0
— (h b— +—(hh =0 &)
{ au1( ,h.0,) au, (hshy00,) au, (hy zpqa)} (5)
Corollary (2). When motion of fluid is incompressible, the equation of continuity is
(o =const)
{ me h3q1)+ (h hq2)+ (hhzqg } (6)

Corollary (3). When fluid is incompressible and irrotational then (o =const)

=-V¢= (%ai : hiai : hiai}é and the equation of continuity becomes
ul

0 (hhyop), o (hhop), o (hh og) g -
ou\ h ou ) ou,\ h, ou,) ou,\ hy, ou,

Now, we shall write equation (4) in cylindrical & spherical polar co-ordinate.

6.4. Equation of continuity in cylindrical co-ordinates (r, 8, ).

Here,

u=ru,=0,u=z_.4 h=Lh,=rh=1
The equation of continuity becomes
op 1

0 0 0
ot + F{E (rpa,) + 20 (pa,) + = (rpqs)} =0

Corollary (1). When the fluid motion is steady, then equation (8) becomes

0 0 0
{E (rpg,) + 20 (pa,) + P (rpqs)} =0

Corollary (2). For incompressible fluid, equation of continuity is

[g(rql) @)+ 2 (rqg)}
:
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Corollary (3). When the fluid is incompressible and is of potential kind, then equation
(8) takes the from

g{r%}ri(lﬁ}tg(r%J:O a1
or\ or) 06\rof) oz\ oz

Where §=-V¢; V is expressed in cylindrical co-ordinates.
6.5. Equation of continuity in spherical co-ordinates (r, 8, ).
Here,

(U, u,,u,) = (r.6,). and h=1h,=r,h,=rsing

The equation of continuity becomes

op 1 o, , . 0 . 0

—+ —(r*sin g, +—(rsing +—(r =0

ot FZSin(9|:5I’( 0, 55( o) 5!//( pqs)j|
op 1 . 0, ., o , . 0
——+ sin @ —(r +r—(siné@ +r—m =0 12
B rzsine{ ar( £%) ae( od,) aV/(pqe,)} 12)

Corollary (1). For steady case, equation (12) becomes

sin eg(rzpql) + ri(sin 0pq,) + ri(pqs) =0
or a0 oy a3)

Corollary (2). For incompressible fluid, we have

o 8 2 a = aqs
sin @ —(r +r—(sin +r—=|=0 14
{ 6r( 0,) aa( ) 8;//} 14)

Corollary (3). When fluid is incompressible and of potential kind, then equation of
continuity is

9 rzsine%j+i[sin0%j+i L% =0 (15)
or or) o6 00) ow3\sinf oy

Where g =-V¢; V is expressed in spherical co-ordinates.

6.6. Symmetrical forms of motion and equation of continuity for them. We have
the following three types of symmetry which are special cases of cylindrical polar co-
ordinates (r, 8, z), every physical quantity is independent of both & and z so that
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0 O
—=—=0and g=q(r,t
e g=q(r.t)

For this case, the equation of continuity in cylindrical co-ordinates, reduces to

dp 18
P = (pgr)=0 1
6t+r6r(pql) @

If the flow is steady, then equation (1) becomes

g (pg,r)=0 = (pg,r) = const = F(t), (say).

Further, if the fluid is incompressible then g,r = const = G(t), (say).

(ii) Spherical Symmetry:- In this case, the motion of fluid is symmetrical about the
centre and thus with the choice of spherical polar co-ordinates (r,8,yw), every
physical quantity is independent of both € &y . so that

0 0
—=—=0and ¢ =q(r,t
50 o g =q(r,t)

The equation of continuity, for such symmetry, reduces to

op 1 0 2
at+r28r( i) 2)

For steady motion, it becomes
a 2 2
5(pqlr )=0 = pg,r°=const = F(t), (say)

And for incompressible fluid, it has the from g,r* = const = G(t), say

(iii) Axial Symmetry:- (a) In cylindrical co-ordinates (r,8,z), axial symmetry
means that every physical quantity is independent of & i.e. %=Oand thus the
equation of continuity becomes

op 1|0 0
Epﬂg(quna(pqar)}:o

(b) In spherical co-ordinates (r,é,w),axial symmetry means that every physical

quantity is independent of v i.e. ai =0 and the equation of continuity, for this case,
174

reduce to
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g 10 ) 1 0.
—— = — rr)y+———(sing)=0
ot r? ar(pql ) rsinaae( )

6.7. Example. If o(s) is the cross-sectional area of a stream filament, prove that the
equation of continuity is

%(pa)+§(poq):o. where &sis an element of arc of the

filament and q is the fluid speed.

Solution. Let P and Q be the points on the end section of the stream filament.

The rate of flow of fluid out of volume of filament is

(p00)q + (PR, == (240), (1)

Where we have retained the terms upto first order only, since & is infinitesimally
small

Now, the fluid speed is along the normal to the cross-section. At time t, the mass
within the segment of filament is pods and its rate of increase is

0 0

—(pods) =— &

5 (pods) : (po)
Using law of conservation of mass, we have from (1) &(2)

2(pa)5$+g(pqa)5s =0 (total rate = 0)
ot 0s

. 0 0

l.e. — +— =0 3
= (po) s (m0) ©)

which is the required equation at any point P of the filament.

6.8. Deduction:- For steady incompressible flow, %(pa)=0 and equation (3)

reduces to
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é(pqg):()j g(pq) =0= g =const.
oS 05

Which shows that for steady incompressible flow product of velocity and cross-
section of stream filament is constant. This result means that the volume of fluid a
crossing every section per unit time is constant

dist. vol. j
—=C:>T=C

(oq=c:>a

6.9. Example. A mass of a fluid moves in such a way that each particle describe a
circle in one plane about a fixed axis, show that the equation of continuity is

Where @ is the velocity of a particle whose azimuthal angle is & at time t.

Solution. Here, the motion is in a plane i.e. we have a two dimensional case and the
particle describe a circle

y
A
09 r
> X
Therefore, z =const., r = const.
= ﬁ =0, 2 =0 @
0z or

i.e. there is only rotation.

We know that the equation of continuity in cylindrical co-ordinates (r,8,z) is

op 10 10 0
o o0,) +— (pa,) =0 2
ot Jrrar(r 1)+r89( 2)+az( ) 2)
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Using (1), we get

8,0 10
=0
ot 60pq)
agp 10
+——(prw) =0, where =r

= B 86?('0 ) = q=0,=ro.

op O
= —+—(pw) =0

o a9(/0 )

Hence the result.

6.10. Example. A mass of fluid is in motion so that the lines of motion lie on the
surface of co-axial cylinders, show that the equation of continuity is

6,0 10

ey GRS (pvz)=

Where v,,v, are the velocities perpendicular and parallel to z.

Solution. We know that the equation of continuity in cylindrical co-ordinates (r, &, z)
is given by

o 0
—+=—(prv,)+=—(pv,) +—(pv,) =0,
ot ror reg " " o where G =(v,,V,,V,)

Since the lines of motion (path lines) lie on the surface of cylinder, therefore the
component of velocity in the direction of dr is zeroi.e. v, =0

Thus, the equation of continuity in the present case reduces to

p 10

P (pvg) —(pvz) =0
Hence the result.

6.11. Example. The particles of a fluid move symmetrically in space with regard to a
fixed centre, prove that the equation of continuity is

a—p+ua'0 '0 (r u)=0

ot or
Where u is the velocity at a distance r

Solution. First, derive the equation of continuity in spherical co-ordinates. Now, the
present case is the case of spherical symmetry, since the motion is symmetrical w.r.t.
a fixed centre.
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Therefore, the equation of continuity is

op 10 » 0 0
—=gf—= r<-)=0 —=—-=0
ot rzar(pOIl ) ( 00 oy )
op, 10
— 8/'[) (pqlr) 0, where g, =u
op 10 , 1 o0, ,
= —+—=—ur'+=p—(@Ur)=0
ot r?or rzpar( )
= a—’0+u 8'0 p (ru) 0
ot ar

Hence the result

6.12. Example. If the lines of motion are curves on the surfaces of cones having their
vertices at the origin and the axis of z for common axis, prove that the equation of
continuity is

0 cosecd O
P9 )+, +
at or

()=

Solution. First derive the equation of continuity in spherical co-ordinates (r,8,y) as

o, 1
ot r?siné

{s n 49—(pq1r )+ = (qu sin ) + r—(p%)}

In the present case, it is given that lines of motion lie on the surfaces of cones,
therefore velocity perpendicular to the surface is zero i.e. g, =0

Therefore, the equation of continuity becomes.

p 10

— r?) + — 0 where
ot r’or (pa,r) + rsmé?qr (pq,,,)
(0h, 0,0 = (qr’qﬁ,qy/)
p 1[,0 o
= —+—=|rr— + 2r) |+ =0
- rz{ ar (oq,) + 29, ( )} T8 ~,)
0 0 2 cosecd 0O
= oo PTG () =0
t  or r r

Hence the result.
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6.13. Example. Show that polar form of equation of continuity for a two dimensional
incompressible fluid is

i(ru)+ﬂ=0
or 00

— [ Cc0s6

r2

If u= , then find v and the magnitude of the velocity g, where g = (u,v)
Solution. First derive the equation of continuity in polar co-ordinates (r,&) in two
dimensional as

8p g

6'[ r o (pql) __(pqz) 0 (Z=O)

In the present case © = cONst.

Therefore, the equation of continuity reduces to
p 0 p 0 ~
——(ru)+=—(v) =0, where g=(a,,0,,0,) =(u,v,w
(W) +2 () = (019 0) = (U, v, W)

i.e. g(ru)+ﬂ:0
or 06

hence the result.

N Mja[ﬂrj ov

r2 or r? 06

4cosf ov 0 oV _—ucosd

= =
r? 06 06 r?

Integrating w.r.t. 8, we get

_ —using
r’ and thus

=g =t +v2) =4
r

6.14. Equation of Continuity by Lagrange’s Method. Let initially a fluid element be
at (a,b,c) at time t=t, when its volume is dV, and density is p,. After time t, let

the same fluid element be at (x,y,z) when its volume is dV and density is p . Since
mass of the fluid element remains invariant during its motion, we have

podV, = pdV 15 podadbdc = pdxdydz
or pdadbde= p 2% Y18 gadhdc
’ (a,b,c)

38




or A =p,

a(x,y,2)
d(a,b,c)

where J =

which is the required equation of continuity.
6.15. Remark. By simple property of Jacobians, we get

dJ
—=JV.q
dt !

Thus @ gives %(m)zo: 7 5, o2 g

dt dt

dp _ do _ Dp _
=—J+plV.g=0 =—J+pV.g=0 =—+pvV.g=0
ot PIV.q g0 HPva o Dt PV

Which is the Euler’s equation of continuity.

7. Boundary Surfaces

Physical condition that should be satisfied on given boundaries of the fluid in motion,
are called boundary conditions. The simplest boundary condition occurs where an
ideal and incompressible fluid is in contact with rigid impermeable boundary, e.g.,
wall of a container or the surface of a body which is moving through the fluid.

Let P be any point on the boundary surface where the velocity of fluid is g and
velocity of the boundary surface is U.

The velocity at the point of contact of the boundary surface and the liquid must be
tangential to the surface otherwise the fluid will break its contact with the boundary
surface. Thus, if 1 be the unit normal to the surface at the point of contact, then

(G-U)A=0=qn=un @

In particular, if the boundary surface is at rest, then U =0and the condition becomes
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GA=0 )

Another type of boundary condition arrives at a free surface where liquid borders a
vacuum e.g. the interface between liquid and air is usually regarded as free surface.
For this free surface, pressure p satisfies

P=II 3)

Where I1 denotes the pressure outside the fluid i.e. the atmospheric pressure.
Equation (3) is a dynamic boundary condition.

Third type of boundary condition occurs at the boundary between two immissible
ideal fluids in which the velocities are G, &G, and pressures are p, & p, respectively.

Now, we find the condition that a given surface satisfies to be a boundary surface.

7.1. Article. To obtain the differential equation satisfied by boundary surface of a
fluid in motion.

Or
To find the condition that the surface.
F(rt)=F(x,y,z,t)=0
May represent a boundary surface :-

If g be the velocity of fluid and U be the velocity of the boundary surface at a point P
of contact, then

(G-U0)A=0=qhA=0A @
Where G —Uu s the relative and 1iis a unity vector normal to the surface at P .
The equation of the given surface is
F(rt)=F(x,y,z,t)=0 (2)

We know that a unit vector normal to the surface (2) is given by

. VF
A=——
|[VF|
Thus, from (1), we get §.VF =u.VF ®))

Since the boundary surface is itself in motion, therefore at time (t + &), its equation is
given by

FFr+at+a)=0 (4)
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From (2) & (4), we have
F(r+ort+a)-F(r,t)=0
ie FO+ t+&)-F(rt+&)+F(rt+&)-F(,t)=0

By Taylor’s series, we can have

(oF V)E(T,t+ ) +&§{F(F,t)}+0

°!°F(x+5x,y+§y,z+5z):F(x,y,z)+é‘xﬁ+§yﬁ+&ﬁ+ ....... =F(X,y,z)+or.VF
OX oy oz
= (i.VjF(F,H&HijLO
e ot
Taking limitas &t — 0, we get
(d—r.VJF +ﬁ:0
dt ot
oF DF
= —+(qV)F=0 ie. —=0 5
a (G.v) Dt Q)

Which is the required condition for any surface F to be a boundary surface

Corollary (1) If g=(u,v,w), then the condition (5) becomes

oF oF OF oF
—+U—+V—+Ww—=0
ot ox oy 0z
. . oF
In case, the surface is rigid and does not move with time, then Ezo and the

boundary condition is uﬁ +vﬁ+ wﬁ =0 ie (GV)F=0
OX oy oz

Corollary (2) The boundary condition

oF oF oF oF
—+U—+vV—+Ww—=0
ot OX oy 0z

is a linear equation and its solution gives
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dt dx dy dz D d. .
—="= = | — =— in Lagrangian view
1 u v w Dt dt
dx dy dz

= _:ua_:Va_:W
dt dt dt

Which are the equations of path lines.
Hence once a particle is in contact with the surface, it never leaves the surface.

Corollary (3) From equation (5), we have

—oF
GVF=""
f ot
—oF
- 0. YF _ ot
|[VE| |VF|
—oF
. i /ot
|VF |

Which gives the normal velocity.

also from (1), we get

— oF Jat
| VE |

U.A =
|

Which gives the normal velocity of the boundary surface.

7.2.Example. Show that the ellipsoid

x? Oy Y (zY
() () |

Is a possible form of the boundary surface of a liquid.

Solution. The surface F(x,Y,z,t) =0can be a possible boundary surface, if it satisfies
the boundary condition.

DF oF oF oF oF
—=—+U—+V—+w—=0 @
Dt ot OX oy oz

Where u,V, W satisfy the equation of continuity

V.g=0i.e. 8_u+@+@:0 (2)
oXx oy oz
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X2 yY (zY
F 1 Y !t = ktn N ;. _1=O
(xy.2.1) kot {(b) J{c) }
oF x2.2n Sy (zY
—_— nktnl = —
ot azkztz””Jr Hbj +(CJ

oF  2x OF _2kt"y oF = 2kt"z

&_azkthn' ay_ b2 ' oz o

Here,

Therefore,

Thus, from (1) , we get

x2.2n ayY (z) 2xu  2kt"yv  2kt"zw
~ ke T Ha) +(E”+a2kztzn+ 2 e O

( nxj 2X ( nyj 2kt"y [ nszkt”z
U-— |55 | V+—= |—5+|W+— |[——=0
Or t ja'k 2t) b 2t) c

Which will hold. if we take

[u—%jzo, [v+ﬂj =0, (W+Ej:0
t 2t 2t

nx ny nz
Uu=—, V=—7+, W=—
ie. t 2t 2t ©)

It will be a justifiable step if equation (2) is satisfied.

: n —-n_ -n
i.e. —+—t—=
t 2t 2t

which is true.

Hence the given ellipsoid is a possible form of boundary surface of a liquid.

8.Acceleration at a Point of a Fluid
Suppose that a fluid particle is moving along a curve C,initially it being at point

A(t, = 0) with position vector f,. Let P and P'be its position at time tand t+¢& with

position vector I and [ + &F respectively.
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Therefore, oF = PP’

P’ (time (t+6t))

P (time t)

0 g / A(t, = 0)
rA

The points A,P,P' are geometrical points of region occupied by fluid and they
coincide with the locations of the same fluid particle at time t, t, t+ & respectively.

Let f be the acceleration of the particle at time twhen it coincide with P. By
definition

- (changein particle velocity intime ¢t)

f=li
8&—0 &

@
But the particle velocity at time t is G(r,t) and at time t+¢& itis G(r +or,t+&).

Thus (1) becomes

m [G(F+or,t+at)—q(r,t)]

f=li
&—0 ét

(2)

Now,

[A(F +0F t+3) ~G(F.0] _ G(F+F t+a) ~G(F.t+a) | G(F.t+)-G(F.1)
& - & &

Since r is independent of time t, therefore

a_q: lim q(r!t+&)_q(r!t)] :a_q

ot a0 X ot

(4)
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Using Taylor’s expansion, we get

g(r +or,t+a)—q(r,t+a)=(xr.V)q(r,t+a)+e (5)

Where |g}= 0[(5F)?]
y _ (252 . 52
[F(x+X y+dy,z+0)—F(XY,2) _(5x o +§yay + aZ]F(x, Y,2)

2
1 0 0 0

+—| X—+—+02— | F(X,¥,2)+.........
2!( OX @ay 82] (x.y.2)

And

5xg+ 5y£+5z2 = (or.VF), where
OX oy oz

O = i + 8] + 3K, Vzihihéﬁ]
ox oy oz

But oF is merely the displacement of the fluid particle in time A&, therefore,
o =q(r,na (6)

Thus, from (5), we obtain

im qG(r+or,t+a)—qg(r,t+oa)] _(GV)d

&0 X (7)

Where R.H.S. of (4) &(7) are evaluated at P(r,t). Hence, from (2), the acceleration
of fluid at P in vector form is given by
f=(@v)q ®

8.1. Remark. We have obtained the acceleration i.e. rate of change of velocity ¢. The

same procedure can be applied to find the rate of change of any physical property
associated with the fluid, such as density. Thus, if F =F(F,t)is any scalar or vector

quantity associated with the fluid, it’s rate of change at time t is given by

Df oF

—=——+(4.V)F
S

The operator %z%Jr(q.V) is Lagrangian and operator on R.H.S. are Eulerian

: L. D . . —
since r is independent of t. Dt is also called material derivative.
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In particular, if F = p, the density of the fluid, then

Dp 0p .
—=—+(4.V

5t o (G.V)p

Which is the general equation of motion for unsteady flow.

8.2. Components of Acceleration in Cartesian co-ordinates. Let u,v,w be the

Cartesian components of g and f,, f,, f, that of fie g=(u,v,w), f#:(flj f,, f3)

Then from equation

f=L.+@v)p )

We get

oW ~OW oW oW
fp=—+U—+V—+W—
ot ox oy 0z

Which are the required Cartesian components of f.

In tensor form with co-ordinates x, and velocity components g, (i =1,2,3), the above
set of equations can be written as

=St rq0
Lot JI’J’whereq”:%
ToX

8.3. Components of Acceleration Curvilinear co-ordinates. Before obtaining the
acceleration components in curvilinear co-ordinates; we obtain a more suitable form
of equation (1).as

F=%6+V@d2j—ﬁ><(v><d)
:6_q+v[1q2j—§xq, where &=curlG=Vxq
ot 2
We have
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@v)a=@H+@HL+@h

oy 0z

Adding  (3),(4),(5), we get
@.v)g V( ) qu[Jx—j

1.
N —

Thus, from (1), we obtain

Now, let (u,,u,,u,) denote the orthogonal curvilinear co-ordinates.
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Also let g=

(0,,0,.0,), f =(f,, f,, f,), E=(&.&,, &), Where the terms have their

usual meaning. We know that the expression for the operator Vin curvilinear co-

ordinates is

10

[_

h, ou,’

1010
h, du, "h, du,

J

where h, h,, h,are scalar factors.

\
1|0
G = o, [ 2y, e} == (hzqz)}
The components of Y
LT
=i o O 3%)} > )
1[0
&= | aul( 202) — (mql }
v
Using these results in (6), we find that
0 1 0
= % Eé—ul(qlz 10,7 402+ (60 - E) )
0 1 0
f,= (’gtz + 2h, ou, (q ? +q22 + (:132>+ (&0, — &,05) >
0 1 0
e (ql ERTPRCLEE I ®

Which are the components of acceleration in curvilinear co-ordinates.

Now, we write the components of acceleration in cylindrical (r,8,z) and spherical
(r,0,w) co-ordinates.

8.4. Components of Acceleration in Cylindrical Co-ordinates (r,#, z) .

Therefore, = (ﬁ , A , QJ
or roe oz
And
1[aq, 0 109, oq,
=—=| =2 ==—(f B __~12
& 2{69 az(qz)} r oo oz
5 0% 05,
2o or
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521{2( _%} o, 8 104
50" T roo

Thus,

aq q oq oq q d, q
L S 3 2 M2 M2 PMi
1= at 571 (q1 +0, +q3) (qs % 0 8rj (% a T r aej

L Il N cls PRl RCls 8q2 Gy . 9,00,
ot qlar qzar q3az q3ar q2 T T o0

_ g, 8q1 o9, g,  d,0q
___+__
ot ql Y oz r r 00

If we define the differential operator

D_d_0 .0 .9 G

e s A v —=—, then
Dt dt ot qlar q3az r o0
_Dg g _Du v )
"Dt r Dt r
Similarly, fz_[;qtz ql?zEB_‘tuU_rV > )
_Dq3_Dw
*" Dt Dt —

where (¢, 0,,d;) = (u,v,w)

Equation (9) gives the required components of acceleration in cylindrical co-
ordinates.

8.5. Components of Acceleration in Spherical Co-ordinates (r,8,w).
u =r,u, =0,U3 =y and hlz:l_,l"l2 :r’h3 =rsin @

Therefore, V= i li 1 2
or'rof’ rsmeaz//

1
r2sin@

And £ = {a%( sin ) - (rqz)}
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_ 21_ r(cose+sin9%j_r%
resiné 20 B

g, C0sd +sin 0%—%
00 oy

" rsing

1 0 0 .
982 = rsin 9{5 (%)‘5("3"’] &3)}

1 |dq Qs
= —sin&y, —rsingd—
rsmé’[ay/ s or
1[ o 0 1 aq, aql}
61 207 o+ rZ-B
Thus,
0] o . .0 0] 0]
f1=%+——(q1 +q,° q2)+rsc:_r3]9{a—?;—qasmH—rsmeﬁ}—q—r{qz+r%—a—qé}

aql ql aql qz aqz +q, % a%, L oq, q32 %_q_zz_ % N q, oq,

ot oz rsin07_7_q3 rr 2 T ee
2 2
=%_q_2_q_3, Where 251=2+ql£+q_2i Li
Dt r r Dt dt ot or r 060 rsind oy
2 2 \
_Dg_g;+aq; _Du_v'+w
ie h= Dt r Dt r
2 Y
f = Dq2+q1q2_q3 cot@Enguv w* cotd >
Similarly, Dt r Dt ! (10)
_ Daq, - %0 + 0,05 cotd+w’ _ DW+ w(u +vcotd)
L= -

Dt r - Dt r /

Equation (10) gives the required comps of acceleration in spherical co-ordinates.

End of the Unit -1
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