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CHAPTER-I 

CARTESIAN TENSOR 

1.1 Introduction 

 The concept of a tensor has its origin in the developments of differential geometry 

by Gauss, Riemann and Christoffel. The emergence of Tensor calculus, as a systematic 

branch of Mathematics is due to Ricci and his pupil Levi-Civita. In collaboration they 

published the first memoir on this subject: - ‘Methods de calcul differential absolu et 

leurs applications’ Mathematische Annalen, Vol. 54, (1901).  The investigation of 

relations which remain valid when we change from one coordinate system to any other is 

the chief aim of Tensor calculus. The laws of Physics cannot depend on the frame of 

reference which the physicist chooses for the purpose of description. Accordingly it is 

aesthetically desirable and often convenient to utilize the Tensor calculus as the 

mathematical background in which such laws can be formulated. In particular, Einstein 

found it an excellent tool for the presentation of his General Relativity theory. As a result, 

the Tensor calculus came into great prominence and is now invaluable in its applications 

to most branches of theoretical Physics; it is also indispensable in the differential 

geometry of hyperspace.     

A physical state or a physical phenomenon of the quantity which is invariant, i.e remain 

unchanged, when the frame of reference within which the quantity is defined is changed 

that quantity is called tensor. In this chapter, we have to confine ourselves to Cartesian 

frames of reference.  

 As a Mathematical entity, a tensor has an existence independent of any coordinate 

system. Yet it may be specified in a particular coordinate system by a certain set of 

quantities, known as its components. Specifying the components of a tensor in one 

coordinate system determines the components in any other system according to some 

definite law of transformation. 

 Under a transformation of cartesian coordinate axes, a scalar quantity, such as the 

density or the temperature, remain unchanged. This means that a scalar is an invariant 

under a coordinate transformation. Scalars are called tensors of zero rank. All physical 



quantities having magnitude only are tensors of zero order. It is assumed that the reader 

has an elementary knowledge of determinants and matrices. Rank/Order of tensor  

1) If the value of the quantity at a point in space can be described by a single 

number, the quantity is a scalar or a tensor of rank/order zero. For example, ‘5’ is 

a scalar or tensor of rank/order zero. 

2) If three numbers are needed to describe the quantity at a point in the space, the 

quantity is a tensor of rank one. For example vector is a tensor of rank/order one. 

3) If nine numbers are needed to describe the quantity, the quantity is a tensor of 

rank three. The 33 , 19 and 91, nine numbers describe the quantity is an 

example of tensor of rank/order 3. 

4) In general, if 3n numbers are needed to describe the value of the quantity at a 

point in space, the quantity is a tensor of rank/order n. A quantity described by 12 

or 10 or 8 ………… numbers, then the quantity is not a tensor of any order/rank. 

OR 

Tensor: A set of members/numbers 3n represents the physical quantity in the reference 

coordinates, then the physical quantity is called a tensor of order n. 

1.1.1 Characteristics of the tensors  

1) Tensors are the quantities describing the same phenomenon regardless of the 

coordinate system used; they provide an important guide in the formulation of the 

correct form of physical law. Equations describing physical laws must be 

tensorially homogenous, which means that every term of the equation must be a 

tensor of the same rank. 

2) The tensor concept provides convenient means of transformation of an equation 

from one system of coordinates to another. 

3) An advantage of the use of Cartesian tensors is that once the properties of a tensor 

of a certain rank have been established, they hold for all such tensors regardless of 

the physical phenomena they represent.   

Note: For example, in the study of strain, stress, inertia properties of rigid bodies, 

the common bond is that they are all symmetric tensors of rank two. 

 

1.2 Notation and Summation Convention 



 Let us begin with the matter of notation. In tensor analysis one makes extensive 

use of indices. A set of n variables nxxx ,........,, 21  is usually denoted as ix , ni ...,3,2,1

. Consider an equation describing a plane in a three-dimensional space 

        pxaxaxa  332211               (1.2.1) 

where ia and p are constants. This equation can be written as 

   



3

1i
ii pxa                                                                         (1.2.2) 

However, we shall introduce the summation convention and write the equation above in 

the simple form  pxa ii                                                                             (1.2.3) 

The convention is as follow: The repetition of an index (whether superscript or subscript) 

in a term will denote a summation with respect to that index over its range. The range of 

an index i  is the set of n integer values 1 to n. An index that is summed over is called a 

dummy index, and one that is not summed out is called a free index. 

1.3 Law of Transformation  

Let ),( 21 xxP be a physical quantity in 321 xxox is the Cartesian coordinate systems before 

deformation and ),( 21 xxP  be corresponding to ),( 21 xxP in the new coordinate system 

321 xxxo  after rotating the 3x -axis about itself at an angle , i.e., after deformation.  

From the figure given below (Figure1.1)  
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=  sincos 21 xx               (1.3.1) 
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Using the relation (1.3.1) and (1.3.2) we get 

3211 0sincos xxxx                (1.3.3) 

3212 0cossin xxxx               (1.3.4) 

3213 100 xxxx               (1.3.5) 

Relation (1.3.3), (1.3.4) and (1.3.5) can be written as  

  1331221111  xxxx              (1.3.6) 

  2332222112  xxxx              (1.3.7) 

  3333223113  xxxx                                                                (1.3.8) 

where )cos( jiij xandxbetweenangle  ; 3,2,1, ji that is                                (1.3.9)      

 cos)cos( 1111  xandxbetweenangle  

  sin)90cos()cos( 2112  xandxbetweenangle   

 90cos)cos( 3113  xandxbetweenangle   

 sin)90cos()cos( 1221  xandxbetweenangle  

 cos)cos( 2222  xandxbetweenangle  

 90cos)cos( 3223  xandxbetweenangle  

 90cos)cos( 1331  xandxbetweenangle  

 90cos)cos( 2332  xandxbetweenangle  



 10cos)cos( 3333  xandxbetweenangle    

Law of transformation can be written in a tensor form of order one as follow 

  3,2,1;13132121111  jxxxxx jj
 

jiji xx  ; 3,2,1, ji                                                                     (1.3.10) 

ij

j

i

x

x





 and ji

j

i

x

x





                                            

Similarly, law of transformation for a tensor of order two 

  ijqjpipq xx  ; 3,2,1, ji ; p, q are dummy variables      (1.3.11) 

 

law of transformation for a tensor of order three 

  ijkrkqjpipqr xx  ; 3,2,1,, kji ; p, q, r are dummy variables (1.3.12) 

and law of transformation of order n 

termsnijkrkqjpitermsnpqr xtermsnx ........................... )..............(   (1.3.13) where

ntermsnkji ..,.........3,2,1..,.........,,  ; p, q, r, ………..n terms are dummy variables 

Example.1. The ix -system is obtained by rotating the ix -system about the 3x -axis 

through an angle =300 in the sense of right handed screw. Find the transformation 

matrix. If a point has coordinates (2, 4, 1) in the ix -system, find it’s coordinate in the ix -

system. If a point has coordinate (1, 3, 2) in the ix -system, find its coordinates in the ix -

system. 

Solution. The figure (1.2) shows how the ix -system is related to the ix -system. The 

direction cosines for the given transformation is represented in relation (1.3.14) 

 

 

 

 

   

2x  

33 xx   
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1x  

1x  

  

2.1Figure  



 

 

 

Hence, the matrix of the transformation by using (1.9) is 









































100

0
2

3
2

1

0
2

1
2

3

100

0cossin

0sincos

)( 



ij              (1.3.14) 

Using law of transformation for a tensor of order one, i.e, form (1.3.10), we get  

jiji xx   ; i, j=1, 2, 3 

3132121111 xxxx    

   )23(01
2

14
2

3201sin4cos21  x  

   )132(01
2

34
2

1201cos4sin22  x  

  11104023 x                (1.3.15) 

Hence, ( 321 ,, xxx  ) = ( 1,132,23  ) is in new coordinate system.  

Further for the second, (1, 3, 2) are the coordinate of a point in new coordinate system, 

i.e. ( 2',3',1' 321  xxx ) to finding the corresponding coordinate in to old coordinate 

system i.e. ),,( 321 xxx . Using law of transformation (1.3.10),  

we have  jjii xx    ; i, j= 1,2,3           (1.3.16) 

or  3312211111 xxxx  
 

  3322221122 xxxx  
 

  3332231133 xxxx    

  )2323(02213231,sincos 3211  xxxx   

  )2321(02233211,cossin 3212  xxxx   



  2120301,190sin90cos 32

0

1

0

3  xxxx      (1.3.17) 

Hence, ( 321 ,, xxx ) = )2,2321,2323(  in old coordinate system. 

Practice 1.The ix -system is obtained by rotating the ix -system about the 2x -axis 

through an angle =450 in the sense of right handed screw. Find the transformation 

matrix. If a point has coordinates (2, 4, 1) in the ix -system, find its coordinate in the ix -

system. If a point has coordinate (1, 3, 2) in the ix -system, find its coordinates in the ix -

system. 

Practice 2.The ix -system is obtained by rotating the ix -system about the 1x -axis 

through an angle =600 in the sense of right handed screw. Find the transformation 

matrix. If a point has coordinates (2, 4, 1) in the ix -system, find its coordinate in the ix -

system. If a point has coordinate (1, 3, 2) in the ix -system, find its coordinates in the ix -

system. 

Practice 3.The ix -system is obtained by rotating the ix -system about the 3x -axis 

through an angle = 600 in the sense of right handed screw. Find the transformation 

matrix. If a point has coordinates (2, 4, 1) in the ix -system, find its coordinate in the ix -

system. If a point has coordinate (1, 3, 2) in the ix -system, find its coordinates in the ix -

system. 

Example2. The ix -system is obtained by rotating the ix -system about the 2x -axis 

through an angle = 600 in the sense of right handed screw. Find the transformation 

matrix. If a tensor of rank/order two has components  






















102

220

101

ija  in the ix -

system, find its coordinate in the ix -system.  

Solution. The figure (1.3) shows how the ix -system is related to the ix -system. The 

direction cosines for the given transformation are represented in the (1.3.18) when 2x -

axis is rotated at an angle 600 about itself in right handed screw, where pqa are the 



components of the tensor of order two in new coordinate system corresponding to ija in 

old coordinate system. 

 

 

 

 

 

 

 

 

 

Hence, the matrix of the transformation is by using (1.3.9) 









































21023

010

23021

cos0sin

010

sin0cos

)(





ij                      (1.3.18) 

Using law of transformation (1.3.11) for a tensor of order two, i.e  

ijqjpipq xx    

ijqjpipq aa    

 ijji aa 1111   

)( 3132121111 iiii aaa    

)(

)(

)(

33133212311113

23132212211112

13131212111111

aaa

aaa

aaa













  

using value of 
ij from (1.3.18), we have 

  

3x  

22 xx   

3x  

1x  

1x  

  

3.1Figure  



)12300221(23

)22320021(0

)12300121(21'11





a

 

= 











 














 

2

23

2

3
0

2

31

2

1
= 












 

4

334
                              (1.3.19) 

Similarly, 
4

334
',2' 3322


 aa  

 and ijji aa 3223   

)( 3332321312 iiii aaa    

)(

)(

)(

33333232313133

23332232213122

13331232113121

aaa

aaa

aaa













 

)12300221(0

)22120023(1

)12300121(0
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

 

23'a 010  =1       (1.3.20) 

Similarly, 
2

1
',3',0',

4

5
',

4

1
' 3221121331  aaaaa  

Hence,  

the tensor  






















102

220

101

ija is transformed into  





































 



4

334

2

1

4

1

123

4

5
0

4

334

pqa   

Practice 4. The ix -system is obtained by rotating the ix -system about the 3x -axis 

through an angle = 450 in the sense of right handed screw. Find the transformation 



matrix. If a tensor of rank two has components  






















412

231

123

ija  in the ix -system, find 

its coordinate in the ix -system.  

Practice 5. The ix -system is obtained by rotating the ix -system about the 1x -axis 

through an angle = 300 in the sense of right handed screw. Find the transformation 

matrix. If a tensor of rank two has components  
























112

231

021

ija  in the ix -system, 

find its coordinate in the ix -system.  

1.4 Some Properties of Tensor  

Zero Tensors: A tensor whose all components in one Cartesian coordinates system are 0 

is called a zero. A tensor may have any order n.  

 

Property 1.4.1 If all component of a tensor are ‘0’ in one coordinate system then they are 

‘0’ in all coordinate systems. 

Proof.  Let termsnijku ..............  and termsnpqru .............
  the component of a nth order tensor in two 

coordinates systems 321 xxox
 
and 

321 xxxo  . 

Suppose         0............. termsnijku , .......,, kji                                                        (1.4.1) 

We know the law of transformation of tensor of order n as  

termsnijkrkqjpitermsnpqr untermsu ........................... )..............(                                          (1.4.2) 

Using (1.4.10) into (1.4.11) we get  

 0............ 
termsnpqru , .......,, rqp . Hence, zero tensor of any order in one coordinate 

system remains always zero tensor of same order in all other coordinate systems.  

Property 1.4.2 If the corresponding components of two tensors of the same order are 

equal in one coordinate system, then they are equal in all coordinate systems. 



Property 1.4.3 Equality of Tensors: Two tensors of the same order whose 

corresponding components are equal in a coordinate system (and hence in all coordinates) 

are called equal tensors. 

Thus, in order to show that two tensors are equal, it is sufficient to show that their 

corresponding components are equal in any one of the coordinate system.  

Property 1.4.4 (Scalar multiplication of a tensor): If components of a tensor of order n 

are multiplied by a scalar α, then the resulting components form a tensor of the same 

order n. 

Proof: Let termsnijku .......... be a tensor of order n in 321 xxox system. Let termsnpqru .............
 be the 

corresponding components in the dashed ( 321 xxxo  ) system. The transformation rule for a 

tensor of order n, (1.3.13) yields.  

)(............. ............................. termsnijkrkqjpitermsnpqr utermsnu                        (1.4.3)  

 Now )(............. ............................. termsnijkrkqjpitermsnpqr utermsnu                     (1.4.4) 

This shows that components ...............ijku form a tensor of rank n. 

Property 1.4.5 (Sum and Difference of tensors) If termsnijku .......... and termsnijkv .......... are 

tensors of the same rank n then their sum ( termsnijku .......... + termsnijkv .......... ) is a tensor of the 

same order n. 

Proof: Let termsnijkw .......... termsnijku .......... + termsnijkv ..........                                           
(1.4.5)   

and  let termsnpqru ..........
  and termsnpqrv ..........

 be the components of the given tensors of order n 

relative to the new system 321 xxxo  . Then transformation rules for these tensors are  

 )(............ .......................... termsnijkrkqjpitermsnpqr utermsnu               (1.4.6)    and   

 )(............ .......................... termsnijkrkqjpitermsnpqr vtermsnv                (1.4.7) 

where   ),cos( ippi xx              (1.4.8) 

let   
termsnpqrw .......... termsnpqru ..........

 + termsnpqrv ..........


                                (1.4.9) 

using relations (1.4.6 and 1.4.7) in the relation (1.4.9), we get  



  
termsnpqrw .......... termsnrkqjpi ......... ( termsnijktermsnijk vu ........................       (1.4.10) 

 
termsnpqrw .......... termsnrkqjpi ......... ( termsnijkw .......... )                            (1.4.11) 

Thus quantities termsnijkw ..........  obey the transformation rule of a tensor of order n. 

Therefore, they are components of a tensor of rank/order n. 

Corollary: Similarly, their difference termsnijktermsnijk vu ........................ 
 
is also a tensor of 

rank n. 

Property 1.4.6 (Tensor Multiplication) 

The product of two tensors is also a tensor whose order is the sum of orders of the given 

tensors. 

Proof: Let termsmijku ..............  and termsnv .............. be two tensors of order m and n 

respectively in the coordinate system 321 xxox  also termsmpqru .............
  and termsnv ............. are 

corresponding components of tensors in 321 xxxo  system. 

We shall show that the product  

 termsntermsmijkw ..................  termsnijku .......... termsnv ..........                         
(1.4.5)  

is tensor of order m+n. Using the law of transformation (1.3.13), we have 

)(........... ............................ termsmijkrkqjpitermsmpqr utermsmu     

)(........... ............................ termsmtermsn vtermsnv                        (1.4.6) 

where, ij  is having its standard meaning as defined in relation (1.3.9). 

Let    termsntermsmpqrw ..................   termsnpqru .......... termsnv ..........                        
(1.4.7) 

Using relation (1.4.6) in to (1.4.7), we get 


 termsntermsmpqrw ..................   

)(.... .... termsmijkrkqjpi utermsm  )(... ..... termsmvtermsn    

= termsmrkqjpi ....  )(... ......... termsmijktermsm uvtermsn    



= termsmrkqjpi ....  )(... ......... termsmijktermsmwtermsn         (1.4.8) 

This shows that components termsntermsmijkw ..................  obey the transformation rule of a 

tensor of order (m+n). Hence termsnijku .......... termsnv ..........  are components of a (m+n)th  

order tensor. 

Practice 6. If iu and jv are components of vectors, then show that jivu are components of 

a second-order tensor. 

Practice 7. If iju and kv are components of tensors of second-order and first-order, 

respectively, then prove that kijvu  are components of a third order tensor. 

Practice 8. If iju and kmv are components of second-order tensors, then prove that kmijvu  

are components of a fourth order tensor. 

Practice 9. If iu and jv are components of two tensors. Let ijjiij vuvuw   and

ijjiij vuvu  . Show that each of ijw and ij is a second order tensor. 

 

1.5 Contraction of a Tensor 

The operation or process of setting two suffixes equal in a tensor and then 

summing over the dummy suffix is called a contraction operation or simply a 

contraction. The tensor resulting from a contraction operation is called a 

contraction of the original tensor. Contraction operations are applicable to 

tensor of all orders higher than 1 and each such operation reduces the order of a 

tensor by 2. 

Property 1.5 Prove that the result of applying a contraction of a tensor of order n is a 

tensor of order (n-2). 

Proof:  Let termsnijku ..........  and termsnpqru ..........
  be the components of the given tensor of order 

n relative to two Cartesian coordinate systems 321 xxox and 321 xxxo  . The rule of 

transformation of tensor of order n (1.3.13) is   

termsnijkrkqjpitermsnpqr utermsnu ........................... )..............(                       (1.5.1) 



without loss of generality, we contract the given tensor by setting ji   and summation 

convention. Let 

 .......................... iiklkl uv                 (1.5.2) 

Now  termsniikrkqipitermsnpqr utermsnu ........................... ..............)(                     (1.5.3) 

   termsnklrkpq vtermsn )2.........(.......................)(    

 termsnklrkppr vtermsnu )2.....(............................ )2(..........      









qpif

qpif
pq

0

1
  

 termsnklrktermsnr vtermsnv )2.....(..........)2.......(.......... )2(..........                      (1.5.4) 

Hence, the resulting tensor is tensor of order n-2.  So contraction applying once on a 

tensor of order greater then 1, the order of the tensor reduces by 2. Similarly contraction 

applying twice on a tensor of order n the order of that tensor reduces by 4.  

1.6 Quotient law of Tensors 

 (Quotient law is the partial converse of the contraction law) 

Property 1.6 If there is an entity represents by the set of 9 quantities iju relative to any 

given system of Cartesian axes, and if jijvu is a vector for an arbitrary vector jv , then 

show that iju is a second order tensor. 

Proof:   jiji vuw                                                                                         (1.6.1) 

Suppose that pqu , pu and pw  be the corresponding components in the dashed system

321 xxxo  . Then by using law of transformation and inverse law of transformation (1.3.10 

and 11)  

 Now   pppq wvu                                                                          (1.6.2) 

    ipiw  

    = )( jijpi vu  

    = qijqjpi vu   



    0)( 
qijqjpipq vuu                                                         (1.6.3) 

for an arbitrary vector qv . Therefore, we must have 

ijqjpipq uu                                                          (1.6.4) 

This rule shows that components iju  obey the tensor law of transformation of a second 

order. Hence, iju  is a tensor of order two. 

Practice 10.  Let i be an ordered triplet and i be a vector, referred to the ix axis. If 

ii  is a scalar, show that i are component of a vector. 

Example 3.  If there is an entity representable by a set of 27 quantities ijku  relative to 

321 xxox system and if jkijkvu is a tensor of order one for an arbitrary tensor jkv  if order 2, 

show that ijku  is tensor of order 3. 

Solution. Let  jkijki vuw                                                                                      (1.6.5) 

It is given that jkv  is a tensor of order 2 and jkijkvu  is a tensor of order one, and pqv , pqru  

are corresponding to jkv , ijku  in new coordinate system 321 xxxo  . Then by using 

transformation law and inverse transformation law (1.3.10 and 11) we get.  

   pqrpqr wvu                  (1.6.6) 

    ipiw  

     jkijkpi vu                                              (by using 1.6.5) 

    )( qrrkqjijkpi vu    

    qrijkrkqjpi vu    

     0)(  qrijkrkqjpipqr vuu                                                 (1.6.7) 

for an arbitrary vector qrv . Therefore, we must have 

   ijkrkqjpipqr uu                                                              (1.6.8) 



This rule shows that components ijku  obey the tensor law of transformation of a second 

order. Hence, ijku  is a tensor of order two. 

Practice 11.  If there is an entity representable by a set of 27 quantities ijku  relative to 

321 xxox system and if kijk vu  is a tensor of order two for an arbitrary tensor kv  of order 

one, show that ijku  is tensor of order 3. 

Practice 12.  If there is an entity representable by a set of 81 quantities ijklu  relative to 

321 xxox system and if jklijklvu is a tensor of order one for an arbitrary tensor jklv  if order 

3, show that ijklu  is tensor of order 4. 

Practice 13.  If there is an entity representable by a set of 81 quantities ijklu  relative to 

321 xxox system and if lijklvu is a tensor of order three for an arbitrary tensor lv  if order 

one, show that ijklu  is tensor of order 4. 

Practice 14.  If there is an entity representable by a set of 81 quantities ijklu  relative to 

321 xxox system and if klijklvu is a tensor of order two for an arbitrary tensor klv  of order 2, 

show that ijklu  is tensor of order 4. 

1.7 Symmetric & Skew symmetric tensors 

1.7.1   A second order tensor iju  is said to be symmetric if jiuu jiij , . For example 

unit matrix of order 33 is symmetric tensor of order two. 

1.7.2 A second order tensor iju  is said to be skew-symmetric if jiuu jiij , . For 

example skew-symmetric matrix of order 33 is skew-symmetric tensor of order two. 

Definition: (Gradient) if termsnpqru ........... is a tensor of order n in 321 xxox system, then  

termsnpqrtermsnspqr u
s

v ...........)1.(..........



  

       stermsnpqru ,...........                                               (1.7.1) 



is defined as the gradient of the tensor termsnpqru ........... . 

For example p

q

qp u
x

u



,  represents the gradient of vector pu . 

 

Property 1.7 Show that the gradient of a scalar point function is a tensor of order one.  

Proof: Suppose that ),,( 321 xxxUU  be a scalar point function and  

i

i

i U
x

U
v ,




                                                       (1.7.2) 

Let the components of the gradient of U in the dashed system 321 xxxo  be pv , so that  

    
p

p
x

U
v




                                                             (1.7.3) 

Using the law of transformation (1.3.10) and inverse law of transformation we have 

    
p

p
x

U
v




                    

         
p

i

i x

x

x

U








                                         (by chain rule) 

         ipi

i

pi U
x

U
, 




    

Using (1.7.2), we get      ipip vv                                                              (1.7.4) 

Which is a transformation rule for a tensor of order one. Hence gradient of the scalar 

point function U is a tensor of order one. 

Property 1.8 Show that the gradient of a vector iu  is a tensor of order two.  

Proof: The gradient of the tensor iu  is defined as  

   ji

j

i
ij u

x

u
w ,




                                                                 (1.7.5) 



Let the vector iu  be transformed to the vector pu  relative to the new system 321 xxxo  . 

Then the transformation law for tensors of orders one (1.3.10) yields 

ipip uu                                                              (1.7.6) 

Suppose the nine quantities ijw relative to new system are transformed to pqw . Then 

   
q

p
pq

x

u
w




  

          
q

i

piipi

q x

u
u

x '
)(









   

           
q

j

j

i
pi

x

x

x

u








     (by chain rule) 

           
j

i
qjpi

x

u




  ijqjpi w                                                         

     ijqjpipq ww 
                                                      

(1.7.7) 

This is a transformation rule for tensors of order two. Hence, ijw  is a tensor of order 

two. Consequently, the gradient of a vector iu is a tensor of order two. 

Property 1.9 Show that the gradient of a tensor of order n, termsnijku ...........  is a tensor of 

order (n+1). 

Proof: Let termsnijku ..........  is a tensor of order n. The gradient of the tensor termsnijku ..........  is 

defined as  

   


 ,...........

...........

.............. termsnijk

termsnijk

pqr u
x

u
w 




                  (1.7.8) 

Let the tensor termsnijku ......  be transformed to the tensor termsnprsu .........  relative to the new 

system 321 xxxo  . Then the transformation law for tensors of order n (1.3.13) yields  

termsnijkrkqjpitermsnpqr utermsnu ........................... )..............(          (1.7.9) 



Suppose n3  quantities termsnijkw ........... relative to new system are transformed to

termsnpqrw ........... . Then 

   



x

u
w

termsnpqr

termsnpqr





..........

,........  

       




 x

x

x

u
termsn

termsnijk

rkqjpi









.........
)........(      

      



x

u
termsn

termsnijk

rkqjpi





.............
........   

       ,.................... ntermsijkrkqjpi utermsn                  (1.7.10) 

          .,..........,.......... ............ ijkrkqjpitermsnpqr utermsnw   

This is a transformation rule for tensors of order (n+1). Hence, termsnijkw )1(..........   
is a 

tensor of order (n+1). Consequently, the gradient of a tensor of order n is a tensor of 

order (n+1). 
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CHAPTER-II 

ANALYSIS OF TENSOR 

Consider an ordered set of N real variables
Ni xxxxx ,......,.......,, 321

; these variables 

will be called the coordinates of a point. (The suffixes 1, 2, 3,……,i,…..N, which we 

shall call superscripts, merely serve as labels and do not possess any signification as 

power indices. Later we shall introduce quantities of the 
ia and again the i , which we 

shall call a subscript, will act only as a label.) Then all the point corresponding to all 

values of the coordinates are said to form an N-dimensional space, denoted by NV . 

Several or all of the coordinates may be restricted in range to ensure a one-one 

correspondence between points of the
NV , and sets of coordinates. 

A curve in the 
NV  is defined as the assemblage of points which satisfy the N 

equations  

)...........,3,2,1(),( Niuxx ii   

whereu is a parameter and )(uxi
are N functions of u , which obey certain continuity 

conditions. In general, it will be sufficient that derivatives exist up to any order required. 

A subspace MV of 
NV  is defined for NM  as the collection of points which satisfy the 

N equations    

  )...........,3,2,1(),,..........,,( 21 Niuuuxx Mii   

where there are M parameters Muuu ,..........,, 21 . The ),..........,,( 21 Mi uuux  are N functions 

of the Muuu ,..........,, 21 satisfying certain conditions of continuity. In addition the NM 



matrix formed from the partial derivatives 
j

i

u

x




is assumed to be of rank *M . When

1 NM , the subspace is called a hyper surface. 

 Let us consider a space 
NV with the coordinate system .........,,, 321 Nxxxx The N 

equations 

  ).....,3,2,1(),,.........,( 21 Nixxxx Nii 


                                        (2.1) 

where the 
i are single-valued continuous differentiable functions of the coordinates, 

define a new coordinate system 
Nxxxx .........,,, 321

.  Equations (2.1) are said to define a 

transformation of coordinates. It is essential that the N functions i be independent. A 

necessary and sufficient condition is that the Jacobian determinant formed from the 

partial derivatives 
j

i

x

x




 does not vanish. Under this condition we can solve equations 

(2.1) for the ix as functions of the ix and obtain 

  ),......3,2,1()........,,,( 321 Nixxxxx Nii   

2.1 The Symbol 
ij  

 We will now introduce the following two conventions:  

1) Latin indices, used either as subscripts or superscripts, will take all values from 1 

to N unless the contrary is specified. Thus equations (2.1) are briefly written

),.........,( 21 Nii xxxx  , the convention informing us that there are N equations. 

2) If a Latin index is repeated in a term, then it is understood that a summation with 

respect to that index over the range 1, 2, 3, …. N is implied. Thus instead of the 

expression


N

i

ii xa
1

, we merely write ii xa . Now differentiation of (2.1) yields   















N

r

r

r

i
N

r

r

r

i
i Nidx

x

x
dx

x
xd

11

).,..........,3,2,1(,


 

which simplify, when the above conventions are used, to  

  r

r

i

i dx
x

x
xd




 .                                                                                 (2.2) 



The repeated index r  is called a dummy index, as it can be repeated by any other Latin 

index, except ‘i’ in this particular case. That is, equations (2.2) can equally well be 

written m

m

i

i dx
x

x
xd




   or for that matter r

r

i

i dx
x

x
xd




 . In order to avoid confusion, the 

same index must not be used more than twice in any single term. For example; 

2

1












N

i

ii xa will not be written
iiii xaxa , but rather jjii xaxa . It will always be clear from 

the context, usually powers will be indicated by the use of brackets; thus  2

Nx mean the 

square of 
Nx . The reason for using superscripts and subscripts will be indicated in due 

course. Let us introduce the Kronecker delta. It is defined as    















jiif

jiif

x

x

j

i

ij
0

1
             (2.1.1) 

That is, 0;1 322331132112332211   .The symbol 
ij is known 

as the Kronecker  symbol, named after the German Mathematician Leopold Kronecker 

(1827-1891). The following property is inherent in the definition of
ij . 

1) Kronecker   is symmetric i.e 
ij =

ji                                                     (2.1.2) 

2) Summation convention 3332211   ii
                                      (2.1.3) 

3) The unit matrix of order 3 is  ijI 3
 and   1det ij                            (2.1.4) 

4) The orthonormality of the base unit vectors iê can be written as  

iê  jê  = ij                          (2.1.5) 

2.1.1 Tensor Equation:- An equation of type 0 kijijk u is called a tensor equation, 

for checking the correctness of a tensor equation, we have the following rule         

(i) In a correctly tensor equation no suffixes shall appear more than twice in any 

term, otherwise the operation will not be define. For example jjijj vuu  is not a 

tensor equation.    

(ii) If a suffixes appears only once in a term then it must appear only once in the 

remaining term also. For example, an equation 0 iijj uu  is not a tensor 



equation. Hence j appears once in the first term while it appears twice in the 

second term.    

Property 2.1 Prove the following (Known as substitution properties of
ij ) 

(i) 
iijj uu    (ii) 

jkikijikjkij uuuu   ; (iii) 
332211 uuuuu kkijij   

Proof. (i)  Now     
332211 uuuu jjjiij    

     




3

ji
ji

iijj uu  =
ju                                               (2.1.6) 

(ii)   



3

1j

jkijjkij uu   

 =
ikiiu  (for 0,  ijij  ), here summation over i is not taken 

 =
iku                                                                                              (2.1.7) 

(iii)     









i j

ijijijij uu   

=  
i

iiu.1 , in 
iiu summation is not being taken 

=
i

iiu =
332211 uuu  =

kku                                             (2.1.8) 

Example 2.1 Given that
ijkkijij bba   ,where 03,0   , find 

ijb  in terms of 

ija . 

Solution. Setting ji   in the relation 
ijkkijij bba    and summing accordingly, we 

obtain         iikkii bba ..3.    

    = kkb)3(                                    ( iikk bb  ) 

        kkkk ab
 


3

1
 

Hence,   









 kkijijkkijijij aabab 








 3

11
                                      (2.1.9) 

Property 2.2 Prove that (i) 
pqqipi   (ii) 

ijpjpi   (iii)    '1
,1 ijijij  


 



Proof. We know the transformation law of the coordinate system (1.3.10), we have  

ipip xx   and 
qqii xx                                                                         (2.1.10) 

Now, (i) 
ipip xx   

  )( qqipip xx                 (2.1.11) 

using the relation (2.1.6) on the L.H.S. of (2.1.11) 

  
qqipiqpq xx     

  0)(  qpqqipi x  

  
pqqipi                                                                                                             (2.1.12) 

(ii)  Similarly,   
ppii xx    

       
jpjpi x  

 Also            jiji xx                                                                            (2.1.13) 

Hence,      
jpjpijij xx   

   0)(  jpjpiij x  

    
pjpiij                                                                       (2.1.14) 

(iii)  Using (2.1.12) gives, in the expanded form, 

 12

13

2

12

2

11   , 12

23

2

22

2

21   , 12

33

2

32

2

31    

0231322122111   , 0332332223121   , 0133312321131    

The relations (2.1.12) and (2.1.14) are referred as the orthonormal relations for
ij . In 

matrix notation, the above said relations may be represented respectively, as follows    



















































100

010

001

332313

322212

312111

333231

232221

131211













                       (2.1.15) 

or  1 LLLL  

these expressions show that the matrix L  

 



Property 2.3 Show that 
ij  and 

ij are tensors, each of order two. 

Proof: Let iu be any tensor of order one,  

i> by the substitution property of the Kroneceker delta tensor
ij , we have 

  
jiji uu                (2.1.16) 

Now 
iu and 

ju are each of tensor order one. Therefore, by quotient law, we conclude that 

ij  is a tensor of rank two. 

ii> The transformation law for the first order tensor is  

ipip uu                                          (2.1.17) 

where
iu  is a vector and 

ipiu is a vector by contraction property. Therefore, by quotient 

law, the quantities 
pi are components of a second order tensor. 

Note 1: The tensor ij is called a unit tensor or an identity tensor of order two. 

2. We may call the tensor ij as the transformation tensor of rank two. 

2.2 The Symbol ijk
 

Euclidean geometry investigates the properties of figures which are invariant with 

respect to translations and rotations in space. It may be subdivided into Algebraic 

methods the theory applicable to entire configurations such as the class or degree of a 

curve. The latter discusses by means of the calculus those properties which depend on a 

restricted portion of the figure. For example, the total curvature of a surface at that point. 

Succinctly we may say that differential geometry is the study of geometry in small. This 

chapter is not intended to be a complete course on the subject. However, sufficient theory 

is developed to indicate the scope and power of the tensor method.  

 The symbol ijk  is known as the Levi-civita -symbol, named after the Italian 

mathematician Tullio Levi-civita (1873-1941). The  -symbol is also referred to as the 

Permutation symbol/alternating symbol or alternator. In terms of mutually orthogonal 

unit vectors 1̂e , 2ê , 3ê along the Cartesian axes, it defined as  

   ijkkji eee  )ˆˆ.(ˆ    3,2,1,,  kji                       (2.2.1) 



Thus, the symbol ijk  gives  

   











valuesamethetakekjiofalloranyif

orderacyclictheinvaluestakekjiif

ordercyclictheinvaluestakekjiif

ijk

,,:0

,,:1

,,:1

(2.2.2) 

These relations are 27 in number. The -symbol is useful in expressing the vector 

product of two vectors and scalar triple product. 

(i) We have kijkji eee ˆˆˆ  .                                                                     (2.2.3) 

(ii) For two vectors 
ia and 

ib ,we write 

kjiijkjijijjii ebaeebaebeaba ˆ)ˆˆ()ˆ()ˆ( 


                            (2.2.4) 

(iii) 
iieaa ˆ


, jj ebb ˆ


,
kk ecc ˆ


 

We have 

     cbacba


).(  )ˆ).(ˆ( kkkjiijk eceba  

    kjiijk cba

321

321

321

ccc

bbb

aaa

                                (2.2.5) 

Property 2.4 Show that ijk  is a tensor of order 3. 

Proof: Let iaa 


and ibb 


be any two vectors. Let 

  bacc i


 . 

 Then, kjijki bac                                                                                     (2.2.6) 

Now kjba is a tensor of order 2 and kjijk ba (by 2.2.6) is a tensor of order one. 

Therefore, by quotient law, ijk  is a tensor of order 3. 

Example 2.2 Show that kijkij uw  is a skew-symmetric tensor, where ku is a vector and 

ijk  is an alternating tensor 

Solution: Since ijk  is a tensor of order 3 and ku is a tensor of order one, so by 

contraction, the product kijk u is a tensor of order 2. Further 



    kijkij uw   

    kjik u  

    jiw                                                                     (2.2.7) 

This shows that ijw is a tensor which is skew-symmetric. 

Example 2.3 Show that iju is symmetric iff 0 ijikj u  

Solution: We find  

  322332321232311 uuuuuijij   

  133113132313122 uuuuuijij   

  211221213121233 uuuuuijij                                             (2.2.8) 

Thus, iju is symmetric iff   

jiij uu  or 2112 uu  ,
3113 uu  ,

3223 uu                                         (2.2.9) 

2.3. Isotropic Tensors 

Definition: A tensor is said to be an isotropic tensor if its components remain 

unchanged/invariant however the axes are rotated. 

Note. 1. An isotropic tensor possesses no directional properties. Therefore a non-zero 

vector (or a non-zero tensor of rank 1) can never be an isotropic tensor. Tensor of higher 

orders, other than one, can be isotropic tensors. 

2. Zero tensors of all orders are isotropic tensors. 

3. By definition, a scalar (or a tensor of rank zero) is an isotropic tensor. 

4. A scalar multiple of an isotropic tensor is an isotropic tensor. 

5. The sum and the differences of two isotropic tensors is an isotropic tensor. 

Property 2.5 Prove that substitution tensor ij and alternating tensor ijk are isotropic 

tensors 

Proof: A>Let the components ij  relative to ix -system are transformed to quantities pq   

relative to ix -system. Then, the tensorial transformation rule is  



   ijqjpipq                                                                      (2.3.1) 

Now R.H.S of (2.3.1)  

          ijqjpi  qipi  

    = pq =








qpif

qpif

1

0
                                              (2.3.2) 

Relation (2.3.1) and (2.3.2) show that the components ij are transformed into itself under 

all co-ordinate transformations. Hence, by definition, ij  is an isotropic tensor. B> We 

know that ijk  is a system of 27 numbers. Let 

     )ˆˆ.(ˆˆˆˆ
kjikjiijk eeeeee                                                (2.3.3) 

Be related to the ix -axis. Then, the third order tensorial law of transformation (1.3.9) 

gives    ijkrkqjpipqr                                                              (2.3.4) 

where pi  is defined in (1.3.9). We have already check that 

   

321

321

321

rrr

qqq

ppp

ijkrkqjpi







                                          (2.3.5) 

and         
321

321

321

ˆ,ˆ,ˆ

rrr

qqq

ppp

rqp eee







                                         (2.3.6) 

Using (2.3.4, 2.3.5 and 2.3.6), we get 

  )ˆˆ.(ˆˆ,ˆ,ˆ
rqprqppqr eeeeee  =











samearesufficesallortwoanyif

orderanticyclicinarerqpif

ordercyclicinarerqpif

:0

,,:1

,,:1

        

(2.3.7) 

This shows that components ijk are transformed into itself under all coordinate 

transformations. Thus, the third order tensor ijk
 
is an isotropic. 

Property 2.6 If iju is an isotropic tensor of second order, then show that ijiju  for 

some scalar . 



Proof: As the given tensor is isotropic, we have 

    ijij uu                   (2.3.8) 

for all choices of the 
ix  -system. In particular, we choose  

133221 ,, xxxxxx                        (2.3.9) 

    

 

 

 

 

 

 

Then     

001

100

010

ij                                          (2.3.10) 

and law of transformation (1.3.9), as  

     ijqjpipq uu                                           (2.3.11) 

Now     )( 31321211111111 iiiiijji uuuuu    

    
2121321211 )00( iiiiii uuuu    

    
2232132212121112 )( uuuu    

      2211 uu                                                     (2.3.12) 

Similarly, 

3322 uu  , 2312 uu  , 2312 uu  , 3123 uu  , 2113 uu  , 3221 uu    (2.3.13) 

Now, we consider the transformation:   331221 ,, xxxxxx                      (2.3.14) 

Then     

100

001

010

ij                                                    (2.3.15) 

2x  

1x  

3x  

2x  

3x  
1x  

1.2Figure  



Using law of transformation defined in (2.3.11), we get 

231313 uuu  ,
132323 uuu   

 
1313 uu  , 013 u and 023 u                               (2.3.16) 

using (2.3.13) and (2.3.16), we obtain 

   ijij   where 
332211                          (2.3.17) 

Note 1: If ijk  are components of an isotropic tensor of third order, then ijkijk  for 

some scalar . 

Note 2: If ijkm  are components of a fourth-order isotropic tensor, then 

  jkimjmikkmijijkm    for some scalars  ,, . 

2.4 Contravariant tensors (vectors) 

 A set of N  functions 
if  of the N  coordinates 

ix are said to be the components of 

a contravariant vector if they transform according to the equation.  

j

j

i

i f
x

x
f




                                                             (2.4.1) 

on change of the coordinates 
ix  to 

ix . This means that any N functions can be chosen as 

the components of a contravariant vector in the coordinate system
ix , and the equations 

(2.4.1) define the N  components in the new coordinate system
ix . On multiplying 

equations (2.4.1) by 
i

k

x

x




and summing over the index ‘ i ’ from 1 to N , we obtain  

   kjijj

j

k

j

j

i

i

k

i

i

k fff
x

x
f

x

x

x

x
f

x

x



















                        (2.4.2) 

Hence the solution of equations (2.4.1) is  

    i

i

k
k f

x

x
f




 .                  (2.4.3) 



When we examine equations r

r

i

i dx
x

x
xd




 (where repeated index r is called dummy 

index) we see that the differentials 
idx from the components of a contravariant vector, 

whose components in any other system are the differentials ixd of the system. It follow 

immediately that dudxi
 is also a contravariant vector, called the tangent vector to the 

curve )(uxx ii  . 

 Consider now a further change of coordinates ),........,( 21 nii xxxgx  . Then the 

new components  

k

k

i
k

k

j

j

i
j

j

i
i f

x

x
f

x

x

x

x
f

x

x
f


















                                           (2.4.4) 

This equation is of the same form as (2.4.1), which shows that the transformations of 

contravariant vectors form a group. 

2.5 Covariant vectors 

 A set of N  functions 
if  of the N  coordinates

ix are said to be the components of 

a covariant vector if they transform according to the equation.  

j

i

j

i f
x

x
f




                                                             (2.5.1) 

on change of the coordinates ix  to ix . Any N functions can be chosen as the components 

of a covariant vector in the coordinate system ix , and the equations (2.5.1) define the N  

components in the new coordinate system
ix . On multiplying equations (2.5.1) by 

k

i

x

x





and summing over the index ‘ i ’ from 1 to N , we obtain  

   kjjkj

k

j

j

i

k

k

i

i

k

i fff
x

x
f

x

x

x

x
f

x

x



















                      (2.5.2) 

Since, 
i

j

ji x

x

xx 











, it follows immediately from (2.5.1) that the quantities 

ix


are the 

components of a covariant vector, whose components in any other system are the 



corresponding partial derivatives
ix


. Such a covariant vector is called the gradient of . 

We now show that there is no distinction between contravariant and covariant vectors 

when we restrict ourselves to transformations of the type 

    
imimi bxax  ,                                                     (2.5.3) 

where 
ib are N  constants which do not necessarily form the components of a 

contravariant vector and 
ima  are constants ( not necessary forming a tensor) such that 

    
rmimiraa                                                              (2.5.4) 

We multiply equations (2.5.3) by ira and sum over the index i from 1 to N and obtain 

    
iiriirr baxax  . 

Thus,    ij

i

j

j

i a
x

x

x

x










                                                     (2.5.5) 

This shows that the equations (2.4.1) and (2.5.1) define the same type of entity. 
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CHAPTER-III 

APPLICATONS OF TENSOR 

3.1 EIGENVALUES AND EIGEN VACTORS 

Definition: Let 
iju be a second order symmetric tensor. A scalar is called an 

eigenvalue of the tensor iju if there exists a non-zero vector iv such that 

    
ijij vvu   3,2,1,  ji                                  (3.1.1) 

The non-zero vector 
iv is then called an eigenvector of tensor 

iju  corresponding to the 

eigen value . We observe that every (non-zero) scalar multiple of an eigenvector is also 

an eigen vector. 

Property 3.1 Show that it is always possible to find three mutually orthogonal 

eigenvectors of a second order symmetric tensor. 

Proof. Let 
iju  be a second order symmetric tensor and   be an eigen value of

iju . Let iv  

be an eigenvector corresponding to . Then 

ijij vvu                                                               (3.1.2) 

or     0)(  jijij vu                                                    (3.1.3) 

This is a set of three homogeneous simultaneous linear equations in three unknown

321 ,, vvv . These three equations are 















0)(

0)(

0)(

333232131

323222121

313212111

vuvuvu

vuvuvu

vuvuvu







                                       (3.1.4) 

This set of equations possesses a non-zero solution when 



0

333231

232221

131211















uuu

uuu

uuu

                                          (3.1.5) 

or    0 ijiju                                                          (3.1.6) 

expanding the determinant in (3.1.6), we find 

 
 
  0)(

)(

))(()(

2231321213

2331331212

2332332211













uuuuu

uuuuu

uuuuu

                                        

or 

  0)()()(

)(

)(

223132211323313321123223332211

211213313223113333222211

2
332211

3







uuuuuuuuuuuuuuu

uuuuuuuuuuuu

uuu





   (3.1.7) 

we write (3.1.7) as 

    0321
23  III                                        (3.1.8) 

where   iiuuuuI  3322111   

  jiijjjii uuuuuuuuuuuuuuuuI 
2

1
3113322321121133332222112  

 3213 kjiijkij uuuuI                                                                              (3.1.9) 

Equation (3.1.8) is a cubic equation in  .Therefore it has three roots, say 321 ,,  which 

may not be distinct (real or imaginary). These roots (which are scalar) are the three 

eigenvalues of the symmetric tensor iju . 

Further    1321 I                                                    (3.1.10) 

    2133221 I                                          (3.1.11) 

    3321 I                                                                        (3.1.12) 

Each root i , when substituted in equation (3.1.4), gives a set of three linear equations 

(homogeneous) which are not all independent. By discarding one of equations and using 

the condition  



   12

3

2

2

2

1  vvv                                                                (3.1.13) 

for unit vectors, the eigenvector iv


 is determined.  

Property 3.2 Eigen values of a real symmetric tensor iju  are real. 

Proof. Let   be eigenvalue with corresponding eigenvector jv . 

Then     ijij vvu                                                             (3.1.14) 

Taking the complex conjugate on both sides of (3.1.14), we find 

ijij vvu   

ijij vvu                                                             (3.1.15) 

since iju is a real tensor. Now 

    

ii

ij

ijijijij

vv

vv

vvuvvu

)(

)(

)(











                                                            (3.1.16) 

Taking complex conjugate of (3.1.16) both side 

   

ijij

jiji

ijij

ijijijij

vvu

vvu

vvu

vvuvvu








________

  (by changing the role of i and j)          (3.1.17) 

This shows that quantity ijij vvu is real. Hence iivv is real. Since iivv is always real, it 

follows that   is real. 

Property 3.3 Eigen vector corresponding to two distinct eigen values of the sysmmetric 

tensor iju are orthogonal. 

Proof. Let 21   be two distinct eigenvalues of iju . Let  iA  and iB  be the 

corresponding non-zero eigenvectors. Then 

   ijij AAu 1 , ijij BBu 1                                                 (3.1.18) 

We obtain   



  iiijij BABAu 1 , iiijij BAABu 2                                             (3.1.19) 

Interchanging the role of i  and j  

  ijijjijiijij ABuBAuBAu                          (3.1.20) 

From (3.1.19) and (3.1.20), we get 

   iiii BABA 21    

0)( 21  iiBA  

    0iiBA             ( 21   )                      (3.1.21) 

Hence, eigenvectors iA  and iB are mutually orthogonal. This completes the proof. 

Note: Now we consider various possibilities about eigenvalues 321 ,,  . 

Case 1: if 321   , i.e., when all eigenvalues are different and real. Then, by property 

3.3, three eigenvectors corresponding to i  are mutually orthogonal. Hence the results 

holds. 

Case 2: if 321   . Let iv1


be the eigenvector of the tensor iju corresponding to the 

eigenvalue 1  and iv2


be the eigenvector corresponding to 2 . Then 

    021  ii vv


                                                          (3.1.22) 

 

 

 

 

 

Let ip


 be a vector orthogonal to both iv1


 and iv2


. Then 

   021  iiii vpvp


                                                          (3.1.23) 

and     ijij vvu 111


 , ijij vvu 222


                                                        (3.1.24) 

Let     jjij qpu  a tensor of order 1                                                  (3.1.25) 

iv1


 

iv2


 

1.3figure  



We shall show that ip  and iq are parallel. 

Now        ijijii vpuvq 11


  

    jiji vpu 1


    (By interchanging the role of i and j ) 

    011  jivp


                                                         (3.1.26) 

Similarly,    02 iivq


                                                              (3.1.27) 

Thus, iq is orthogonal to both orthogonal eigenvectors iv1


 and iv2


. Thus iq must be 

parallel to ip . So, we write 

   iiiij pqpu                                                             (3.1.28) for 

some scalar  . 

Relation (3.1.28) shows that  must be an eigenvalue and ip  must be the corresponding 

eigenvector of iju . 

   
i

i

i
p

p
v 3


                                                                          (3.1.29) 

Since iju  has only three eigenvalues 321,   , so  must be equal to 32   . Thus iv3


 

is an eigenvector which is orthogonal to both 
iv1


 and iv2


, where ii vv 21


 . Thus, there 

exists three mutually orthogonal eigenvectors. 

Further, let iw


 be any vector which lies in the plane containing the two eigenvectors iv2


 

and iv3


 corresponding to the repeated eigenvalues. Then 

    iii vkvkw 3221


  for some scalars 1k and 2k and  

    01321211  iiiiii vvkvvkvw


                       (3.1.30) 

and     )( 3221 iiijiij vkvkuwu


  

           iijiij vukvuk 3221


  

           ii vkvk 332221


                                   ( 32   ) 

           iii wvkvk 232212 )(  


                            (3.1.31) 



Thus iw is orthogonal to iv1


 and iw  is an eigenvector corresponding to 2 . Hence, any 

two orthogonal vectors those lie on the plane normal to iv1


 can be chosen as the other 

two eigenvectors of iju . 

Case 3: if 
321    

In this case, the cubic equation in  becomes 

     0)( 3

1                                            (3.1.32) 

or      0

00

00

00

1

1

1















                               (3.1.33) 

Comparing it with equation (3.1.6), we have  

    0iju  for ji   

and      
1332211  uuu  

Thus,     
ijiju 1                                                              (3.1.34) 

Let iv


 be any non-zero vector. Then 

    jijjij vvu


1  

            iv


1                                                            (3.1.35) 

This shows that iv


 is an eigenvector corresponding to 1. Thus, every non-zero vector in 

space is an eigenvector which corresponds to the same eigenvalue 1. Of these vectors, 

we can certainly choose (at least) there vectors
iv1


, iv2


, iv3


that are mutually orthogonal. 

Thus, in every case, there exists (at least) three mutually orthogonal eigenvectors of iju . 

Example 1.Consider a second order tensor iju whose matrix representation is  















 

322

121

101

 



It is clear, the tensor iju  is not symmetric. We shall find eigenvalues and eigenvectors of 

iju .  

Solution. The characteristic equation is 0

322

121

101















 

or    0)]2(22[1]2)3)(2)[(1(    

or    0)3)(2)(1(    

Hence, eigenvalues are 3,2,1 321   , all are different.                          (3.1.36) 

We find that an unit eigenvector corresponding to 1 is 







 0,

2

1
,

2

1
ˆ1iv , the unit 

vector corresponding to 2 is 






 


3

2
,

3

1
,

3

2
ˆ2iv , the unit vector corresponding to 

3 is 






 


6

2
,

6

1
,

6

1
ˆ3iv . We note that 0ˆˆ 21  ii vv , 0ˆˆ 32  ii vv , 0ˆˆ 31  ii vv . This 

happens due to non-symmetry of the tensor iju . 

Example 2. Let the matrix of the components of the second order tensor iju whose matrix 

representation is  

















100

022

022

 

Find eigenvalues and eigenvectors of iju .  

Solution. We note that the tensor is symmetric. The characteristic equation is  

0

100

022

022















 

or      0)4)(1(    

Hence, eigenvalues are 4,1,0 321   , all are different.                         (3.1.37) 



Let 1ˆiv  be the unit eigenvector corresponding to eigenvalue 01  . Then, the system of 

homogeneous equations is   

0

ˆ

ˆ

ˆ

100

022

022

3

2

1



































i

i

i

v

v

v

                                             (3.1.38) 

This gives 0ˆˆ 21  ii vv , 0ˆˆ 21  ii vv , 0ˆ3 iv  

We find 






 
 0,

2

1
,

2

1
ˆ1iv , 

Similarly,  1,0,0ˆ2 iv  and 







 0,

2

1
,

2

1
ˆ3iv  are eigen vectors corresponding to 12 

and 43  , respectively, Moreover, these vector are mutually orthogonal. 

Practice 1. Let the matrix of the components of the second order tensor iju whose matrix 

representation is  

















203

121

132

 

Find eigenvalues and eigenvectors of iju .  

Practice 2. Let the matrix of the components of the second order tensor iju whose matrix 

representation is  





















231

050

023

 

Find eigenvalues and eigenvectors of iju .  

Practice 3. Let the matrix of the components of the second order tensor iju whose matrix 

representation is  

























321

131

251

 

Find eigenvalues and eigenvectors of
iju .  

Practice 4. Let the matrix of the components of the second order tensor iju whose matrix 

representation is  

















 341

111

050

 

Find eigenvalues and eigenvectors of
iju .  

Practice 4. Let the matrix of the components of the second order tensor iju whose matrix 

representation is  























521

301

212

 

Find eigenvalues and eigenvectors of
iju .  

Practice 5. Let the matrix of the components of the second order tensor iju whose matrix 

representation is  





















341

111

053

 

Find eigenvalues and eigenvectors of
iju .  

Practice 6. Let the matrix of the components of the second order tensor iju whose matrix 

representation is  





















361

141

052

 



Find eigenvalues and eigenvectors of
iju .  

Books Recommended: 

1. Y. C. Fung: Foundation of Solid Mechanics, Prentice Hall, Inc.,   

   New Jersey,1965. 

2. Sokolnikoff, I. S. Mathematical Theory of Elasticity, Tata McGraw  

 Hill Publishing Company, Ltd., New Delhi, 1977 

3.  Barry Spain Tensor Calculus A Concise Course, Dover  

                              Publication, INC. Mineola, New York. 

4.  Shanti Narayan    Text Book of Cartesian Tensors, S. Chand & Co.,1950.  

 

 

 

 

CHAPTER-IV 

ANALYSIS OF STRAIN 

4.1 INTRODUCTION 

Rigid Body:  A rigid body is an ideal body such that the distance between every pair of its points 

remains unchanged under the action of external forces. The possible displacementsin a rigid 

bodyare translation and rotation. These displacements are called rigid displacements. In 

translation, each point of the rigid body moves in a fixed direction. In rotation about a line, 

every point of the body (rigid) moves in a circular path about the line in a plane perpendicular to 

the line. 

  

 

 

 

 

 

In a rigid body motion, there is a uniform motion throughout the body. 

 
P 

line Figure 4.1 



Elastic Body: A body is called elastic if it possesses the property of recovering its original shape 

and size when the forces causing deformation are removed. 

Continuous Body: In a continuous body, the atomistic structure of matter can be disregarded 

and the body is replaced a continuous mathematical region of the space whose geometrical 

points are identified with material points of the body. 

 The mechanics of such continuous elastic bodies is called mechanics of continuous. This 

branch covers a vast range of problem of elasticity, hydromechanics, aerodynamics, plasticity 

and electrodynamics, seismology, etc. 

Deformation of Elastic Bodies: The change in the relative position of points in a continuous is 

called deformation, and the body itself is then called a strained   body. The study of deformation 

of an elastic body is known a s the analysis of strain. The deformation of the body is due to 

relative movements or distortions within the body. 

4.2 TRANSFORMATION OF AN ELASTIC BODY 

We consider the undeformed and deformed both positions of an elastic body. Let 321 xxox be 

mutually orthogonal Cartesian coordinates fixed in space. Let a continuous body B, referred to 

system 321 xxox , occupies the region R  in the undeformed state. In the deformed state, the 

points of the body B will occupy some region say R . 

 

 

 

 

 

 

 

Let ),,( 321 xxxP be the coordinate of a material point P of the elastic body in the initial or 

unstained state. In the transformation or deformed state, let this material point occupies the 

geometric point ),,( 321 P . We shall be concerned only with continuous deformation of the 

body from region R  into the region R and we assume that the deformation is given by the 

equation 

1x  

3x  

2x  

'P  P  

R  R  

x


 




 

Figure 4.2 



    

),,(

),,(

),,(

32133

32122

32111

xxx

xxx

xxx













           (4.2.1) 

The vector 


PP is called the displacement vector of the point P and is denoted by iu . 

Thus,       

iii xu  : 3,2,1i                                              (4.2.2) 

or    iii xu  : 3,2,1i                                              (4.2.3) 

Equation (4.2.1) expresses the coordinates of the points of the body in the transformed state in 

terms of their coordinates in the initial undeformed state. This type of description of 

deformation is known as the Lagrangian method of describing the transformation of a 

coordinate medium. 

Another method, known as Euler’s method expresses the coordinates in the undeformed state 

in terms of the coordinates in the deformed state. 

The transformation (4.2.1) is invertible when 

     0J  

Then, we may write 

    ),,( 321 ii xx  : 3,2,1i                       (4.2.4) 

In this case, the transformation from the region R  into region R is one to one. Each of the 

above description of deformation of the body has its own advantages. It is however; more 

convenient in the study of the mechanics of solids to use Lagrangian approach because the 

undeformed state of the body often possesses certain symmetries which make it convenient to 

use a simple system of coordinates. 

A part of the transformation defined by equation (4.2.1) may represent rigid body motion. 

(i.e.translations and rotations) of the body as a whole. This part of the deformation leaves 

unchanged the length of every vector joining a pair of points within the body and is of no 

interest in the analysis of strain. The remaining part of the transformation (4.2.1) will be called 

pure deformation. Now, we shall learn how to distinguish between pure deformation and rigid 

body motions when the latter are present in the transformation equation (4.2.1) 

 



4.3. LINEAR TRANSFORMATION OR AFFINE TRANSFORAMTION 

Definition: The transformation  

),,( 321 xxxii    

is called a linear transformation or affine transformation when the function i are linear 

functionsof the coordinates 321 ,, xxx . In order to distinguish between rigid motion and pure 

deformation, we consider the simple case in which the transformation (4.2.1) is linear. 

We assume that the general form of the linear transformation (4.2.1) is of the type 

   















,)1(

,)1(

,)1(

333232131303

323222121202

313212111101

xxx

xxx

xxx







                         (4.3.1) 

or 

                                jijijii x)(0    ; 3,2,1, ji                                     (4.3.2) 

where the coefficients ij are constants and are well known. 

Equation (4.3.2) can written in the matrix form as  

   































































3

2

1

333231

232221

131211

303

202

101

1

1

1

x

x

x













                   (4.3.3) 

or  

   

























































3

2

1

333231

232221

131211

303

202

101

x

x

x

u

u

u













                     (4.3.4)  

We can look upon the matrix )( ijij   as an operator acting on the vector ixx 


to give the 

vector 0i . 

If the matrix )( ijij    is non-singular, then we obtain 

    











































3

2

1

303

202

101

1

x

x

x

ijij







                                             (4.3.5) 



which is also linear as inverse of a linear transformation is linear. In fact, matrix algebra was 

developed basically to express linear transformations in a concise and lucid manner. 

Example1.Sum of two linear transformations is a linear transformation. 

Solution. Let  

and               










jijijii

jijijii

x

x

)(

)(

0

0




 ;   3,2,1, ji                                         (4.3.6) 

are two linear transformation and suppose iii   . 

Now, 

  

jijijijii

jijijijijiji

iii

x

xx

}2){(2)(

))(())((

00

00













  )( ijij xx   

  jijijii x)(0             (4.3.7) 

where ijijij   ; 3,2,1, ji  relation (4.3.7) is a linear transformation by definition of 

linear transformation as defined in relation (4.3.2). Hence sum or difference of linear 

transformation is linear transformation. 

Practice1. Show that product of two linear transformation is a linear transformation which is not 

commutative 

Example2.Under a linear transformation, a plane is transformed into a plane. 

Solution. Let  

0 cmzmylx (4.3.8) 

be an equation of plane which is not passes through (0,0,0) in the undeformed state and 

),,( nml are direction ratios of the plane. Let 

    



















































3

2

1
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2

1

x

x

x
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





          (4.3.9) 

Be the linear transformation of points. Let its inverse be  



    


















































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2

1
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222

111

3

2

1







NML

NML

NML

x

x

x

                                (4.3.10) 

Then the equation of the plane is transformed to  

0)()()( 332313322212312111  cNMLnNMLmNMLl  (4.3.11) 

or 0)()()( 332123211321  cnNmNlNnMmMlMnLmLlL   

    0321  c                                (4.3.12) 

Relation (4.3.12) is again an equation of a plane in terms of new coordinates ),,( 321  . Hence 

the result. 

Practice2.A linear transformation carries line segments into line segments. Thus, it is the linear 

transformation that allows us to assume that a line segment is transformed to a line segment 

and not to a curve. 

4.4. SMALL/ INFINITESIMAL LINEAR DEFORMATIONS 

Definition: A linear transformation of the type jijijii x)(0   ; 3,2,1, ji  is said to be 

a small linear transformation of the coefficients ij  are so small that their products can be 

neglected in comparison with the linear terms. 

Note 1: The product of two small linear transformations is small linear transformation which is 

commutative and the product transformation is obtained by superposition of the original 

transformations and the result is independent of the order in which the transformations are 

performed. 

Note 2:  In the study of fine deformation (as compared to the infinitesimal affine deformation), 

the principle of superposition of effects and the independent of the order of transformations 

are no longer valid. 

 If a body is subjected to large linear transformation, a straight line element seldom 

remains straight. A curved element is more likely to result. The linear transformation then 

expresses the transformation of elements 21PP to the tangent 11TP  to the curve at 1P for the 

curve itself. 

 



 

 

 

 

 

 

 

 

For this reason, a linear transformation is sometimes called linear tangent transformation. It is 

obvious that the smaller the element P1P2, the better approximation of P1
’P2

’by its tangent 11 TP  . 

4.5 HOMOGENEOUS DEFORMATION 

Suppose that a body B , occupying the region R in the undeformed state, is transformed to the 

region R under the linear transformation.  

jijijii x)(0                                             (4.5.1) 

referred to orthogonal Cartesian system 321 xxox . Let 321 ˆ,ˆ,ˆ eee be the unit base vectors directed 

along the coordinate axes 321 ,, xxx . 

 

  

 

 

 

 

 

 

 

Let ),,( 1312111 xxxP and ),,( 2322212 xxxP be two points of the elastic body in the initial state. 

Let the positions of these points in the deformed state, due to linear transformation (4.3.2), be 
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),,( 1312111 P and ),,( 2322212 P . Since transformation (4.3.2) is linear, so the line segment 

21PP  is transformed into a line segment 21PP  . 

Let the vector 21PP  has component iA and vector 21PP  has components iA . Then 

 iieAPP ˆ21  , iii xxA 12  (4.5.2) 

and 

 iieAPP ˆ21  , iiiA 12                                                 (4.5.3) 

Let  iii AAA                                                                      (4.5.4) 

be change in vector iA . The vectors iA and iA , in general, differ in direction and magnitude. 

From equations (4.5.1), (4.5.2) and (4.5.3), we write 
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               (4.5.5) 

Thus, the linear transformation (4.3.2) changes the vector iA into vector iA  where 
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or 
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                                           (4.5.7) 

Thus, the linear transformation (4.3.2) or (4.5.6) or (4.5.7) are all equivalent. From equation 

(4.5.6), it is clear that two vectors iA and iB whose components are equal transform into two 

vectors iA and iBwhose components are again equal. Also two parallel vectors transform into 

parallel vectors transformation into parallel vectors. 



Hence, two equal and similarly oriented rectilinear polygons located in different part of the 

region R will be transformed into equal and similarly oriented polygons in the transformed 

region R under the linear transformation (4.5.1). 

Thus, the different parts of the body B, when the latter is subjected to the linear transformation 

(4.5.1), experience the same deformation independent of the position of the part of the body. 

For this reason, the linear deformation (4.5.1) is called a homogeneous deformation. 

Theorem: Prove that the necessary and sufficient condition for an infinitesimal affine 

transformation 

   i = 0i +( ij + ij ) jx  

to represent a rigid body motion is that the matrix ij is skew-symmetric  

Proof: With reference to an orthogonal system 
321 xxox fixed in space, let the line segment 

21PP  of the body in the undeformed state be transferred to the line segment 
'

2

'

1 PP in the 

deformed state due to infinitesimal affine transformation   

   i = 0i  
+ ( ij + ij ) jx

                                         
(4.5.8) 

In which ij  are known as constants. Let i  be vector 21PP   and i  be the vector
'

2

'

1 PP  

 

 

 

 

 

 

 

 

Then  

   ioii xxA  , iA= i -
0i

                                      
(4.5.9) 

 Let                     iii AAA 
                                                     

(4.5.10) 
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From (4.5.9) and (4.5.10), we find  

    
0iiiA    

      = )()( 000 ijoijiijiji xxxx    

     = )()( 00 jjijii xxxx    

      = jiji AA   

This gives  

    jijiii AAAA   ' .                            (4.5.11) 

Let A denotes the length of the vector. Then  

   
2

3

2

2

2

1 AAAAAAA iii 
                     

(4.5.12) 

Let A denotes the change in length A due to deformation. Then  

    ii AAA                                             (4.5.13) 

It is obvious that iAA   ,but  

   iiiiii AAAAAAA  ))((   

This imply 

   (A+ ))(()2

iiii AAAAA    

Or 

   )(2))((2)( 2

iiii AAAAAAA                     (4.5.14)    

Since the linear transformation (4.5.8) or (4.5.11) is small,the term 
2)( A and ))(( ii AA  are to 

be neglected in (4.5.14). Therefore,after neglecting these terms in(4.5.14), we write 

   ii AAAA  22  , 

or 

   332211 AAAAAAAAAA ii   (4.5.15) 

Using (4.5.11), equation (4.5.15) becomes 

    )( jiji AAAA    



    = jiij AA  

323223133113212112

3

333

2

222

2

111 )()()( AAAAAAAAA  
  

(4.5.16) 

Case 1: suppose that the infinitesimal linear transformation (4.5.9) represent a rigid body 

motion.Then, the length of the vector iA before deformation and after deformation remains 

unchanged. 

That is   

    0A                                                    (4.5.17) 

For all vectors iA  

Using (4.5.16), we then get  

13311332322321`2112

2

333

2

2221
2

11 )()()( AAAAAAAAA  
   

(4.5.18) 

For all vectors iA .This is possible only when 

   0332211   , 

   0322331132112   , 

i.e.,   jiij   ,    for all   i& j                                (4.5.19) 

i.e. , the matrix ij  is skew- symmetric. 

Case 2:suppose ij is skew-symmetric. Then, equation (4.5.16) shows that  

   0AA                                                           (4.5.20) 

For all vectors iA . This implies  

   0A                                                             (4.5.21) 

For all vectors iA  

This shows that the transformation (4.5.8) represents a rigid body linear small transformation. 

This completes the proof of the theorem. 

Remarks :when the quantities ij  are skew –symmetric , then the linear infinitesimal  

transformation. 



   jiji AA     

Equation (4.5.19) takes the form  

   3132211 AAA    

   3321212 AAA    

   2321132 AAA                                              (4.5.22)  

Let    23321  w   

   31132  w  

   12213  w
                                                  

(4.5.23) 

Then, the transformation (4.5.22) can be written as the vectors product 

   AwA  ,                                                                      (4.5.24) 

Where iww   is the infinitesimal rotation vector. Further  

   iii AAA 


  

         = )()(
00

iiii xx   

   ==
0

ii xx  
                                                       

(4.5.25) 

This yield  

   iii Axx  
0

, 

iii Axx  
0

, 

or 

  )(
0

Awxx ii  
                                                     

(4.5.26) 

Here, the quantities  

   
000

iii xx    

arethe components of the displacement vector representing the translation of the point 
0P and 

the remaining terms of (4.5.26) represent rotation of the body about the point
0P . 



4.6    PURE DEFORMATION AND COMPONENTS OF STRAIN TENSOR  

We consider the infinitesimal linear transformation 

   jiji AA   (4.6.1) 

Let    )(21 jiijijw                                                  (4.6.2) 

and 

   )(
2

1
jiijije                                                      (4.6.3) 

Then the matrix ijw is anti-symmetric while ije is symmetric. 

Moreover, 

   ijijij we  (4.6.4) 

and this decomposition of ij  as a sum of s symmetric and skew-symmetric matrices is unique. 

From (4.6.1) and (4.6.4), we write 

   jijjiji AwAeA                                                     (4.6.5)  

This shows that the transformation of the components of a vector iA  given by 

   jiji AwA                                                               (4.6.6) 

represent rigid body motion with the component of rotation vector iw given by  

   213132321 ,, wwwwww 
                                    

(4.6.7) 

and the transformation  

   jiji AeA  ,                                                             (4.6.8) with  

  jiij ee  ,                                                                 (4.6.9)  

represents a pure deformation. 

STRAIN COMPONENTS:  The symmetric coefficients, ije , in the pure deformation  

   jiji AeA   

are called the strain components. 



Note (1): These components of straincharacterizepure deformation of the elastic body. Since 

jA and iA  are vectors (each is a tensor of order 1),therefore,by quotient law, the strains 

components ije  form a tensor of order 2. 

Note 2: For most materials / structures, the strains are of the order 310

, such strains certainly 

deserve to be called small. 

Note 3: The strain components 332211 ,, eee  are called normal strain components while 

323121231312 ,,,,, eeeeee  are called shear strain components, 

Example: For the deformation defined by the linear transformation  

  3213212211 ,2, xxxxxxx   , 

Find the inverse transformation of rotation and strain tensor, and axis of rotation. 

Solution:The given transformation is express as  
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and its inverse transformation is  
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                                        (4.6.11)  

giving 
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1
211  x , 

   )(
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1
212  x  

   313  x                                                            (4.6.12) 



comparing (4.6.10) with           

   jijiji x)(                                                  (4.6.13) 

We find  

   





















211

031

010

ij                                              (4.6.14) 

Then   
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and 
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                                                   (4.6.16)  

and 

   ijijij ew                                                         (4.6.17)  

The axis of rotation is  

   iieww ˆ  

where 

   
2

1
321  ww , 

   
2

1
132  ww , 

   0213  ww                                                   (4.6.18) 

 



 

 

 

4.7 GEOMETRICAL INTERPRETATION OF THE COMPONENTS OF STRAIN 

Normal strain component
11e : 

Let ije  be the components of strains the pure infinitesimal linear deformation of a vector iA  is 

given by  

   jiji AeA 
                                                        

(4.7.1) 

with jiij ee  . 

Let edenotes the extension (or change) in length per unit length of the vector iA with magnitude 

A.Then, by definition, 

   
A

A
e


                                                               (4.7.2)  

We note that e is positive or negative upon whether the material line element iA experiences an 

extension or a contraction. Also, 0e , if and only if the vector A retains its length during a 

deformation.This number e is referred to as the normal strain of the vector iA .Since the 

deformation is linear and infinitesimal, we have (proved earlier) 

    ii AAAA   (4.7.3) 

Or                                             2A

AA

A

A ii
    

Now from (4.7.1) and (4.7.3), we write  
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A
e ii

 . 

This implies  
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(4.7.4) 

Since jiij ee   



In particular,we consider the case in which the vector iA in the underformed state is parallel to 

the 
1x -axis. Then  

   0, 321  AAAA                                               (4.7.5) 

Using (4.7.5), equation (4.7.4) gives 

   
11ee  .                                                               (4.7.6) 

Thus, the component 
11e  of the strain tensor, to a good approximation to the extension or 

change in length of a material line segment (or fiber of the material) originally placed parallel to 

the 
1x -axis in the undeformed state. 

Similarly, normal strains 22e and 33e are to be interpreted. 

Illustration: let 
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000

000

0011e

eij  

Then all unit vectors parallel to the 
1x -axis will be extended by an amount

11e . In this case, one 

has a homogeneous deformation of material in the direction of the 1x -axis. A cube of material 

whose material whose edges before deformation are L unit along will become (after 

deformation due to ije ) a rectangular parallelepiped whose dimension in the direction of the 
2x

- and 3x - axes are unchanged. 

Remark: The vector  

   
 0,0,AAA i   

is changed to (due to deformation)  

     33211
ˆˆˆ eAeAeAAA    

in which  

   11AeAeA ijiji   

gives 

Thus     AeAeAeAA 131211 ,,  



this indicates that vector  0,0,AAi   upon deformation,in general, changes its orientation 

also.This length of the vector due to deformation becomes  Ae111 . 

 

 

Question: From the relation jiji AeA  , find A and iA for a vector lying initially along x-axis 

(i.e., 1̂eAA  ) and justify the fact that 11e
A

A



. Does iA

 
lie along the x-axis? 

Answer: It is given that  0,0,AAi  . The given relation  

   jiji AeA 
                                                         

(4.7.7) 

Gives 

   AeAAeAAeA 133122111 ,,                               (4.7.8) 

Thus, in general, the vector iA  does not lie along the x-axis. 

Further  
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111121 eeeeA  .                (4.7.9) 

Neglecting square terms as deformation is small, equation (4.7.9) gives  
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21 eAAA  , 

1̂eAAi   
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Figure. 4.6 
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222 22 eAAAAA    
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222 eAAA   

    11e
A

A



.                                                   (4.7.10) 

This shows that 
11e  gives the extension of a vector (A, 0, 0) per unit length due to deformation. 

Remarks: the strain components ije refer to the chosen set of coordinate axes. If the axes 

changed, the strain component ije will, in general, changes as per tensor transformation laws. 

Geometrical interpretation of shearing Stress 23e : 

The shearing strain component 23e may be interpreted by considering intersecting vectors 

initially parallel to two coordinate axes -
2x -and 3x -axis  

Now, we consider in the undeformed state two vectors. 

  22êAA  , 

  33êBB                                                                           (4.7.11) 

directed along 
2x -and 3x -axis, respectively. 

The relations of small linear deformation are  

  jiji AeA  , 

  3BeB iji  ,                                                                      (4.7.12) 

Further, the vectors iA and iB due to deformation become (figure 4.7) 
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Let  be the angle between Aand B . Then  
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Since , the deformation is small , we may neglect the product of the changes in the components 

of the vector iA  and iB .Neglecting these product , equation (4.7.11) gives  

      1
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223322cos
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Neglecting other terms,this gives  

  
2

3

3

2cos
A

A

B

B 
                                                         (4.7.15) 
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Neglecting the product terms involving changes in the components of the vectors iA and iB . 

Since in formula (4.7.15), all increments in the components of initial vectors on  assuming 

(without loss of generality)  

   021  AA  , 

And    031  BB    , 

can be represented as shown in the figure below (it shows that vector


iA and 


iB  lie in the 32xx

-plane). We call that equation (4.7.13) now may be taken as 

   3322
ˆˆ eAeAA  , 

   3322
ˆˆ eBeBB                                                 (4.7.16) 

  

Form equation (4.7.11) and 4.7.12), we obtain 

  2323 AeA  , 

  3232 BeB                                                                         (4.7.17) 

This gives  
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Figure 4.8 
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
                                                    (4.7.18) 

 OQQTAN
B

B
e 

3

2
23


                                                (4.7.19) since strain 

3223 ee  are small, so  

  23eOQQOPP  , 

And here  

  


 
2

902 23

oe                                                     (4.7.20) Thus, a 

positive value of 232e  represents the decrease in the right angle between the vectors iA and iB

due to small linear deformation which were initially directed along the positive 
2x and 3x -axes. 

The quantity / strain component 23e is called the shearing strain. 

A similar interpretation can be made for the shear strain components of material arcs. 

Remarks 1: By rotating the parallelogram QPOR   throw an angle 23e about the origin (in the 

32xx  -plane), we obtain the following configurations (figure 4.9) 

  

Thisfigure shows a slide or a shear of planar elements parallel to the 21xx plane. 
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Figure 4.9 



Remarks 2: Figure shows that areas of rectangle OQRP and the parallelogram PRQO   are 

equal as they have the same height and same base in the 32xx -plane. 

Remarks 3:For the strain tensor
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






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





00

00

000

32

23

e

e ,  

A cubical element is deformed into a parallelepiped and the volumes of the cube and 

parallelepiped remain the same.Such a small linear deformation is called a pure shear. 

 

4.8 NORMAL AND TANGENTIAL DISPLACEMENTS 

Consider a point P ),,( 321 xxx  of the material. Let it be moved to Q under a small linear 

transformation. Let the components of the displacement vector PQ  be 321 ,, uuu . In the plane 

OPQ, let nPN   be the projection of PQ  on the line OPN and let tPT   be the tangential of 

PQ  in the plane of OPQ or PQN. 

Definition: vectors n and t are, respectively, called the normal and the tangentialcomponents of 

the displacement of P. 

Note: The magnitude n of normal displacement n is given by the dot product of vectors 

),,( 321 xxxOP   and  .,, 321 uuuPQ   

the magnitude t of tangential vector t is given the vector product of vectors OP  and PQ  ( this 

does not give the direction of t ). 



 

Thus  

  
OP

PQOP
NPQn

.
cos  , 
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NPQPQt


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sin , 

And 
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22 uuutn  . 
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CHAPTER-V 

STRAIN QUADRIC OF CAUCHY 

5.1 Strain Quadric of Cauchy 

Let  0

3

0

2

0

1

0 ,, xxxP  be any fixed point of a continuous medium with reference axis  

0 321 xxx  fixed in space. We introduce a local system of axis with origin at point 
0P and with axes 

parallel to the fixed axes (figure 5.1) 

  

with reference to these axes, consider the equation  

  
2kxxe jiij                                                                   (5.1.1) 

where k is a real constant and is the strain tensor at 0P . This equation represents a quadric of 

Cauchy. The sign + or – in equation (5.1.1) be chosen so that the quadric surface (5.1.1) becomes 

a real one. The nature of this quadratic surface depends on the value of the strain ije . 

If 0ije , the quadratic is either an ellipsoid or a hyperboloid. 

If 0ije , the quadratic surface degenerates into a cylinder of the elliptic or hyperbolic type or 

else into two parallel planes symmetrically situated with respect to the quadric surface. 

P 

x1 

x2 

x3 

x1 

x2 

x3 

)( 00

ixP  

Figure 5.1 



This strain quadric is completely determined once the strain components ije at point 
 0P are 

known. Let PP0  be the radius vector iA of magnitude A to any point  321 ,, xxxP , referred to 

local axis, on the strain quadric surface (5.1.1). Let e  be the extension of the vector iA due to 

some linear deformation characterized by 

 jiji AeA  ,                                                                           (5.1.2) 

Then, by definition, 

 
22 A

AA

A

AA

A

A
e ii

  

This gives 

 
2A

AAe
e

jiij
                                                                   (5.1.3) 

using (5.1.2) 

Since iAPP 0
and the coordinate of point P, on the surface (5.1.1), relative to

0P are  321 ,, xxx

, it follows that 

 ii xA                                                                                 (5.1.4) 

From equation (5.1.1), (5.1.2) and (5.1.4); we obtain 

   
22 kxxeAAeeA jiijjiij   

Or    
2

2

A

k
e                                                                  (5.1.5) 

Result (1): Relation (5.1.5) shows that the extension or elongation of any radius vector iA of the 

strain quadric of Cauchy, given by equation (5.1.1), is inversely proportional to the length ‘A’ of 

any radius vector this deformation the elongation of any radius vector of the strain quadric at 

the point )( 00

ixP . 

Result (2): we know that the length ‘A’ of the radius vector iA  of strain quadric (5.1.1) at the 

point )(
00

ixP has maximum and minimum values along the axes of the quadric. In general, axes 

of the strain quadric (5.1.1) differs from the coordinates axes through  00

ixP . Therefore, the 



maximum and minimum extensions or elongation of the radius vectors of strain quadric (5.1.1) 

will be along its axes. 

Result (3): Another interesting property of the strain quadric (5.1.1) is that normal iv to this 

surface at the end point P of the vector iAPP 0
 is parallel to the displacement vector iA . 

To prove this property, let us write equation (5.1.1) in the form  

   02  kxxeG ijij                                                 (5.1.6) 

Then the direction of the normal v̂  to the strain quadric (5.1.6) is given by the gradient of the 

scalar function G. The components of the gradient are  

   kjiijjikij

k

xexe
x

G
 




 

          = iikjkj xexe   

          = jkj xe2  

Or 

   k

k

A
x

G
2




                                                            (5.1.7) 

This shows that vector 
kx

G




and vector kA are parallel. Hence, the vector A is directed along 

the normal at P to the strain quadric of Cauchy. 

5.2 STRAIN COMPONENTS AT A POINT IN A ROTATION OF COORDINATE AXES 

Let new axes 


3210 xxx  be obtained from the old reference system 3210 xxx by a rotation. Let the 

directions of the new axes 


ix be the specified relative to the old system ix by the following table 

of direction cosines in which pi is the cosine of the angle between the px  -and ix axis. 



  

That is     ippi xx ,cos  .  

Thus  

 

3332313

2322212

1312111

321







x

x

x

xxx






 

Then the transformation law for coordinates is 

   ppii xx                                                                  (5.2.1) 

Or    ipip xx                                                                 (5.2.2) 

The well –known orthogonality relations are  

   pqqipi                                                              (5.2.3) 

   ijpjpi                                                               (5.2.4) 

with reference to new px -system, a new set of strain components pqe  is determined at the  

point o  while ije are the components of strain at o relative to old axes 321 xxox . 

Let  

  
2kxxe jiij                                                                        (5.2.5) 
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be the equation of the strain quadric surface relative to old axis. The equation of quadric surface 

with reference to new prime system becomes  

  
2kxxe qppq                                                                      (5.2.6) 

As we know that quadric form is invariant w. r. t. an orthogonal transformation of coordinates. 

Further, equation (5.2.2) to (5.2.6) together yield  

   jiijqppq xxexxe   

    =   qqjppiij xxe    

     =   qpqjpiij xxe   

Or  

   0)( 
qpijqjpipq xxee                                           (5.2.7) 

Since equation (5.2.7) is satisfied for arbitrary vector px , we must have  

   ijqjpipq ee                                                           (5.2.8) 

Equation (5.2.8) is the law of transformation for second order tensors. We, therefore, conclude 

that the components of strain form a second order tensor. 

Similarly, it can be verified that  

   pqqjpiij ee                                                           (5.2.9) 

Question: Assuming that ije is a tensor of order 2, show that quadratic form jiij xxe is an 

invariant. 

Solution: We have  

   pqqjpiij ee    

So,    jipqqjpijiij xxexxe    

             =   jqjipipq xxe   

   = qppq xxe  .                                                        (5.2.10) 

Hence the result 

5.3 PRINCIPAL STRAINS AND INVERIANTS 



From a material point  00

ixP , there emerge infinitely many material arcs/ filaments, and each 

of these arcs generally changes in length and orientation under a deformation. We seek now the 

lines through  00

ixP  whose orientation is left unchanged by the small linear deformation given 

by  

   jiji AeA                       (5.3.1) 

where the strain components ije  are small and constant. In this situation, vectors iA and iA  are 

parallel and, therefore, 

   ii eAA                                                                   (5.3.2) 

for some constant e. 

Equation (5.3.2) shows that the constant e represents the extension. 
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A
e
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of vector iA . From equation (4.11.1) and (4.11.2), we write  

   ijij eAAe   

                   = jij Ae                                                            (5.3.3) 

This implies 

    0 jijij Aee                                                                  (5.3.4) 

We know that ije is a real symmetric tensor of order 2. The equation (5.3.3) shows that the 

scalar e  is an eigen value of the real symmetric tensor ije with corresponding eigenvector iA . 

Therefore, we conclude that there are precisely three mutually orthogonal direction are not 

changed on account of deformation and these direction coincide with the three eigenvectors of 

the strain tensor ije .These directions are known as principle direction of strain. Equation (5.3.4) 

gives us a system of three homogeneous equations in the unknown 321 ,, AAA . This system 

possesses a non-trivial solution if and only if the determination of the coefficients of the 

321 ,, AAA  is equal to zero, i.e., 



  0

3331

232221

131211

32









eeee

eeee

eeee

                                               (5.3.5) 

which is cubic equation in e. 

Let 321 ,, eee be the three roots of equation (5.3.5), these are known as principal strains. 

Evidently, the principal strains are the eigenvalues of the second order real symmetric strain 

tensor ije . Consequently, these principal strains are real (not necessarily distinct). Physically, the 

principal strains 321 ,, eee (all different) are the extensions of the vectors, say iA , in the principal 

/ invariant of strain. So, vectors iii AAAA  ,, are collinear. At the point
0P consider the 

strain quadric     

  
2kxxe jiij                                                                         (5.3.6) 

For every principal direction of strain iA , we know that iA is normal to the quadric surface 

(5.3.6).  Therefore, the principal directions of strain are also normal to the strain quadric of 

Cauchy. Here, principal direction of strain must be the three principal axes of the strain quadric 

of Cauchy. If some of the principal strains ie are equal, then the associated directions become 

indeterminate but one can always select three directions that all mutually orthogonal If the 

321 eee  , then the quadric surface of Cauchy is a surface revolution and our principal 

direction, say 1

~
A , will be directed along the axis of revolution. 

In this case, any two mutually perpendicular vectors lying in the plane normal to 1

~
A may be 

taken as the other two principal directions of strain. 

If 321 eee  , then strain quadric of Cauchy becomes a sphere and any three orthogonal 

directions may be chosen as the principal directions of strain.  

Result: If the principal directions of strain are taken as the coordinate axes, then  

   333222111 ,, eeeeee   

And    0231312  eee , 

As a vector initially along an axis remains in the same direction after deformation (so change in 

right angles are zero). In this case, the strain quadric Cauchy has the equation. 



  22

3

2

3

2

22

2

11 kxexexe                                                       (5.3.7) 

Result 2: Expanding the cubic equation (5.3.5), we write  

  032

2

1

3  veveve  

where        3322111 eeev   

      =  Etreii  ,                                                                  (5.3.8) 

  2

12

2

13

2

231133332222112 eeeeeeeeev   

       =    jiijjjii eeeeEtr 
2

12 ,                                             (5.3.9) 

  kjiijk eeev 3213   

       =  3Etreij                                                                 (5.3.10) 

Also 321 ,, eee are roots of a cubic equation (5.3.8), so  
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                                                        (5.3.11) 

We know that eigenvalues of a second order real symmetric tensor are independent of the 

choice of the coordinate system. 

It follows that 321 ,, vvv are given by (5.3.10) three invariants of the strain tensor ije with respect 

to an orthogonal transformation of coordinates. 

Geometric meaning of the first strain invariant iie  

The quantity iie  has a simple geometric meaning. Consider a volume element in the form of 

rectangle parallelepiped whose edges of length 321 ,, lll are parallel to the direction of strain. 

Due to small linear transformation /deformation, this volume element becomes again rectangle 

parallelepiped with edges of length      332211 1,1,1 elelel  , where 321 ,, eee  are principal 

strains. Hence, the change V in the volume V of the element is  

 
    321321321 111 llleeelllV   

    =   321321321 1 llleeelll  ,                ignoring small strains ie . 



   =  321321 eeelll   

This implies  

 


 321 eee
V

V
 

Thus the first strain invariant  represents the change in volume per unit initial volume due to 

strain produced in the medium. The quantity  is called the cubical dilatation or simply the 

dilatation. 

Note: If 321 eee   then 3e is called the minor principal strain, 2e is called the intermediate 

principal strain, and 1e is called the major principal strain. 

Question: For small linear deformation, the strains ije are given by  

  

 
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eij  ,          constant 

Find the strain invariants, principal strain and principal direction of strain at the point P(1,1,0). 

Solution: The strain matrix at the point P(1,1,0) becomes  

    









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













400

0

0

ije ,  

whose characteristics equation becomes  

      042   eee . 

Hence, the principal strains are  

    4,2,0 321  eee . 

The three scalar invariants are  

 0,8,6 3

2

23211  vveeev   

The three principal unit directions are found to be  
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Exercise: The strain field at a point P(x, y, z) in an elastic body is given by 
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Determine the strain invariant and the principal strains. 

Question: Find the principal directions of strain by finding the extremal value of the extension

. OR, Find the direction in which the extension   is stationary. 

Solution: Let   be the extension of a vector iA due to small linear deformation  

   jiji AeA                                                           (5.3.12)  

Then  

   
A

A
                                                                   (5.3.13) 

We know that for an infinitesimal linear deformation (5.3.12), we have  

   ii AAAA                                                         (5.3.14) 

Thus    
222 A

AAe

A

AA

A

AA jiijii 


                                  (5.3.15) 

Let    i
i a

A

A
                                                                  (5.3.16) 

Then    1iiaa                                                     (5.3.17) 

And equation (5.3.15) then gives  

   jiij aaeaaae ),,( 321                                            (5.3.18) 

Thus the extension ie is a function of 321 ,, aaa  which are not independent because of relation 

(5.3.17). The extreme/stationary (or max/min) values of the extension e are to be found by 

making use of Lagrange’s method of multipliers. For this purpose, we consider the auxiliary 

function  

      1,, 321  iijiij aaaaeaaaF                           (5.3.19) 



where  is a constant. 

In order to find the values of 32,, aaai  for which the function (5.3.18) may have a maximum or 

minimum, we solve the equations. 

   0




ka

F
,   k=1, 2, 3.                                            (5.3.20) 

Thus, the stationary values of e are given by  

     02  ikijkijikij aaae   

Or    02  kiikjkj aaeae   

Or    022  kiki aae   

Or    kiki aae  .                                                          (5.3.21) 

This shows that  is an eigenvalue of the strain tensor ije and ia  is the corresponding 

eigenvector. Therefore, equation in (5.3.21) determines the principal strains and the 

stationary/extreme values are precisely the principal strains. 

Thus, the extension e  assumes the stationary values along the principal direction of strain and 

the stationary/extreme values are precisely the principal strains. 

Remarks: Let M be the square matrix with eigenvectors of the strain tensor ije as columns. That 

is  
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333231
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M  

Then     ijij AeAe 111   

   ijij AeAe 222   

   ijij AeAe 333   

The matrix M is called the modal matrix of strain tensor ije . 

Let  

      321 ,,, eeediaDeE ij  . 



Then, we find  

   EM=MD 

Or    DEMM 1
. 

This shows that the matrices E and D are similar. 

We know that two similar matrices have the same eigenvalues. Therefore, the characteristic 

equation associated with EMM 1
 is the same as the one associated with E. Consequently, 

eigenvalues of E and D are identical. 

Question: Show that, in general, at any point of the elastic body there exists (at least) three 

mutually perpendicular principal directions of the strain due to an infinitesimal linear 

deformation. 

Solution: Let 321 ,, eee be the three principal strains of the strain tensor ije . Then, they are the 

roots of the cubic equation  

       0321  eeeeee  

And    iieeeeeee  332211321 , 

    jiijjjii eeeeeeeeee 
2

1
133221 , 

   kjiijkij eeeeeee 321321  . 

 We further assume that coordinate axes coincide with the principal directions of strain. Then, 

the strain components are given by  

   333222111 ,, eeeeee  , 

   0231312  eee , 

and the strain quadric of Cauchy becomes 

   22

33

2

22

2

11 kxexexe  .                                      (5.3.22) 

Now, we consider the following three possible cases for principal strains. 

Case: 1 When 321 eee  . In this case, it is obvious that there exists three mutually orthogonal 

eigenvectors of the second order real symmetric strain tensor ije . These eigenvectors are 

precisely the three principal directions that are mutually orthogonal. 



Case: 2 When 321 eee  . 

Let iA1 and iA2 be the corresponding principal orthogonal directions corresponding to strains 

(distinct) 1e and 2e , respectively. Then  

   ijij AeAe 111   

   ijij AeAe 222                                                          (5.3.23) 

Let ip be a vector orthogonal to both iA1 and iA2 . Then   

   021  iiii ApAp                                                   (5.3.24) 

Let    jiij qpe                                                                (5.3.25) 

Then       011111  iiijijjiijjj pAepAeApeAq                       (5.3.26a) 

similarly    02 jj Aq                                                            (5.3.26b) 

This shows that the vector jq is orthogonal to both jA1 and jA2 . Hence, the vectors iq and ip

must be parallel. Let  

   ii pq                                                                (5.3.27) 

for some scalar . From equation (5.3.25) and (5.3.27), we write  

   iijij pqpe                                                   (5.3.28) 

which shows that the scalar  is an eigenvalue /principal strain tensor ije with corresponding 

principal direction ip . Since ije has only three principal strains ,, 21 ee and two of these are 

equal, so  must be equal to 32 ee  . We denote the normalized form of ip by iA3 . This shows 

the existence of three mutually orthogonal principal directions in this case. Further, let iv be any 

vector normal to iA1 . Then iv lies in the plane containing principal directions iA2 and iA3 . Let  

   iii AkAkv 3221     for some constant 1k and 2k   (5.3.29) 

Now     jjijjij AkAkeve 3221   

           =    jijjij AekAek 3221   

           =    ii AekAek 332221   



           =  ii AkAke 32212   32 ee   

            = ive2  

This shows that the direction iv is also a principal directions strain 2e . Thus, in this case, any two 

orthogonal (mutually) vectors lying on the plane normal to iA1 can be chosen as the other two 

principal directions. In this case, the strain quadric surface is a surface of revolution. 

Case3: when 321 eee  , then the strain quadric of Cauchy is a sphere with equation  

     22
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2

2
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11 kxxxe   

Or    
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2

2

1
e

k
xxx   

and any three mutually orthogonal directions can be taken as the coordinate axes which are 

coincident with principal directions of strain. Hence, the result. 

5.4 GENERAL INFINITESIMAL DEFORMATION  

Now we consider the general functional transformation and relation to the linear deformation. 

Consider an arbitrary material point  00

ixP in a continuous medium. let the same material point 

assume after deformation the point  00

iQ  . Then  

    0

3

0

2

0

11

00 ,, xxxuxii                                             (5.4.1)  

where iu are the components of the displacement vector
00QP . We assume that as well as 

their partial derivatives is a continuous function. The nature of the deformation in the 

neighborhood of the point 
0P can be determined by considering the change in the vector

iAPP 0 ; in undeformed state. 

Let  321 ,, Q  be the deformed position of P. then the displacement iu at the point P is  

     iii xxxxu 321 ,,                                                (5.4.2) 

The vector    
0

iii xxA                                                              (5.4.3) 

Has now deformed to the vector  

   iii A 0  (say)                                                   (5.4.4) 



Therefore,    iii AAA   

          =    00

iiii xx   

          =    00

iiii xx    

          =    0
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1321 ,,,, xxxuxxxu ii   

          =    0

3

0

2

0

13

0

32

0

21

0

1 ,,,, xxxuAxAxAxu ii   

          =
j

j

i A
x

u


















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plus the higher order terms of  Taylor’s series. The subscript o indicates that the derivatives are 

to be evaluated at the point
0P . If the region in the neighborhood of 

0P is chosen sufficiently 

small, i.e. if the vector iA is sufficiently small, then the product terms like ji AA , may be ignored. 

Ignoring the product terms and dropping the subscript 0  in (5.4.5), we write  

   jjii AuA ,                                                          (5.4.6) 

where the symbol jiu , has been used for
j

i

x

u




. Result (5.4.6) holds for small vectors iA . If we 

further assume that the displacements iu as well as their partial derivatives are so small that 

their products can be neglected, then the transformation (which is linear) given by (5.4.4) 

becomes infinitesimal in the neighborhood of the point 
0P under consideration and 

   jiji AA                                                                 (5.4.7) 

with                                         jiij u ,                                              (5.4.8) 

Hence, all results discussed earlier are immediately applicable. The transformation (5.4.6) can be 

spited into deformation and rigid body motion as  

 j

ijjiijji

jjii A
uuuu

AuA 






 
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
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22
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,  

       = jijjij AwAe                                                                 (5.4.9)  

Where    ijjiij uue ,,
2

1
                                                               (5.4.10) 



   ijjiij uuw ,,
2

1
           (5.4.11) 

The transformation  

  jiji AeA                        (5.4.12) 

represents pure deformation and  

  jiji AwA                                                                         (5.4.13) 

represents rotation. In general, the transformation (5.4.9) is no longer homogeneous as both 

strain components ije and components of rotation ijw are function of the coordinates. We find  
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u
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i

i
ij 




 ,                                                   (5.4.14) 

That is, the cubic dilatation is the divergence of the displacement vector u and it differs, in 

general, from point of the body. The rotation vector iw is given by  

  213132321 ,, wwwwww  .                                             (5.4.15) 

Question: For the small linear deformation given by 

    33212121
ˆ2ˆˆ exxxeexxu   ,  =constant. 

Find the strain tensor, the rotation and the rotation vector. 

Solution: We have 

   3213212211 2,, xxxuxxuxxu   . 

Then strains are given by 
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We know that  
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We find  

 0332211  www  

    212112
2

wxxw 


, 31313 wxw  
,
 32323 wxw    

Therefore  
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The rotation vector iww  is given by kjijki uw  . We find 

  1221331323321
2

,, xxwwxwwxww 


  

So      312213
ˆ

2
ˆˆ exxeexw 




                                         
(5.4.18) 

Exercise 1: For small deformation defined by the following displacement, find the strain tensor, 

rotation tensor and rotation vector. 

(i) 0,, 3212321  uxxuxxu   

(ii)       ,,, 213

2

32
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1 xxuxxuxxu constant            (5.4.19) 

Exercise 2: the displacement components are given by 

  yxwxzvyzu ,,,  calculate the strain components.              (5.4.20) 

Exercise 3: Given the displacements 

 yzzwxzyvyxu 26,6,3 222   

Calculate the strain components at the point (1, 0, 2). What is the extension of a line element 

(parallel to the x- axis) at this point?                                                      (5.4.21) 



Exercise 4: Find the strain components and rotation components for the small displacement 

components given below 

(a) Uniform dilation- u=ex, v=ey, w=ez 

(b) Simple extension- u=ex, v=w=0 

(c) Shearing strain- u=2sy, v=w=0 

(d) Plane strain-   u=u(x, y), v=v(x, y), w=0                                    (5.4.22) 

5.5 SAINT-VENANT’S EQUATIONS OF COMPATIBILITY 

By definition, the strain components ije  in terms of displacement components iu are given by  

 ][
2

1
,, ijjiij uue                                                          (5.5.1) 

Equation (5.5.1) is used to find the components of strain if the components of displacement are 

given. However, if the components of strain, ije ,are given then equation (5.4.1) is a set of six 

partial differential equations in the three unknown 321 ,, uuu .Therefore, the system (5.5.1) will 

not have single valued solution for iu unless given strains ije satisfy certain conditions which are 

known as the conditions of compatibility or equations of compatibility. 

Equations of compatibility  

we have    ijjiij uue ,,
2

1
                                                                 (5.5.2) 

so,    ikljjkliklij uue ,,,
2

1
                                                           (5.5.3)  

Interchanging i  with k and j with l  in equation (5.4.3), we write  

  kijllijkijkl uue ,,,
2

1
                                                            (5.5.4) 

adding (5.5.3) and (5.5.4), we get  

  kijllijkikljjkliijklklij uuuuee ,,,,,,
2

1
                               (5.5.5) 

Interchanging i and l in (5.5.5), we get 

  ljkilijklkijjkilljkikilj uuuuee ,,,,,,
2

1
                               (5.5.6) 



From (5.5.5) and (5.5.6), we obtain 

 ljkikiljijklklij eeee ,,,,   

Or  0,,,,  ikjljlikijklklij eeee                                                 (5.5.7) 

These equations are known as equations of compatibility. 

These equations are necessary conditions for the existence of a single valued continuous 

displacement field. These are 81 equations in number. Because of symmetry in indices ji, and

lk , ; some of these equations are identically satisfied and some are repetitions. Only 6 out of 81 

equations are essential. These equations were first obtained by Saint-Venant’s in 1860. 

A strain tensor ije that satisfies these conditions is referred to as a possible strain tensor. 

Show that the conditions of compatibility are sufficient for the existence of a single valued 

continuous displacement field. 

Let  00

ixP  be some point of a simply connected region at which the displacements 0

iu and 

rotations 
0

ijw are known. The displacements iu of an arbitrary point  ixP  can be obtained in 

terms of the known functions ije by mean of a line integral along a continuous curve C joining 

the point 
0P and P . 
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321 ,,,,                                      (5.5.8) 

If the process of deformation does not create cracks or holes, i.e., if the body remains 

continuous, the displacements ju  should be independent of the path of integration. That is, ju  

should have the same value regardless of whether the integration is along curve C or any other 

curve. We write  

   kjkjkkkjk

k

j

j dxwedxudx
x

u
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 ,

                               (5.5.9) 

Therefore  
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kjkjj dxwdxeuu ,  kxP  being point the joining curve.   (5.5.10) 

Integrating by parts the second integral, we write  
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From equations (5.5.10) and (5.5.11), we write  
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where the dummy index k of jke has been changed to l . 

but  
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         = jlkkjl ee ,,                                                                  (5.5.13) 

using (5.5.13), equation (5.5.12) becomes 
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ljljkkkj dxUwxxu                                              (5.5.14) 

where for convenience we have set 

   jklkjlkkjljl eexxeU ,,'                                             (5.5.15) 

which is known function as ije are known. The first two terms in the side of equation (5.5.14) are 

independent of the path of integration. From the theory of line integrals, the third term 



becomes independent of the path of integration when the integrands 1dxU jl  must be exact 

differentials. Therefore, if the displacements  ',',' 321 xxxui  are to be independent of the path 

of integration, we must have 
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                            for lji ,, =1,2,3                  (5.5.16)   

Now 

    jklkjlkijiklkijlkkijlijl eeeexxeU ,,,,,, )'(    

         =   )(' ,,,,, jiklkijlkkjliiklijl eexxeee                       (5.5.17) 

and  

    jkikjikljlkikljikkljiijl eeeexxeU ,,,,,, )('    

         =   jlkikljikkjliljilji eexxeee ,,,,, '                        (5.5.18) 

Therefore, equations (5.5.16) and (5.5.17), (5.5.18) yields 

   0][' ,,,,  klkikljijiklkijlkk eeeexx  

Since this is true for an arbitrary choice of kk xx '  (as 'P is arbitrary), it follows that  

 0,,,,  kijljlikjiklklji eeee                                                (5.5.19) 

This is true as these are the compatibility relations. Hence, the displacement (5.5.8) 

independent of the path of integration. Thus, the compatibility conditions (5.5.7) are sufficient 

also. 

Remarks1: The compatibility conditions (5.4.7) are necessary and sufficient for the existence of 

a single valued continuous displacement field when the strain components are prescribed. 

In details form, these 6 conditions are 
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These are the necessary and sufficient conditions for the components ije to give single valued 

displacements iu for a simply connected region. 

Definition: A region space is said to be simply connected if an arbitrary closed curve lying in the 

region can be shrunk to a point, by continuous deformation, without passing outside of the 

boundaries. 

Remarks2: The specification of the strains ije only does not determine the displacements iu

uniquely because the strains ije characterize only the pure deformation of an elastic 

neighborhood of the point ix . 

The displacements iu may involve rigid body motions which do not affect ije . 

Example1: (i) Find the compatibility condition for the strain tensor ije if 332211 ,, eee are 

independent of 3x and 0333231  eee . 

(ii) Find the condition under which the following are possible strain components. 

   ,,', 21222112

2

2

2

111 xkxexxkexxke   

 '&,0333231 kkeee  are constants  

(iii) When ije given above are possible strain components, find the corresponding 

displacements, given that 03 u  

Solution: (i) We verify that all the compatibility conditions except one are obviously satisfied. 

The only compatibility to be satisfied by ije is  



 .2 21,1211,2222,11 eee                                                         (5.5.21) 

(ii) Five conditions are trivially satisfied. The remaining condition (5.5.20) is satisfied iff 

 kk '  as  0,',2 11,2212,1222,11  ekeke  

(iii) We find 

   ,211,22,1212,2

2

2

2

11,111 2,, xkxuuxkxuxxkue  )'( kk   

 03,13,2  uu  

This shows that the displacement components 1u and 2u are independent of 3x . 

We find (exercise) 
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3

2

2

21

3

11 )62(
6

1
ccxxxxxu   

 21

2

212
2

1
ccxxkxu  where 21,cc and c constants. 

Example: Show that the following are not possible strain components 

     0,, 33

2

3

2

222

2

2

2

111  exxkexxke  

 '&,0,' 211332112 kkeexxxke 
 
being constants. 

Solution: The given components ije are possible strain components if each of the six 

compatibility conditions are satisfied. On substitution, we find  

 3'22 xkk   

This can’t be satisfied for 03 x . For 03 x , this gives k=0 and then all ije vanish. Hence, the 

given ije are not possible strain components. 

Exercise1: Consider a linear strain field associated with a simply connected region R such that 

0,,, 3323132112

2

122

2

211 eeexBxeAxeAxe  .find the relationship between constant A and 

B such that it is possible to obtain a single- valued continuous displacement field which 

corresponds to the given strain field. 

Exercise2: Show by differentiation of the strain displacement relation that the compatibility 

conditions are necessary condition for the existence of continuous single-valued displacements. 



Exercise3: Is the following state of strain possible? (c=constant) 

  0,2,, 333231321123

2

2223

2

2

2

111  eeexxcxexcxexxxce  

Exercise4: Show that the equations of compatibility represent a set of necessary and sufficient 

conditions for the existence single-valued displacements. Drive the equations of compatibility 

for plane strain. 

Exercise 5:  If 213332211 ,,0  eeee and 1,23 e ; where  is a function of 1x and 2x , 

show that  must satisfy the equation 

 2 =constant 

Exercise 6: If 13e and 23e are the only non-zero strain components and 2313,ee are independent 

of 3x , show that the compatibility condition may be reduced to the following condition 

  1,232,13 ee constant. 

Exercise 7: Find which of the following values of ije are possible linear strains 

(i)     ,0,2,, 3332312112

2

222

2

2

2

111 eeexxexexxe constant. 

(ii)  
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Compute the displacements in the case (i). 

5.6 FINITE DEFORMATIONS  

All the results reported in the preceding sections of this chapter were that of the classical theory 

of infinitesimal strains. Infinitesimal transformations permit the application of the derivatives of 

superposition of effects. Finite deformations are those deformations in which the displacements 

iu together with their derivatives are no longer small. Consider an aggregate of particles in a 

continuous medium. We shell use the same reference frame for the location of particles in the 

deformed and undeformed states. 

Let the coordinates of a particle lying on a curve 0C , before deformation, be denoted by 

 321 ,, aaa  and let the coordinates of the same particle after deformation (now lying same curve 

C) be  321 ,, xxx . Then the elements of arc of the curve 0C and C are given, respectively, by  



 iio dadads 
2

                                                                        (5.6.1) 

and  iidxdxds 2                                                                         (5.6.2) 

we consider first the Eulerian description of the strain and write  

  321 ,, xxxaa ii                                                                    (5.6.3)  

then  kkijjii dxadxada ,,                                                            (5.6.4) 

substituting from (5.6.3) into (5.6.1), we write 

 kjkiji dxdxaads ,,

2

0                                                              (5.6.5) 

using the substitution tensor, equation (5.6.2) can be rewritten as 

 kjjk dxdxds 2
                                                                   (5.6.6) 

We know that the measure of the strain is the difference 
2

0

2 dsds   

from equations (5.6.5) and (5.6.6), we get 

   kjkijijk dxdxaadsds ,,

2

0

2    

                  = kjjk dxdx2                                                         (5.6.7) 

where 

 kijijkjk aa ,,2                                                                  (5.6.8) 

We now write the strain components jk in term of displacement components iu , where 

 iii axu                                                                             (5.6.9) 

this gives  

 iii uxa   

Hence  

 jiijji ua ,,                                                                      (5.6.10) 

 kiikki ua ,,                                                                      (5.6.11) 

Equations (5.6.8), (5.6.10) and (5.6.11) yield  

   kiikjiijjkjk uu ,,2    



          = ][ ,,,, kijikjjkjkjk uuuu    

          =   kijijkkj uuuu ,,,,                                                  (5.6.12) 

The quantities jk  are called the Eulerian strain components. 

If, on the other hand, Lagrangian coordinates are used, and equations of transformation are of 

the form  

  321 ,, aaaxx ii                                                                  (5.6.13) 

then  

 kkiijii daxdaxdx ,,                                                           (5.6.14) 

and  kikiji dadaxxds ,,

2                                                               (5.6.15) 

while 

 kjij dadads 
2

0                                                                  (5.6.16) 

 The Lagrangian components of strain jk  are defined by 

 kjjk dadadsds  2
2

0

2
                                                   (5.6.17) 

Since  

 iii uax                                                                           (5.6.18) 

Therefore, 

 jiijji ux ,,   

 kiikki ux ,,   

Now  

   kjjkkiji dadaxxdsds  ,,

2

0

2
 

                  =     kjjkkiikjiij dadauu   ,,  

                  =   kjkijijkkj dadauuuu ,,,,                                (5.6.19) 

Equation (5.6.17) and (5.6.19) give 

 kijijkkjjk uuuu ,,,,2                                                     (5.6.20) 



It is mentioned here that the differentiation in (5.6.12) is carried out with respect to the variable

ix , while in (5.6.19) the ‘ ia ’
 
are regarded as the independent as the independent variables. To 

make the difference explicitly clear, we write out the typical expressions jk and jk in 

unabridged notation, 
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When the strain components are large, it is no longer possible to give simple geometrical 

interpretations of the strain jk
 
and jk . 

Now we consider some particular cases. 

Case1: Consider a line element with 

 0,0, 3210  dadadads                                                (5.6.25) 

Define the extension 1E of this element by 

 
0

0
1

ds

dsds
E


  

then 

 odsEds )1( 1                                                                (5.6.26) 

and consequently 

 kjjk dadadsds  2
2

0

2
 

                 =
2

112 jda                                                        (5.6.27) 

Equation (5.6.25) to (5.6.27) yield 



   11

2

1 211  E  

Or  121 111 E                                                          (5.6.28) 

When the strain `11 is small,(5.6.28) reduced to  

 111 E  

As was shown in discussion of strain infinitesimal strains. 

Case II: Consider next two line elements 

 0,0, 3120  dadadads                                                   (5.6.29) 

and  

 0, 2130  adadadsd                                                    (5.6.30) 

These two elements lie initially along the 2a -and 3a -axes. 

Let  denote the angle between the corresponding deformed idx and ixd , of length ds and 

sd respectively. Then  

 ii xddxsdsd cos  =  addaxx ii ,,  = 323,2, addaxx ii  

                  = 322 adda                                                      (5.6.31) 

Let  


 
2

23                                                                        (5.6.32) 

Denotes the change in the right angle between the line elements in the initial state. Then, we 

have 
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da 32
2323 2sin                                               (5.6.33) 

              =
3322

23

2121

2




                                          (5.6.34) 

using relations (5.6.26) and (5.6.28). 

Again, if the strains ij  are so small that their products can be neglected, then 

 2323 2                                                                          (5.6.35) 



As proved earlier for infinitesimal strains. 

Remarks: If the displacements and their derivatives are small, then it is immaterial whether the 

derivatives are calculated at the position of a point before or after deformation. In this case, we 

may neglect the nonlinear terms in the partial derivatives in (5.6.12) and (5.6.20) and reduce 

both sets of formulas to 

 jkjkkjjk uu  22 ,,  

Which were obtained for an infinitesimal transformation, It should be emphasized of finite 

homogeneous strain are not in general commutative and that the simple superposition of 

effects is no longer applicable to finite deformation. 

Books Recommended: 

4. Sokolnikoff, I. S. Mathematical Theory of Elasticity, Tata McGraw Hill   

Publishing Company, Ltd., New Delhi, 1977 

5. S. Timoshenko and N. Goodier,       Theory of Elasticity, McGraw Hill, New  

York, 1970.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 



CHAPTER-VI 

ANALYSIS OF STRESS 

6.1 INTRODUCTION 

Deformation and motion of an elastic body are generally caused by external forces such 

as surface loads or internal forces such as earthquakes, nuclear explosions etc. When an 

elastic body is subjected to such force, its behaviour depends on magnitude of forces, 

upon their direction and upon the inherent strength of the material of which the body is 

made. Such forces give rise to interaction between neighbouring portions in the interior 

parts of the elastic solid. The concept of stress vector on a surface and state of stress at a 

point of the medium shall be discussed. 

An approach to the solutions of problems in elastic solid mechanics is to examine 

deformation initially and then consider stresses and applied loads. Another approach is to 

establish relationship between applied loads and internal stresses first and then to 

consider deformations. Regardless of the approach selected, it is necessary to derive the 

components relations individually. 

6.2 BODY FORCES AND SURFACE FORCES 

Consider a continuous medium. We refer the points of this medium to a rectangular 

Cartesian coordinate system. Let τ represents the region occupied by the body in 

deformed state. A deformable body may be acted upon by two different types of external 

forces. 

(i) Body forces: These forces are those forces which act on every volume element of the 

body and hence on the entire volume of the body. Forexample, gravitational force and 

magnetic forces are body forces. Let ρ denotes the density of a volume elementτ of the 

bodyτ. Let g be the gravitational force/acceleration. Then the force acting on mass ρτ 

contained in volume τ is g ρτ. 

(ii) Surface forces: These forces act on every surface element of the body .Such forces 

are also called contact forces. Loads applied over the external surface or bounding 

surface are examples of surface forces. Hydrostatic pressure acting on the surface of a 

body submerged in a liquid /water is a surface force. 



(iii) Internal forces: Internal forces such as earthquakes, nuclear explosions arise from 

the mutual interaction between various parts of the elastic body. 

Now we consider an elastic body in its unreformed state with no forces acting on it. Let a 

system of forces applied on it. Due to these forces, the body is deformed and a system of 

internal forces is set up to oppose this deformation. These internal forces give rise to 

stress within the body. It is therefore necessary to consider how external forces are 

transmitted through the medium. 

6.3 STRESS VECTOR ON A PLANE AT A POINT 

Let us consider an elastic body in equilibrium under the action of a system of external 

forces.  

 

 

 

 

 

 

Figure 6.1 

 

 

Let us pass a fictitious plane  through a point P(x1, x2, x3,) in the interior of this body. 

The body can be considered as consisting of two parts, say, A and B and these parts are in 

welded contacts at the interface.Part A of the body is in equilibrium under 

forces(external) and the effect of part B on the plane . We assume that this effect is 

continuously distributed over the surface of intersection around the point P, let us 

consider a small surface S(on the place ) and let
^

 be an outward unit normal unit 

vector (for the part A of the body).The effect of part B on this small surface element can 

be reduced to a force and a vector couple C . Now let usshrink in size towards zero in 

amanner such that the point P always remains aside and remains the normal vector. 
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Now �̅� is a surface force per unit area. The force  �̅�is called the stress vector or traction 

on the plane at P. 

Note 1: Forces acting over the surface of a body are never idealized point forces; they 

are, in reality, forces per unit area applied over some finite area. These external forces per 

unit area are also called tractions. 

Note 2:Cauchy’s stress postulate 

If we consider another oriented plane containing same point P(xi), then the stress vector is 

likely to have a different direction. For this purpose, Cauchy made the following 

postulated known as Cauchy’s stress postulate 

“The stress vector
~
T  depends on the orientation of the plane upon which it acts”. 


^

T

Let
^

 be the unit normal to the plane   through the point P.This normal characterizes the 

orientation of the plane upon which the stress vector acts. For this reason, we write the 

stress vector as

^

~



T , indicating the dependence on the orientation
^

 . 

Cauchy’s Reciprocal Relation 

When the plane   is in the interior of the elastic body, the normal
^

 has two possible 

directions that are opposite to each other and we choose one of these directions. 
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Figure 6.2 
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For a chosen
^

 ,the stress vector 

^

~



T is interpreted as the internal surface force per unit area 

acting on plane  due to the action of part B of the material/body which
^

 is directed upon 

the part A across the plane. 

Consequently,

^

~



T is the internal surface force per unit area acting on  due to the action of 

part A for which 
^

  is the outward drawn unit normal. By Newton’s third law of motion, 

vectors

^

~



T and -

^

~



T balance each other as the body is in equilibrium. 

                         

^

~



T =   -

^

~



T  

which is known as Cauchy’s Reciprocal Relation. 

 

 

 

Homogenous State of Stress 

If  and  are any two parallel planes through any two points P and P of a continuous 

elastic body, and if the stress vector on   at P is equal to the stress  on  at P , then the 

state of stress in the body is said to be a homogeneous state of stress. 

6.4 NORMAL AND TANGENTIAL STRESSES 

In general, the stress vector 
^

~



T  is inclined to the plane on which it acts and need not be in 

the direction of unit normal. The projection of 
^

~



T on the normal 
^

 is called the normal 

stress. It is denoted by  or n . The projection of 
^

~



T on the plane , in the plane of 
^

~



T and 

^

 , is called the tangential or shearing stress. It is denoted byτ or t  . 
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Figure 6.3 

Thus,       .T  
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~

^

tnT 


                        (6.4.2) 

where

^

~
T


unit vector normal to 
^

  and lies in the place . 

A stress in the direction of the outward normal is considered positive (i.e.σ> 0) and is 

called a tensile stress. A stress in the opposite direction is considered negative (σ< 0) 

and is called a compressible stress. 

If σ = 0,

^

~
T


is perpendicularto
^

 .The stress vector 

^

~
T


 is called a pure shear stress or a 

pure tangential stress. 

If τ = 0, then  

^

~
T


 is parallel to
^

 .The stress vector 

^

~
T


 is then called pure normal 

stress.When 

^

~
T


 acts opposite to the normal
^

 ,then the pure normal stress is called 

pressure (σ <0, τ= 0). 

From (6.4.1), we can write    T  
^^

~

^

t


                        (6.4.3) 

                                                    

                                                                         

                                                      (6.4.4) 

 T 2

~

2

^








Note: 


SinT  t                                (6.4.5) 

                                   

as             1
^

                                                 

     

Thisτ in magnitude is given by the magnitude of vector product of 

^

~
T


and
^

 . 

 

6.5 STRESS COMPONENTS 

Let P(xi) be any point of the elastic medium whose coordinates are (x1 , x2 , x3) relative to 

rectangular Cartesian system ox1x2 x3. 

 

 

 

 

 

 

 

 

Figure6.4 

 

Let 

^

1

T  denote the stress vector on theplane, with normal along 1x axis, at the point P. 

Let the stress vector 

^

1

T  has components τ11,τ12, τ13, i.e.  
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Let 

^

2

T   denote the stress vector on the plane, with normal along 2x axis, at the point P.  
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Similarly jeeee
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Equations (6.5.1) to (6.5.3) can be condensed in the following form 

j

i

e
^

ij
~

^

T                                                 (6.5.4)

 ikij
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ij

^

~
).(.T

^

  jkkjk

i

eee           (6.5.5) 

Thus, for given i & j, the quantity τij represent the jth components of the stress vector 

^

~
T
i

 

acting on a plane having ie
^

 as the unit normal. Here, the first suffix i indicates the 

direction of the normal to the plane through P and the second suffix j indicates the 

direction of the stress component. In all, we have 9 components τij at the point P(xi) in the 

ox1x2 x3 system. These quantities are called stress — components. The matrix 
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whose rows are the components of the three stress vectors, is called the matrix  of the state 

of stress at P. The dimensions of stress components are force/(length)2=ML-1T-2. 

The stress components 11 , 22 , 33 are called normal stresses and other components

323123211312 ,,,,,   are called as shearing stresses( ..T ,T 122

^1

~
111

^1

~
etceeee  ). In 

CGS system, the stress is measured in dyne per square centimetre.In English system, it 

measured in pounds per square inch or tons per square inch. 

 

DYADIC REPRESENTATION OF STRESS 

It may be helpful to consider the stress tensor as a vector - like quantity having a 

magnitude and associated direction (s), specified by unit vector. The dyadic is such a 

representation. We write the stress tensor or stress dyadic as 
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where the juxtaposed double vectors are called dyads. 

The stress vector 
i

~
T  acting on a plane having normal along ie

^

 is evaluated as follows: 

jjkijikji
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(6.5.8) 

6.6 STATE OF STRESS AT A POINT-THE STRESS TENSOR 

We shall show that the state of stress at any point of an elastic medium on an oblique 

plane is completely characterized by the stress components at P. 

ANALYSIS OF STRESS 

Let 

^

~
T


 be the stress vector acting on an oblique plane at the material point P, the unit 

normal to this plane being
i 

^

. 

Through the point P, we draw three planar elements parallel to the coordinate planes. A 

fourth plane ABC at a distance h from the point P and parallel to the given oblique plane 

at P is also drawn. Now, the tetrahedron PABC contains the elastic material. 

  

 

 

 

 

 

Figure6.5 

 

Let τij be the components of stress at the point P regarding the signs (negative or 

positive) of scalar quantities τij, we adopt the following convention. 

i 
^

 

A 

B 

C 

P 



If one draws an exterior normal (outside the medium) to a given face of the tetrahedron 

PABC ,then the positive values of components τij are associated with forces acting in the 

positive directions of the coordinate axes. On the other hand, if the exterior normal to a 

given face is pointing in a direction opposite to that of the coordinate axes, then the 

positive values of τij are associated with forces directed oppositely to the positive 

directions of the coordinate axes. 

Let σ be the area of the face ABC of the tetrahedron in figure. Let σ1, σ2, σ3be the areas 

of the plane faces PBC, PCA and PAB (having normal’s along 1x , 2x & 3x axes) 

respectively. 

Then  
i

^

ii ),cos(   x             (6.6.1) 

The volume of the tetrahedron is 

hv
3

1
                (6.6.2) 

Assuming the continuity of the stress vector iTT




^

~

, the xi component of the stress force 

acting on the face ABC of the tetrahedron PABC (made of elastic material) is 


)( iiT   

provided    0lim
0




i
h

             (6.6.3) 

Here i are inserted because the stress force acts at points of the oblique plane ABC and 

not on the given oblique plane through P. Under the assumption of continuing of stress 

field, quantities 1  are infinitesimals. We note that the plane element PBC is a part of the 

boundary surface of the material contained in the tetrahedron. As such, the unit outward 

normal to PBC is - ie
^

 . Therefore, the xi component of force due to stress acting on the 

face PBC of area σi is 

                                                                    11i1i )(            (6.6.4a) 

where 0lim 1i
0h



  

Similarly forces on the face PCA and PAB are 

22i2i )(   , 33i3i )(    



with   0lim lim 3i
0h

2i
0h



                                    

(6.6.4b) 

On combining (6.6.4a) and (6.6.4b) , we write 

jjiji )(-                                          (6.6.5) 

as the xi -- component of stress force acting on the face of area provided 0lim ji
0h



  

In equation (6.6.5), the stress components are taken with the negative sign as the exterior 

normal to a face of area σj is in the negative direction of the xj axis.Let Fi be the body 

force per unit volume at the point P. Then the xicomponent of the body force acting on 

the volume of tetrahedron PABC is 

                       iiFh  (
3

1
)             (6.6.6) 

where i  's are infinitesimal and 

0lim 
0h




i  

Since the tetrahedral element PABC of the elastic body is in equilibrium, therefore, the 

resultant force acting on the material contained in PABC must be zero. Thus 

0)(
3

1
)()( jiji  hFhT ijii 



   

Using (6.6.1), above equation (after cancellation of σ) becomes 

0)(
3

1
)()( jiji  hFhT ijii 



                            
(6.6.7) 

As we take the 0lim h in (6.6.7), the oblique face ABC tends to the given oblique 

plane at P. Therefore, this limit gives 

   0 jjiiT 


 

or   jjiiT 


                         (6.6.8)
 



This relation connecting the stress vector

^

~



T  and the stress components ij  is known as 

Cauchy's law or formula. 

It is convenient to express the equation (6.6.8) in the matrix notation. This has the form 
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           (6.6.8a) 

As 

^

~



T  and i are vectors. Equation (6.6.8) shows, by quotient law for tensors, that new 

components form a second order tensor. 

This stress tensor is called the CAUCHY'S STRESS TENSOR. 

We note that, through a given point, there exist infinitely many surface plane elements. 

On every one of these elements we can define a stress vector. The totality of all these 

stress vectors is called the state of stress at the point. The relation (6.6.8) enables us to 

find the stress vector on any surface element at a point by knowing the stress tensor at 

that point. As such, the state of stress at a point is completely determined by the stress 

tensor at the point. 

Note: In the above, we have assumed that stress can be defined everywhere in a body and 

secondly that the stress field is continuous. These are the basic assumptions of continuum 

mechanics. Without these assumptions, we can do very little. However, in the further 

development of the theory, certain mathematical discontinuities will be permitted / 

allowed. 

 

6.7 BASIC BALANCE LAWS 

(A) Balance of Linear Momentum: 

So far, we have discussed the state of stress at a point. If it is desired to move from one 

point to another, the stress components will change. Therefore, it is necessary to 

investigate the equations / conditions which control the way in which they change. 



While the strain tensor eij has to satisfy six compatibility conditions, the components of 

stress tensor must satisfy three linear partial differential equations of the first order. 

The principle of balance of linear momentum gives us these differential equations. This 

law, consistent with the Newton's second law of motion, states that the time rate of 

change of linear momentum is equal to the resultant force on the elastic body. 

Consider a continuous medium in equilibrium with volume τ and bounded by a closed 

surface σ. Let Fi be the components of the body force per unit volume and 


iT be the 

component of the surface force in the xi direction. For equilibrium of the medium, the 

resultant force acting on the matter within τ must vanish i.e. 

0 
 



 dTdF ii
                       for i = 1,2,3               (6.7.1) 

We know the following Cauchy's formula 

jjiiT 


    for i = 1,2,3          (6.7.2) 

whereτij is the stress tensor and j is the unit normal to the surface. Using (6.7.2) into 

equation (6.7.l), we obtain 

0 
 

 ddF jjii      for i = 1,2,3         (6.7.3) 

We assume that stresses τij and their first order partial derivatives are also continuous and 

single valued in the region . Under these assumptions, Gauss-divergence theorem can 

be applied to the surface integral in (3) and we find 

 
 

 dd jjijji,             (6.7.4) 

From equations (6.7.3) and (6.7.4), we write 

0)( 


 dFiji

                                                             

(6.7.5) 

for each i = l, 2 , 3. Since the region τ of integration is arbitrary (every part ofthe medium 

is in equilibrium) and the integrand is continuous, so, we must have 

0.  ijji F                            (6.7.6) 



for each i = 1,2,3 .and at every interior point of the continuous elastic body. These 

equations are 
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These equations are referred to as Cauchy's equations of equilibrium. These equations 

are also called stress equilibrium equations. These equations are associated with 

undeformed Cartesian coordinates. These equations were obtained by Cauchy in 1827. 

Note 1: In the case of motion of an elastic body, these equations (due to balance of linear 

momentum) take the form 

iijji uF  .                                    (6.7.8) 

where iu  is the acceleration vector and p is the density (mass per unit volume) of the 

body. 

Note 2: When body force Fi is absent (or negligible), equations of equilibrium reduce to 

          0. jji                        (6.7.9) 

Example: Show that for zero body force, the state of stress for an elastic body given by 

22

11 3zyx  , zyx 22 2

22  , 2

33 2 zyx   

3

2112 zxy , xzy  2

3113  ,  yzx  2

3223  is possible. 

Example: Determine the body forces for which the following stress field describes a state 

of equilibrium 

zyx 532 22

11   , 72 2

22  y , 53433  zyx  

642112  xyz , 1233113  yx ,  03223   

Example: Determine whether the following stress field is admissible in an elastic body 

when body forces are negligible. 
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(B) Balance of Angular momentum 

The principle of balance of angular momentum for an elastic solid is"The time rate of 

change of angular momentum about the origin is equal to the resultant moment 

about of origin of body and surface forces."This law assures the symmetry of the stress 

tensor τij. 

Let a continuous elastic body in equilibrium occupies the regionτ bounded by surface σ. 

Let Fi be the body force acting at a point P(xi) of the body, Let the position vector of the 

point P relative to the origin be ii exr
^

 Then , the moment of force F is 

kjijk FxFr  , where ijk is the alternating tensor. 

As the elastic body is in equilibrium, the resultant moment due to body and surface forces 

must be zero. So 

0 
 



 dTxdFx kjijkkjijk
for each i = 1,2,3                     (6.7.9) 

Since, the body is in equilibrium, so the Cauchy's equilibrium equationsgive 

llkkF ,
                                                            

(6.7.10) 

The stress vector kT


 in terms of stress components is given by 
llkkT 



       (6.7.11) 

The Gauss divergence theorem gives us  

  


 dxdx
llkjijkllkjijk ,

 

                           =  


 dx lkjlllkjijk ][ ,  

    =  


 dx jkllkjijk ][ ,

                                           

(6.7.12) 

From equations (6.7.9), (6.7.10) and (6.7.12); we write  



0][)( ,,  


 dxdx jkllkjijkllkjijk

                 

(6.7.13) 

This gives  

0


 dx jkjijk

                                                 

(6.7.14) 

fori = 1, 2 , 3. Since the integrand is continuous and the volume is arbitrary, so  

  
0jkijk            (6.7.15) 

fori = 1, 2 , 3 and at each point of the elastic body. Expanding (6.7.5) , we write  

03213223123    

03223    

03123113213    

03223    

02132112312    

02112    

i.e. jiforjiij   at every point of the medium.                      (6.7.16) 

This proves the symmetry of stress tensor. This law is also referred to as Cauchy's 

second law. It is due to Cauchy in 1827.  

Note 1: On account of this symmetry, the state of stress at every point is specified by six 

instead of nine functions of position.  

Note 2: In summary, the six components of the state of the stress must satisfy three 

partial differential equations 0,  ijij F  within the body and the three relations (

jjjiiT 


, ) on the bounding surface. The equations 
jjjiiT 



,  are called the boundary 

conditions.  

Note 3: Because of symmetry of the stress tensor, the equilibrium equations may be 

written as 0,  ijij F  



Note 4: Since
ji

i

jT  , equations of equilibrium (using symmetry of τij) may also be 

expressed as   
i

i

jj FT ,
       or  i

i

FTdiv 
~

 

Note 5: Because of the symmetry of τij , the boundary conditions can be expressed as  

jijiT 


  

Remark: It is obvious that the three equations of equilibrium do not suffice for the 

determination of the six functions that specify the stress field. This may be expressed by 

the statement that the stress field is statistically indeterminate. To determine the stress 

field, the equations of equilibrium must be supplemented by other relations that can't be 

obtained from static considerations.  

6.8 TRANSFORMATION OF COORDINATES  

We have defined earlier the components of stress with respect to Cartesian system 

oxlx2x3. Let 321 xxxo  be any other Cartesian system with thesame origin but oriented 

differently. Let these coordinates be connected by the linear relations  

                        ipip xx 
     (6.8.1)

 

where pi are the direction cosines of the px - axis with respect to the 1x - axis.  

i.e    ),(cos ippi xx     (6.8.2) 

Let pq  be the components of stress in the new reference system (Figure 6.6)  
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Figure6.6& 6.7 

Figure6.7, Transformation of stress components under rotation of co-ordinates system. 

Theorem: let the surface element   and ' , with unit normal
^

 and 
^

   , pass through 

the point P. Show that the component of the stress vector 

^

~



T  acting on   in the 

direction of
^

  is equal to the component of the stress vector 

^

~

 

T  acting on '  in the 

direction of 
^

  

Proof: In this theorem, it is required to show that  

Thus,       .T  .T
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~
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            (6.8.3)
 

The Cauchy's formulagives us  
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jjiT 




^

~                                  (6.8.4) 

and 

jjiT 





^

~                        (6.8.5) 

due to symmetry of stress tensors as with  

j 
^

, j 
^

 

Now     
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~
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     = ijij  )( 
 

                  = ijji  )(   

                  =
iiT 





^

                                                                  (6.8.6) 

This completes the proof of the theorem.  

Article: Use the formula (6.8.3) to derive the formulas of transformation of the 

components of the stress tensor τij.  

Solution: Since the stress components pq  is the projection on the px — axis of the stress 

vector acting on a surface element normal to the px  — axis (by definition), we can write 

                              
P

qpq T'
^

.

^


 

T                       (6.8.7) 

where 

 
^

  is parallel to the x'p-axis                                  (6.8.8) 

 
^

 is parallel to the x'q - axis       

Equations (6.8.6) and (6.8.7) imply  

    jiijpq               (6.8.9) 

Since  



 piipi xxv  ),(cos                                              (6.8.10) 

 qiiqi xxv  ),(cos  

Equation (6.8.9) becomes  

                                      jiijpq  
                               (6.8.11)

 

Equation (6.8.11) and definition of a tensor of order 2, show that the stress components τij 

transform like a Cartesian tensor of order 2. Thus, the physical concept of stress which is 

described by τijagrees with the mathematical definition of a tensor of order 2 in a 

Euclidean space.  

 

6.9 Theorem: Show that the quantity 

            332211   is invariant relative to an orthogonal 

transformation of Cartesian coordinates.  

Proof: Let ij be the tensor relative to the Cartesian system 321 xxox . Let these axes be 

transformed to 321 xxxo   under the orthogonal transformation 

ipip xx                         (6.9.1) 

where 

),cos( ippi xx                                  (6.9.2) 

Let pi be the stress components relative to new axes, then these components are given by 

the rule for second order tensors. 

ijpjpipp                                                (6.9.3)                                            

Putting q= p and taking summation over the common suffix, we write  

This implies    ijpjpipp aa    

                 ijij = ij   

 332211332211                        (6.9.4) 

This proves the theorem.  



Remark: This theorem shows that whatever be the orientation of three mutually 

orthogonal planes passing through a given point, the sum of the normal stresses is 

independent of the orientation of these planes.  

Exercise 1: Prove that the tangential traction parallel to a line l , across a plane at right 

angles to a line l' , the two lines being at right angles to each other , is equal to the 

tangential traction, parallel to the line l' , across a plane at right angles to l.  

Exercise 2: Show that the following two statements are equivalent.  

(a) The components of the stress are symmetric.  

(b) Let the surface elements σ and σ' with respective normal
^

   and 
^

 ' passes through 

a point P. Then
^

~

^

~
..

^^


 

 TT  

Hint: (b)  (a)  

Let     
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i   and 
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j  

Then     ijj
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~
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and    jii

ji

TiTT 



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~
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~
..
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by assumption   
^

~

^

~
..

^^


 

 TT , 

therefore   jiij    

This shows that ij   is symmetric.  

Example l: The stress matrix at a point P in a material is given as  
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ij . 

Find 

(i) The stress vector on a plane element through P and parallel to the plane 2xl +x2 –x3 = 

1, 



(ii) The magnitude of the stress vector, normal stress and the shear stress. 

(iii) The angle that the stress vector makes with normal to the plane.  

Solution: (i) The plane element on which the stress vector is required is parallel to the 

plane 2xl +x2 –x3 = 1. Therefore, direction ratios of the normal to the required plane at P 

are< 2, 1,-1>. So, the d.c.'s of the unit normal i 
^

 to the required plane at P are
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. iTT  be the required stress vector. Then, Cauchy's formula gives  
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or         2/31 


T , 2/332 


T , 2/33 


T  

So, the required stress vector at P is  

)(2/3 3

^

2

^

1

^

1 eeeT 


and 2/33
~




T  

(ii)  The normal stress is given by  

 24
2

1
1)-3(2 

6

1
..

2

3
 .T  

^

~

^

 


the shear stress is given 

by  

 

 

(As 0 ,so the stress vector .T

^

~



need not be along the normal to the plane element) 

iii)letbe the angle between the stress vector .T

^

~



 and normal 
^

 .  

2

5
4-33/2 T 2

~

2

^

 




Then  

33/8
2/33

2

.T

.T
cos

^

~

^

~

^

^












 

This determines the required inclination.   

Example 2: The stress matrix at a point P(xi) in a material is given by  

 




















00

0

0

2

2
2
3

2
313

x

xx

xxx

ij  

Find the stress vector at the point Q (l, 0, -l) on the surface 1

2

3

2

2 xxx   

Solution: The stress vector 

^

~
T


 is required on the surface element  

f(xl , x2 , x3) = 02
3

2
21  xxx , at the point Q(l , 0 , -l). We find 3

^

1

^

2eef  and

5f at the point Q.  

Hence, the unit outward normal i 
^

to the surface f = 0 at the pointQ(1,0,-1) is 

)2(
5

1
3

^

1

^^

ee
f

f





  

giving    
5

1
1  , 02  ,

5

2
3   

The stress matrix at the point Q(1, 0, -l) is 

 


















001

001

011

ij

 

let


~~
iTT  be the required stress vector at the point Q. Then, Cauchy's formula gives  





























































5

2
0
5

1

000

001

011

3

2

1







T

T

T

 

or          5/11 


T , 5/12 


T , 03 


T  

So, the required stress vector at P is  

)(
5

1
2

^

1

^

1 eeT 


 

Example 3: The stress matrix at a certain point in a given material is given by 

                   

 


















021

201

113

ij  

Find the normal stress and the shear stress on the octahedral plane element through the 

point.  

Solution: An octahedral plane is a plant whose normal makes equal angles withpositive 

directions of the coordinate axes.Hence, the components of the unit normal 
i 

^

 are  

  

 

let


~~
iTT  be the required stress vector. Then, Cauchy's formula gives  









































































3

3

5

3

1

1

1

1

021

201

113

3

2

1







T

T

T

 

or         3/51 


T , 32 


T , 33 


T  

The magnitude of this stress vector is  

3

1
321  



3/43
~




T  

let σ be the normal stress and τ be the shear stress.Then 

3

11
)335(

3

1
.

^
^

~
 



T and
3

22

9

8

9

121

3

43
  

Since σ> 0, the normal stress on the octahedral plane is tensile.  

Example 4: The state of stress at a point P in cartesian coordinates is given by  

τ11=500, τ12= τ21=500, τ13= τ31=800, τ22=1000,τ33= -300, τ23= τ32= -750  

Compute the stress vector T and the normal and tangential components of stress on the 

plane passing through P whose outward normal unit vector is
^

3

^

2

^

1

^

2

1

2

1

2

1
eee   

Solution: The stress vectoris given by ,jjiiT 


  

We find 24002502503312211111  


T  =1064(approx.) 

.)(221
2

750
5002503322221122 approxT  


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CHAPTER-I 

CARTESIAN TENSOR 
1.1 Introduction 

 The concept of a tensor has its origin in the developments of differential 

geometry by Gauss, Riemann and Christoffel. The emergence of Tensor calculus, as a 

systematic branch of Mathematics is due to Ricci and his pupil Levi-Civita. In 

collaboration they published the first memoir on this subject: - ‘Methods de calcul 

differential absolu et leurs applications’ Mathematische Annalen, Vol. 54, (1901). 

 The investigation of relations which remain valid when we change from one 

coordinate system to any other is the chief aim of Tensor calculus. The laws of 

Physics cannot depend on the frame of reference which the physicist chooses for the 

purpose of description. Accordingly it is aesthetically desirable and often convenient 

to utilize the Tensor calculus as the mathematical background in which such laws can 

be formulated. In particular, Einstein found it an excellent tool for the presentation of 

his General Relativity theory. As a result, the Tensor calculus came into great 

prominence and is now invaluable in its applications to most branches of theoretical 

Physics; it is also indispensable in the differential geometry of hyperspace.     

A physical state or a physical phenomenon of the quantity which is invariant, i.e 

remain unchanged, when the frame of reference within which the quantity is defined 

is changed that quantity is called tensor. In this chapter, we have to confine ourselves 

to Cartesian frames of reference.  

 As a Mathematical entity, a tensor has an existence independent of any 

coordinate system. Yet it may be specified in a particular coordinate system by a 

certain set of quantities, known as its components. Specifying the components of a 

tensor in one coordinate system determines the components in any other system 

according to some definite law of transformation. 
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 Under a transformation of cartesian coordinate axes, a scalar quantity, such as 

the density or the temperature, remain unchanged. This means that a scalar is an 

invariant under a coordinate transformation. Scalars are called tensors of zero rank. 

All physical quantities having magnitude only are tensors of zero order. It is assumed 

that the reader has an elementary knowledge of determinants and matrices. 

Rank/Order of tensor  

1) If the value of the quantity at a point in space can be described by a single 

number, the quantity is a scalar or a tensor of rank/order zero. For example, 

‘5’ is a scalar or tensor of rank/order zero. 

2) If three numbers are needed to describe the quantity at a point in the space, the 

quantity is a tensor of rank one. For example vector is a tensor of rank/order 

one. 

3) If nine numbers are needed to describe the quantity, the quantity is a tensor of 

rank three. The 33× , 1 ×9 and 9 × 1, nine numbers describe the quantity is an 

example of tensor of rank/order 3. 

4) In general, if 3n numbers are needed to describe the value of the quantity at a 

point in space, the quantity is a tensor of rank/order n. A quantity described by 

12 or 10 or 8 ………… numbers, then the quantity is not a tensor of any 

order/rank. 

OR 

Tensor: A set of members/numbers 3n represents the physical quantity in the 

reference coordinates, then the physical quantity is called a tensor of order n. 

1.1.1 Characteristics of the tensors  

1) Tensors are the quantities describing the same phenomenon regardless of the 

coordinate system used; they provide an important guide in the formulation of 

the correct form of physical law. Equations describing physical laws must be 

tensorially homogenous, which means that every term of the equation must be 

a tensor of the same rank. 
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2) The tensor concept provides convenient means of transformation of an 

equation from one system of coordinates to another. 

3) An advantage of the use of Cartesian tensors is that once the properties of a 

tensor of a certain rank have been established, they hold for all such tensors 

regardless of the physical phenomena they represent.   

Note: For example, in the study of strain, stress, inertia properties of rigid 

bodies, the common bond is that they are all symmetric tensors of rank two. 

 

1.2 Notation and Summation Convention 

 Let us begin with the matter of notation. In tensor analysis one makes 

extensive use of indices. A set of n variables nxxx ,........,, 21  is usually denoted asix ,

ni ...,3,2,1= . Consider an equation describing a plane in a three-dimensional space 

        pxaxaxa =++ 332211               (1.2.1) 

where ia and p are constants. This equation can be written as 

   ∑
=

=
3

1i
ii pxa                                                                         (1.2.2) 

However, we shall introduce the summation convention and write the equation above 

in the simple form  pxa ii =                                                                            (1.2.3) 

The convention is as follow: The repetition of an index (whether superscript or 

subscript) in a term will denote a summation with respect to that index over its range. 

The range of an index i  is the set of n integer values 1 to n. An index that is summed 

over is called a dummy index, and one that is not summed out is called a free index. 

1.3 Law of Transformation  

Let ),( 21 xxP be a physical quantity in 321 xxox is the Cartesian coordinate systems 

before deformation and ),( 21 xxP ′′′ be corresponding to ),( 21 xxP in the new coordinate 



MAL-633 4 

system 321 xxxo ′′′ after rotating the 3x -axis about itself at an angleθ , i.e., after 

deformation.  

From the figure given below (Figure1.1)  

NMON

MNON

OMx

′′−=
−=

=1

 

= θθ sincos 21 xx ′−′              (1.3.1) 

  

NMNP

MNNP

PMx

′+′=
′+′=

=2

 

= θθ sincos 12 xx ′+′              (1.3.2) 

 

 

 

 

 

 

 

 

 

 

Using the relation (1.3.1) and (1.3.2) we get 

3211 0sincos xxxx ++=′ θθ              (1.3.3) 

3212 0cossin xxxx ++−=′ θθ             (1.3.4) 

3213 100 xxxx ⋅+⋅+⋅=′              (1.3.5) 

θ 

O 

1x′

),( 21 xxP ′′′ =P(x1, x2) 

M ′  

N 

x2 

M

axisxx −′= 33  

axisx −′2  

axisx −′1

x1 

θ 

x2-axis 

x1-axis 

θ 

N ′  

Figure 1.1 

2x′
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Relation (1.3.3), (1.3.4) and (1.3.5) can be written as  

  1331221111 lll xxxx ++=′             (1.3.6) 

  2332222112 lll xxxx ++=′             (1.3.7) 

  3333223113 lll xxxx ++=′                                                               (1.3.8) 

where )cos( jiij xandxbetweenangle ′=l ; 3,2,1, =ji that is                                (1.3.9)      

 θcos)cos( 1111 =′= xandxbetweenanglel  

 θθ sin)90cos()cos( 2112 =−=′= xandxbetweenanglel   

 90cos)cos( 3113 =′= xandxbetweenanglel   

θθ sin)90cos()cos( 1221 −=+=′= xandxbetweenanglel  

 θcos)cos( 2222 =′= xandxbetweenanglel  

 90cos)cos( 3223 =′= xandxbetweenanglel  

 90cos)cos( 1331 =′= xandxbetweenanglel  

 90cos)cos( 2332 =′= xandxbetweenanglel  

 10cos)cos( 3333 ==′= xandxbetweenanglel    

Law of transformation can be written in a tensor form of order one as follow 

  3,2,1;13132121111 ==++=′ jxxxxx jjllll  

jiji xx l=′ ; 3,2,1, =ji                                                                     (1.3.10) 

ij
j

i

x

x
l=

∂
′∂

 and ji
j

i

x

x
l=

′∂
∂

                                            

Similarly, law of transformation for a tensor of order two 

  ijqjpipq xx ll=′ ; 3,2,1, =ji ; p, q are dummy variables      (1.3.11) 
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law of transformation for a tensor of order three 

  ijkrkqjpipqr xx lll=′ ; 3,2,1,, =kji ; p, q, r are dummy variables (1.3.12) 

and law of transformation of order n 

termsnijkrkqjpitermsnpqr xtermsnx ........................... )..............( lll=′  (1.3.13) 

where ntermsnkji ..,.........3,2,1..,.........,, = ; p, q, r, ………..n terms are dummy 

variables 

Example.1. The ix′ -system is obtained by rotating the ix -system about the 3x -axis 

through an angle θ=300 in the sense of right handed screw. Find the transformation 

matrix. If a point has coordinates (2, 4, 1) in the ix -system, find it’s coordinate in the 

ix′ -system. If a point has coordinate (1, 3, 2) in the ix′ -system, find its coordinates in 

the ix -system. 

Solution. The figure (1.2) shows how theix′ -system is related to the ix -system. The 

direction cosines for the given transformation is represented in relation (1.3.14) 

 

 

 

 

 

 

 

 

Hence, the matrix of the transformation by using (1.9) is 

θ

2x′

33 xx ′=

2x

1x′

1x  

θ

2.1Figure
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



















=
















−=
100

02
3

2
1

02
1

2
3

100

0cossin

0sincos

)( θθ
θθ

ijl              (1.3.14) 

Using law of transformation for a tensor of order one, i.e, form (1.3.10), we get  

jiji xx l=′  ; i, j=1, 2, 3 

3132121111 xxxx lll ++=′  

⇒   )23(012
142

3201sin4cos21 +=×+×+×=×++=′ θθx  

⇒   )132(012
342

1201cos4sin22 −=×+×+×−=×++=′ θθx  

⇒  11104023 =×+×+×=′x                (1.3.15) 

Hence, ( 321 ,, xxx ′′′ ) = ( 1,132,23 −+ ) is in new coordinate system.  

Further for the second, (1, 3, 2) are the coordinate of a point in new coordinate 

system, i.e. ( 2',3',1' 321 === xxx ) to finding the corresponding coordinate in to old 

coordinate system i.e. ),,( 321 xxx . Using law of transformation (1.3.10),  

we have  jjii xx ′= l  ; i, j= 1,2,3           (1.3.16) 

or  3312211111 xxxx ′+′+′= lll  

  3322221122 xxxx ′+′+′= lll  

  3332231133 xxxx ′+′+′= lll  

⇒  )2323(02213231,sincos 3211 −=×+×−×=′′−′= xxxx θθ  

⇒  )2321(02233211,cossin 3212 −=×+×+×=′′+′= xxxx θθ  

⇒  2120301,190sin90cos 32
0

1
0

3 =×+×+×=′+′+′= xxxx      (1.3.17) 



MAL-633 8 

Hence, ( 321 ,, xxx ) = )2,2321,2323( −− in old coordinate system. 

Practice 1.The ix′ -system is obtained by rotating the ix -system about the 2x -axis 

through an angle θ=450 in the sense of right handed screw. Find the transformation 

matrix. If a point has coordinates (2, 4, 1) in the ix -system, find its coordinate in the 

ix′ -system. If a point has coordinate (1, 3, 2) in the ix′ -system, find its coordinates in 

the ix -system. 

Practice 2.The ix′ -system is obtained by rotating the ix -system about the 1x -axis 

through an angle θ=600 in the sense of right handed screw. Find the transformation 

matrix. If a point has coordinates (2, 4, 1) in the ix -system, find its coordinate in the 

ix′ -system. If a point has coordinate (1, 3, 2) in the ix′ -system, find its coordinates in 

the ix -system. 

Practice 3.The ix′ -system is obtained by rotating the ix -system about the 3x -axis 

through an angle θ= 600 in the sense of right handed screw. Find the transformation 

matrix. If a point has coordinates (2, 4, 1) in the ix -system, find its coordinate in the 

ix′ -system. If a point has coordinate (1, 3, 2) in the ix′ -system, find its coordinates in 

the ix -system. 

Example2. The ix′ -system is obtained by rotating the ix -system about the 2x -axis 

through an angle θ= 600 in the sense of right handed screw. Find the transformation 

matrix. If a tensor of rank/order two has components [ ]
















−

−
=

102

220

101

ija  in the ix -

system, find its coordinate in the ix′ -system.  

Solution. The figure (1.3) shows how theix′ -system is related to the ix -system. The 

direction cosines for the given transformation are represented in the (1.3.18) when 2x
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-axis is rotated at an angle 600 about itself in right handed screw, where pqa′ are the 

components of the tensor of order two in new coordinate system corresponding to ija

in old coordinate system. 

 

 

 

 

 

 

 

 

 

Hence, the matrix of the transformation is by using (1.3.9) 

















−
=

















−
=

21023

010

23021

cos0sin

010

sin0cos

)(

θθ

θθ

ijl                      (1.3.18) 

Using law of transformation (1.3.11) for a tensor of order two, i.e  

ijqjpipq xx ll=′   

ijqjpipq aa ll=′   

⇒ ijji aa 1111 ll=′  

)( 3132121111 iiii aaa llll ++=  

)(

)(

)(

33133212311113

23132212211112

13131212111111

aaa

aaa

aaa

llll

llll

llll

+++
+++

++=
  

θ

3x′

22 xx ′=

3x  

1x′  

1x

θ

3.1Figure
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using value of ijl from (1.3.18), we have 

)12300221(23

)22320021(0

)12300121(21'11

×+×+×−+

×+×+×+

×−×+×=a

 

= 








 −++







 −
2

23

2

3
0

2

31

2

1
= 









 −
4

334
                              (1.3.19) 

Similarly, 
4

334
',2' 3322

+== aa  

 and ijji aa 3223 ll=′  

)( 3332321312 iiii aaa llll ++=  

)(

)(

)(

33333232313133

23332232213122

13331232113121

aaa

aaa

aaa

llll

llll

llll

+++
+++

++=
 

)12300221(0

)22120023(1

)12300121(0

×+×+×−×+

×+×+×−×+

×−×+××=

 

=23'a 010 ++ =1       (1.3.20) 

Similarly, 
2

1
',3',0',

4

5
',

4

1
' 3221121331 ===== aaaaa  

Hence,  

the tensor [ ]
















−

−
=

102

220

101

ija is transformed into [ ]






















+










 −

=′

4

334

2

1

4

1
123

4

5
0

4

334

pqa   
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Practice 4. The ix′ -system is obtained by rotating the ix -system about the 3x -axis 

through an angle θ= 450 in the sense of right handed screw. Find the transformation 

matrix. If a tensor of rank two has components [ ]
















−

−
=

412

231

123

ija  in the ix -system, 

find its coordinate in the ix′ -system.  

Practice 5. The ix′ -system is obtained by rotating the ix -system about the 1x -axis 

through an angle θ= 300 in the sense of right handed screw. Find the transformation 

matrix. If a tensor of rank two has components [ ]
















−
−−

−
=

112

231

021

ija  in the ix -

system, find its coordinate in the ix′ -system.  

1.4 Some Properties of Tensor  

Zero Tensors: A tensor whose all components in one Cartesian coordinates system 

are 0 is called a zero. A tensor may have any order n.  

 

Property 1.4.1 If all component of a tensor are ‘0’ in one coordinate system then they 

are ‘0’ in all coordinate systems. 

Proof.  Let termsnijku ..............  and termsnpqru .............′  the component of a nth order tensor in two 

coordinates systems 321 xxox  and 321 xxxo ′′′ . 

Suppose         0............. =termsnijku , .......,, kji∀                                                        (1.4.1) 

We know the law of transformation of tensor of order n as  

termsnijkrkqjpitermsnpqr untermsu ........................... )..............( lll=′                                         (1.4.2) 

Using (1.4.10) into (1.4.11) we get  
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 0............ =′ termsnpqru , .......,, rqp∀ . Hence, zero tensor of any order in one 

coordinate system remains always zero tensor of same order in all other coordinate 

systems.  

Property 1.4.2 If the corresponding components of two tensors of the same order are 

equal in one coordinate system, then they are equal in all coordinate systems. 

Property 1.4.3 Equality of Tensors: Two tensors of the same order whose 

corresponding components are equal in a coordinate system (and hence in all 

coordinates) are called equal tensors. 

Thus, in order to show that two tensors are equal, it is sufficient to show that their 

corresponding components are equal in any one of the coordinate system.  

Property 1.4.4 (Scalar multiplication of a tensor): If components of a tensor of 

order n are multiplied by a scalar α, then the resulting components form a tensor of 

the same order n. 

Proof: Let termsnijku .......... be a tensor of order n in 321 xxox system. Let termsnpqru .............′ be 

the corresponding components in the dashed ( 321 xxxo ′′′ ) system. The transformation 

rule for a tensor of order n, (1.3.13) yields.  

)(............. ............................. termsnijkrkqjpitermsnpqr utermsnu lll=′                       (1.4.3)  

 Now )(............. ............................. termsnijkrkqjpitermsnpqr utermsnu αα lll=′                   (1.4.4) 

This shows that components ...............ijkuα form a tensor of rank n. 

Property 1.4.5 (Sum and Difference of tensors) If termsnijku .......... and termsnijkv .......... are 

tensors of the same rank n then their sum ( termsnijku .......... + termsnijkv .......... ) is a tensor of 

the same order n. 

Proof: Let =termsnijkw .......... termsnijku .......... + termsnijkv ..........                                           
(1.4.5)   
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and  let termsnpqru ..........′  and termsnpqrv ..........′ be the components of the given tensors of 

order n relative to the new system 321 xxxo ′′′ . Then transformation rules for these tensors 

are   )(............ .......................... termsnijkrkqjpitermsnpqr utermsnu lll=′              (1.4.6)    

and    )(............ .......................... termsnijkrkqjpitermsnpqr vtermsnv lll=′               (1.4.7) 

where   ),cos( ippi xx′=l              (1.4.8) 

let   =′ termsnpqrw .......... termsnpqru ..........′ + termsnpqrv ..........′
                                (1.4.9) 

using relations (1.4.6 and 1.4.7) in the relation (1.4.9), we get  

  =′ termsnpqrw .......... termsnrkqjpi .........lll ( termsnijktermsnijk vu ........................ +      (1.4.10) 

 =′ termsnpqrw .......... termsnrkqjpi .........lll ( termsnijkw .......... )                            (1.4.11) 

Thus quantities termsnijkw ..........  obey the transformation rule of a tensor of order n. 

Therefore, they are components of a tensor of rank/order n. 

Corollary: Similarly, their difference termsnijktermsnijk vu ........................ −
 
is also a tensor of 

rank n. 

Property 1.4.6 (Tensor Multiplication) 

The product of two tensors is also a tensor whose order is the sum of orders of the 

given tensors. 

Proof: Let termsmijku ..............  and termsnv ..............αβγ be two tensors of order m and n 

respectively in the coordinate system 321 xxox  also termsmpqru .............′  and termsnv .............στς′

are corresponding components of tensors in 321 xxxo ′′′ system. 

We shall show that the product  

=+ termsntermsmijkw .................. αβγ ×termsnijku .......... termsnv ..........αβγ                         
(1.4.5)  

is tensor of order m+n. Using the law of transformation (1.3.13), we have 
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)(........... ............................ termsmijkrkqjpitermsmpqr utermsmu lll=′    

)(........... ............................ termsmtermsn vtermsnv αβγςγτβσαστς lll=′                      (1.4.6) 

where, ijl  is having its standard meaning as defined in relation (1.3.9). 

Let  =′ + termsntermsmpqrw .................. στς ×′ termsnpqru .......... termsnv ..........στς′
                       

(1.4.7) 

Using relation (1.4.6) in to (1.4.7), we get 

=′ + termsntermsmpqrw .................. στς  

)(.... .... termsmijkrkqjpi utermsmlll × )(... ..... termsmvtermsn αβγςγτβσα lll  

= termsmrkqjpi ....lll × )(... ......... termsmijktermsm uvtermsn ×αβγςγτβσα lll  

= termsmrkqjpi ....lll × )(... ......... termsmijktermsmwtermsn +αβγςγτβσα lll       (1.4.8) 

This shows that components termsntermsmijkw .................. αβγ+ obey the transformation rule of 

a tensor of order (m+n). Hence ×termsnijku .......... termsnv ..........αβγ  are components of a 

(m+n)th  order tensor. 

Practice 6. If iu and jv are components of vectors, then show that jivu are 

components of a second-order tensor. 

Practice 7. If iju and kv are components of tensors of second-order and first-order, 

respectively, then prove that kijvu  are components of a third order tensor. 

Practice 8. If iju and kmv are components of second-order tensors, then prove that 

kmijvu  are components of a fourth order tensor. 

Practice 9. If iu and jv are components of two tensors. Let ijjiij vuvuw +=  and

ijjiij vuvu −=α . Show that each of ijw and ijα is a second order tensor. 



MAL-633 15 

 

1.5 Contraction of a Tensor 

The operation or process of setting two suffixes equal in a tensor and then 

summing over the dummy suffix is called a contraction operation or simply 

a contraction. The tensor resulting from a contraction operation is called a 

contraction of the original tensor. Contraction operations are applicable to 

tensor of all orders higher than 1 and each such operation reduces the order 

of a tensor by 2. 

Property 1.5 Prove that the result of applying a contraction of a tensor of order n is a 

tensor of order (n-2). 

Proof:  Let termsnijku ..........  and termsnpqru ..........′  be the components of the given tensor of 

order n relative to two Cartesian coordinate systems 321 xxox and 321 xxxo ′′′ . The rule of 

transformation of tensor of order n (1.3.13) is   

termsnijkrkqjpitermsnpqr utermsnu ........................... )..............( lll=′                      (1.5.1) 

without loss of generality, we contract the given tensor by setting ji =  and 

summation convention. Let 

 .......................... iiklkl uv =                (1.5.2) 

Now  termsniikrkqipitermsnpqr utermsnu ........................... ..............)( ×=′ lll                   (1.5.3) 

   termsnklrkpq vtermsn )2.........(.......................)( −×= lδ  

 termsnklrkppr vtermsnu )2.....(............................ )2(.......... −×−=′ l    




≠
=

=
qpif

qpif
pq 0

1
δQ  

 termsnklrktermsnr vtermsnv )2.....(..........)2.......(.......... )2(.......... −− ×−=′ l                   (1.5.4) 
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Hence, the resulting tensor is tensor of order n-2.  So contraction applying once on a 

tensor of order greater then 1, the order of the tensor reduces by 2. Similarly 

contraction applying twice on a tensor of order n the order of that tensor reduces by 4.  

1.6 Quotient law of Tensors 

 (Quotient law is the partial converse of the contraction law) 

Property 1.6 If there is an entity represents by the set of 9 quantities iju relative to 

any given system of Cartesian axes, and if jijvu is a vector for an arbitrary vectorjv , 

then show that iju is a second order tensor. 

Proof:   jiji vuw =                                                                                        (1.6.1) 

Suppose thatpqu′ , pu′ and pw′  be the corresponding components in the dashed system

321 xxxo ′′′ . Then by using law of transformation and inverse law of transformation 

(1.3.10 and 11)  

 Now   pppq wvu ′=′′                                                                         (1.6.2) 

    ipiwl=  

    = )( jijpi vul  

    = qijqjpi vu ′ll  

⇒    0)( =′−′ qijqjpipq vuu ll                                                        (1.6.3) 

for an arbitrary vector qv′ . Therefore, we must have 

ijqjpipq uu ll=′                                                         (1.6.4) 

This rule shows that components iju  obey the tensor law of transformation of a 

second order. Hence, iju  is a tensor of order two. 
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Practice 10.  Let iα be an ordered triplet and iβ be a vector, referred to the −ix axis. 

If iiβα  is a scalar, show that iα are component of a vector. 

Example 3.  If there is an entity representable by a set of 27 quantities ijku  relative to 

321 xxox system and if jkijkvu is a tensor of order one for an arbitrary tensor jkv  if order 

2, show that ijku  is tensor of order 3. 

Solution. Let  jkijki vuw =                                                                                     (1.6.5) 

It is given that jkv  is a tensor of order 2 and jkijkvu  is a tensor of order one, and pqv′ ,

pqru′  are corresponding to jkv , ijku  in new coordinate system 321 xxxo ′′′ . Then by using 

transformation law and inverse transformation law (1.3.10 and 11) we get.  

   pqrpqr wvu ′=′′                 (1.6.6) 

    ipiwl=  

    = jkijkpi vul                                              (by using 1.6.5) 

    )( qrrkqjijkpi vu ′= lll  

    qrijkrkqjpi vu ′= lll  

⇒     0)( =′−′ qrijkrkqjpipqr vuu lll                                                (1.6.7) 

for an arbitrary vector qrv′ . Therefore, we must have 

   ijkrkqjpipqr uu lll=′                                                             (1.6.8) 

This rule shows that components ijku  obey the tensor law of transformation of a 

second order. Hence, ijku  is a tensor of order two. 
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Practice 11.  If there is an entity representable by a set of 27 quantities ijku  relative to 

321 xxox system and if kijkvu  is a tensor of order two for an arbitrary tensor kv  of order 

one, show that ijku  is tensor of order 3. 

Practice 12.  If there is an entity representable by a set of 81 quantities ijklu  relative 

to 321 xxox system and if jklijklvu is a tensor of order one for an arbitrary tensor jklv  if 

order 3, show that ijklu  is tensor of order 4. 

Practice 13.  If there is an entity representable by a set of 81 quantities ijklu  relative 

to 321 xxox system and if lijklvu is a tensor of order three for an arbitrary tensor lv  if 

order one, show that ijklu  is tensor of order 4. 

Practice 14.  If there is an entity representable by a set of 81 quantities ijklu  relative 

to 321 xxox system and if klijklvu is a tensor of order two for an arbitrary tensor klv  of 

order 2, show that ijklu  is tensor of order 4. 

1.7 Symmetric & Skew symmetric tensors 

1.7.1   A second order tensor iju  is said to be symmetric if jiuu jiij ,∀= . For 

example unit matrix of order 3×3 is symmetric tensor of order two. 

1.7.2 A second order tensor iju  is said to be skew-symmetric if jiuu jiij ,∀−= . For 

example skew-symmetric matrix of order 3×3 is skew-symmetric tensor of order two. 

Definition: (Gradient) if termsnpqru ........... is a tensor of order n in 321 xxox system, then  

termsnpqrtermsnspqr u
s

v ...........)1.(.......... ∂
∂=+  

       stermsnpqru ,...........=                                               (1.7.1) 
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is defined as the gradient of the tensor termsnpqru ........... . 

For example p
q

qp u
x

u
∂
∂=,  represents the gradient of vectorpu . 

 

Property 1.7 Show that the gradient of a scalar point function is a tensor of order one.  

Proof: Suppose that ),,( 321 xxxUU = be a scalar point function and  

i
i

i U
x

U
v ,=

∂
∂=                                                       (1.7.2) 

Let the components of the gradient of U in the dashed system 321 xxxo ′′′ be pv′ , so that  

    
p

p x

U
v

′∂
∂=′                                                             (1.7.3) 

Using the law of transformation (1.3.10) and inverse law of transformation we have 

    
p

p x

U
v

′∂
∂=′                    

         
p

i

i x

x

x

U
′∂

∂
∂
∂=                                         (by chain rule) 

         ipi
i

pi U
x

U
,ll =

∂
∂=    

Using (1.7.2), we get      ipip vv l=′                                                             (1.7.4) 

Which is a transformation rule for a tensor of order one. Hence gradient of the scalar 

point function U is a tensor of order one. 

Property 1.8 Show that the gradient of a vector iu  is a tensor of order two.  

Proof: The gradient of the tensor iu  is defined as  
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   ji
j

i
ij u

x

u
w ,=

∂
∂=                                                                 (1.7.5) 

Let the vector iu  be transformed to the vector pu′  relative to the new system 321 xxxo ′′′ . 

Then the transformation law for tensors of orders one (1.3.10) yields 

ipip uu l=′                                                             (1.7.6) 

Suppose the nine quantities ijw relative to new system are transformed topqw′ . Then 

   
q

p
pq x

u
w

′∂
′∂

=′  

          
q

i
piipi

q x

u
u

x '
)(

∂
∂

=
′∂

∂= ll  

           
q

j

j

i
pi x

x

x

u
′∂

∂
∂
∂= l    (by chain rule) 

           
j

i
qjpi x

u

∂
∂= ll ijqjpi wll=                                                         

⇒     ijqjpipq ww ll=′
                                                      

(1.7.7) 

This is a transformation rule for tensors of order two. Hence, ijw  is a tensor of order 

two. Consequently, the gradient of a vector iu is a tensor of order two. 

Property 1.9 Show that the gradient of a tensor of order n, termsnijku ...........  is a tensor 

of order (n+1). 

Proof: Let termsnijku ..........  is a tensor of order n. The gradient of the tensor termsnijku ..........  

is defined as  

   τ
τ

τ ,...........
...........

.............. termsnijk
termsnijk

pqr u
x

u
w =

∂
∂

=                  (1.7.8) 
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Let the tensor termsnijku ......  be transformed to the tensor termsnprsu .........′  relative to the 

new system 321 xxxo ′′′ . Then the transformation law for tensors of order n (1.3.13) yields  

termsnijkrkqjpitermsnpqr utermsnu ........................... )..............( lll=′         (1.7.9) 

Suppose n3  quantities termsnijkw ........... relative to new system are transformed to

termsnpqrw ...........′ . Then 

   
τ

τ x

u
w termsnpqr

termsnpqr ′∂
′∂

=′ ..........
,........  

       
τ

α

α x

x

x

u
termsn termsnijk

rkqjpi ′∂
∂

∂
∂

= .........)........( lll     

      
α

τα x

u
termsn termsnijk

rkqjpi ∂
∂

= ..................... llll  

      τατ ,.................... ntermsijkrkqjpi utermsn ×= llll                (1.7.10) 

⇒         ταττ .,..........,.......... ............ ijkrkqjpitermsnpqr utermsnw llll=′  

This is a transformation rule for tensors of order (n+1). Hence, termsnijkw )1(.......... +  
is a 

tensor of order (n+1). Consequently, the gradient of a tensor of order n is a tensor of 

order (n+1). 

Books Recommended: 
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2. Saad, A.S. Elasticity-Theory and Applications, Pergamon  

    Press, Inc. NY, 1994.  

3. Sokolnikoff, I.S. Mathematical Theory of Elasticity, Tata McGraw  

 Hill Publishing Company, Ltd., New Delhi, 1977 
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CHAPTER-II 

ANALYSIS OF TENSOR 

Consider an ordered set of N real variables Ni xxxxx ,......,.......,, 321 ; these 

variables will be called the coordinates of a point. (The suffixes 1, 2, 3,……,i,…..N, 

which we shall call superscripts, merely serve as labels and do not possess any 

signification as power indices. Later we shall introduce quantities of the ia and again 

thei , which we shall call a subscript, will act only as a label.) Then all the point 

corresponding to all values of the coordinates are said to form an N-dimensional 

space, denoted byNV . Several or all of the coordinates may be restricted in range to 

ensure a one-one correspondence between points of the NV , and sets of coordinates. 

A curve in the NV  is defined as the assemblage of points which satisfy the N 

equations  

)...........,3,2,1(),( Niuxx ii ==  

whereu is a parameter and )(uxi are N functions of u , which obey certain continuity 

conditions. In general, it will be sufficient that derivatives exist up to any order 

required. A subspace MV of NV  is defined for NM < as the collection of points which 

satisfy the N equations    

  )...........,3,2,1(),,..........,,( 21 Niuuuxx Mii ==  

where there are M parameters Muuu ,..........,, 21 . The ),..........,,( 21 Mi uuux  are N 

functions of the Muuu ,..........,, 21 satisfying certain conditions of continuity. In 

addition the NM × matrix formed from the partial derivatives 
j

i

u

x

∂
∂

is assumed to be 

of rank *M . When 1−= NM , the subspace is called a hyper surface. 
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 Let us consider a space NV with the coordinate system .........,,, 321 Nxxxx The 

N equations 

  ).....,3,2,1(),,.........,( 21 Nixxxx Nii == ϕr
                                        (2.1) 

where the iϕ are single-valued continuous differentiable functions of the coordinates, 

define a new coordinate system Nxxxx .........,,, 321 .  Equations (2.1) are said to define 

a transformation of coordinates. It is essential that the N functions iϕ be 

independent. A necessary and sufficient condition is that the Jacobian determinant 

formed from the partial derivatives 
j

i

x

x

∂
∂

 does not vanish. Under this condition we can 

solve equations (2.1) for the ix as functions of the ix and obtain 

  ),......3,2,1()........,,,( 321 Nixxxxx Nii == ϕ  

2.1 The Symbol ijδ  

 We will now introduce the following two conventions:  

1) Latin indices, used either as subscripts or superscripts, will take all values 

from 1 to N unless the contrary is specified. Thus equations (2.1) are briefly 

written ),.........,( 21 Nii xxxx ϕ= , the convention informing us that there are N 

equations. 

2) If a Latin index is repeated in a term, then it is understood that a summation 

with respect to that index over the range 1, 2, 3, …. N is implied. Thus instead 

of the expression∑
=

N

i
ii xa

1

, we merely write ii xa . Now differentiation of (2.1) 

yields   

∑∑
==

=
∂
∂=

∂
∂=

N

r
r

r

i
N

r
r

r

i
i Nidx

x

x
dx

x
xd

11

).,..........,3,2,1(,
ϕ

 

which simplify, when the above conventions are used, to  
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  r
r

i
i dx

x

x
xd

∂
∂

= .                                                                                 (2.2) 

The repeated index r  is called a dummy index, as it can be repeated by any other 

Latin index, except ‘i’ in this particular case. That is, equations (2.2) can equally well 

be written m
m

i
i dx

x

x
xd

∂
∂

=   or for that matter r
r

i
i dx

x

x
xd

∂
∂

= . In order to avoid 

confusion, the same index must not be used more than twice in any single term. For 

example; 
2

1









∑

=

N

i
ii xa will not be written iiii xaxa , but rather jjii xaxa . It will always be 

clear from the context, usually powers will be indicated by the use of brackets; thus 

( )2
Nx mean the square of Nx . The reason for using superscripts and subscripts will be 

indicated in due course. Let us introduce the Kronecker delta. It is defined as    





≠
=

=
∂
∂

=
jiif

jiif

x

x

j

i
ij 0

1
δ             (2.1.1) 

That is, 0;1 322331132112332211 ========= δδδδδδδδδ .The symbol ijδ is 

known as the Kronecker δ symbol, named after the German Mathematician Leopold 

Kronecker (1827-1891). The following property is inherent in the definition ofijδ . 

1) Kronecker δ  is symmetric i.e ijδ = jiδ                                                     (2.1.2) 

2) Summation convention 3332211 =++= δδδδ ii                                       (2.1.3) 

3) The unit matrix of order 3 is ( )ijI δ=3  and ( ) 1det =ijδ                            (2.1.4) 

4) The orthonormality of the base unit vectors iê can be written as  

iê . jê  = ijδ                          (2.1.5) 

2.1.1 Tensor Equation:- An equation of type 0=− kijijk uβα is called a tensor 

equation, for checking the correctness of a tensor equation, we have the following rule         



MAL-633 25 

(i) In a correctly tensor equation no suffixes shall appear more than twice in 

any term, otherwise the operation will not be define. For example jjijj vuu α=′

is not a tensor equation.    

(ii) If a suffixes appears only once in a term then it must appear only once in 

the remaining term also. For example, an equation 0=−′ iijj uu l is not a tensor 

equation. Hence j appears once in the first term while it appears twice in the 

second term.    

Property 2.1 Prove the following (Known as substitution properties of ijδ ) 

(i) iijj uu δ=   (ii) jkikijikjkij uuuu == δδ ; (iii) 332211 uuuuu kkijij ++==δ  

Proof. (i)  Now     332211 uuuu jjjiij δδδδ ++=  

    ⇒ ∑
≠
=

+
3

ji
ji

iijj uu δ = ju                                               (2.1.6) 

(ii)   ∑
=

=
3

1j
jkijjkij uu δδ  

 = ikii uδ  (for 0, =≠ ijij δ ), here summation over i is not taken 

 = iku                                                                                              (2.1.7) 

(iii)   ∑ ∑ 







=

i j
ijijijij uu δδ  

= ( )∑
i

iiu.1 , in iiu summation is not being taken 

=∑
i

iiu = 332211 uuu ++ = kku                                             (2.1.8) 

Example 2.1 Given that ijkkijij bba βαδ += ,where 03,0 ≠+≠ βαβ , find ijb  in 

terms of ija . 
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Solution. Setting ji =  in the relation ijkkijij bba βαδ +=  and summing accordingly, 

we obtain         iikkii bba ..3. βα +=  

    = kkb)3( βα +                                  ( iikk bb =Q ) 

⇒        kkkk ab
βα +

=
3

1
 

Hence, [ ] 








+
−=−= kkijijkkijijij aabab δ

βα
α

β
αδ

β 3

11
                                      (2.1.9) 

Property 2.2 Prove that (i) pqqipi δ=ll  (ii) ijpjpi δ=ll  (iii) ( ) ( )'1,1 ijijij lll == −  

Proof. We know the transformation law of the coordinate system (1.3.10), we have  

ipip xx l=′  and qqii xx ′= l                                                                       (2.1.10) 

Now, (i) ipip xx l=′  

 ⇒ )( qqipip xx ′=′ ll               (2.1.11) 

using the relation (2.1.6) on the L.H.S. of (2.1.11) 

 ⇒ qqipiqpq xx ′=′ llδ   

 ⇒ 0)( =′− qpqqipi xδll  

 ⇒ pqqipi δ=ll                                                                                                            (2.1.12) 

(ii)  Similarly,   ppii xx ′= l  

  ⇒     jpjpi xll=  

 Also            jiji xx δ=                                                                           (2.1.13) 

Hence,      jpjpijij xx ll=δ  

   0)( =− jpjpiij xllδ  

  ⇒  pjpiij ll=δ                                                                      (2.1.14) 
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(iii)  Using (2.1.12) gives, in the expanded form, 

 12
13

2
12

2
11 =++ lll , 12

23
2
22

2
21 =++ lll , 12

33
2
32

2
31 =++ lll  

0231322122111 =++ llllll , 0332332223121 =++ llllll , 0133312321131 =++ llllll  

The relations (2.1.12) and (2.1.14) are referred as the orthonormal relations forijl . In 

matrix notation, the above said relations may be represented respectively, as follows    

















=
































100

010

001

332313

322212

312111

333231

232221

131211

lll

lll

lll

lll

lll

lll

                       (2.1.15) 

or  1=′=′ LLLL  

these expressions show that the matrix L  

 

Property 2.3 Show that ijδ  and ijl are tensors, each of order two. 

Proof: Let iu be any tensor of order one,  

i> by the substitution property of the Kroneceker delta tensor ijδ , we have 

  jiji uu δ=               (2.1.16) 

Now iu and ju are each of tensor order one. Therefore, by quotient law, we conclude 

that ijδ  is a tensor of rank two. 

ii>  The transformation law for the first order tensor is  

ipip uu l=′                                         (2.1.17) 

where iu  is a vector and ipi ul is a vector by contraction property. Therefore, by 

quotient law, the quantities pil are components of a second order tensor. 

Note 1: The tensor ijδ is called a unit tensor or an identity tensor of order two. 

2. We may call the tensor ijl as the transformation tensor of rank two. 
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2.2 The Symbol ijk∈
 

Euclidean geometry investigates the properties of figures which are invariant 

with respect to translations and rotations in space. It may be subdivided into Algebraic 

methods the theory applicable to entire configurations such as the class or degree of a 

curve. The latter discusses by means of the calculus those properties which depend on 

a restricted portion of the figure. For example, the total curvature of a surface at that 

point. Succinctly we may say that differential geometry is the study of geometry in 

small. This chapter is not intended to be a complete course on the subject. However, 

sufficient theory is developed to indicate the scope and power of the tensor method.  

 The symbol ijk∈  is known as the Levi-civita ∈-symbol, named after the 

Italian mathematician Tullio Levi-civita (1873-1941). The  ∈-symbol is also referred 

to as the Permutation symbol/alternating symbol or alternator. In terms of 

mutually orthogonal unit vectors1ê , 2ê , 3ê along the Cartesian axes, it defined as  

   ijkkji eee =∈× )ˆˆ.(ˆ    3,2,1,, =∀ kji                       (2.2.1) 

Thus, the symbol ijk∈  gives  

   








−=∈
valuesamethetakekjiofalloranyif

orderacyclictheinvaluestakekjiif

ordercyclictheinvaluestakekjiif

ijk

,,:0

,,:1

,,:1

(2.2.2) 

These relations are 27 in number. The ∈-symbol is useful in expressing the vector 

product of two vectors and scalar triple product. 

(i) We have kijkji eee ˆˆˆ =∈× .                                                                     (2.2.3) 

(ii)  For two vectors ia and ib ,we write 

kjiijkjijijjii ebaeebaebeaba ˆ)ˆˆ()ˆ()ˆ( =∈×=×=×
rr

                            (2.2.4) 

(iii)  ii eaa ˆ=r
, jj ebb ˆ=
r

, kkecc ˆ=r
 

We have 
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   [ ] cbacba
rrrrrr

).( ×= )ˆ).(ˆ( kkkjiijk eceba∈=  

    kjiijk cba=∈

321

321

321

ccc

bbb

aaa

=                                (2.2.5) 

Property 2.4 Show that ijk∈  is a tensor of order 3. 

Proof: Let iaa =r and ibb =
r

be any two vectors. Let 

  bacc i

rrr ×== . 

 Then, kjijki bac =∈                                                                                    (2.2.6) 

Now kjba is a tensor of order 2 and kjijk ba∈ (by 2.2.6) is a tensor of order one. 

Therefore, by quotient law, ijk∈  is a tensor of order 3. 

Example 2.2 Show that kijkij uw =∈ is a skew-symmetric tensor, where ku is a vector 

and ijk∈  is an alternating tensor 

Solution: Since ijk∈  is a tensor of order 3 and ku is a tensor of order one, so by 

contraction, the product kijk u∈ is a tensor of order 2. Further 

    kijkij uw =∈  

    kjik u∈−=  

    jiw−=                                                                     (2.2.7) 

This shows that ijw is a tensor which is skew-symmetric. 

Example 2.3 Show that iju is symmetric iff 0=∈ ijikj u  

Solution: We find  

  322332321232311 uuuuuijij −=∈+=∈∈  
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  133113132313122 uuuuuijij −=∈+=∈∈  

  211221213121233 uuuuuijij −=∈+=∈∈                                            (2.2.8) 

Thus, iju is symmetric iff   

jiij uu = or 2112 uu = , 3113 uu = , 3223 uu =                                        (2.2.9) 

2.3. Isotropic Tensors 

Definition: A tensor is said to be an isotropic tensor if its components remain 

unchanged/invariant however the axes are rotated. 

Note. 1. An isotropic tensor possesses no directional properties. Therefore a non-zero 

vector (or a non-zero tensor of rank 1) can never be an isotropic tensor. Tensor of 

higher orders, other than one, can be isotropic tensors. 

2. Zero tensors of all orders are isotropic tensors. 

3. By definition, a scalar (or a tensor of rank zero) is an isotropic tensor. 

4. A scalar multiple of an isotropic tensor is an isotropic tensor. 

5. The sum and the differences of two isotropic tensors is an isotropic tensor. 

Property 2.5 Prove that substitution tensor ijδ and alternating tensor ijk∈ are isotropic 

tensors 

Proof: A>Let the components ijδ  relative to ix -system are transformed to quantities 

pqδ ′  relative to ix′ -system. Then, the tensorial transformation rule is  

   ijqjpipq δδ ll=′                                                                    (2.3.1) 

Now R.H.S of (2.3.1)  

         [ ]ijqjpi δll= qipill=  

    = pqδ =




=
≠

qpif

qpif

1

0
                                              (2.3.2) 
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Relation (2.3.1) and (2.3.2) show that the components ijδ are transformed into itself 

under all co-ordinate transformations. Hence, by definition, ijδ  is an isotropic tensor. 

B> We know that ijk∈  is a system of 27 numbers. Let 

   [ ] )ˆˆ.(ˆˆˆˆ kjikjiijk eeeeee ×==∈                                               (2.3.3) 

Be related to the ix -axis. Then, the third order tensorial law of transformation (1.3.9) 

gives    ijkrkqjpipqr ∈=∈′ lll                                                            (2.3.4) 

where pil  is defined in (1.3.9). We have already check that 

   

321

321

321

rrr

qqq

ppp

ijkrkqjpi

lll

lll

lll

lll =∈                                         (2.3.5) 

and        [ ]
321

321

321

ˆ,ˆ,ˆ

rrr

qqq

ppp

rqp eee

lll

lll

lll

=′′′                                         (2.3.6) 

Using (2.3.4, 2.3.5 and 2.3.6), we get 

[ ] )ˆˆ.(ˆˆ,ˆ,ˆ rqprqppqr eeeeee ′×′′=′′′=∈′ =








−
samearesufficesallortwoanyif

orderanticyclicinarerqpif

ordercyclicinarerqpif

:0

,,:1

,,:1

        

(2.3.7) 

This shows that components ijk∈ are transformed into itself under all coordinate 

transformations. Thus, the third order tensor ijk∈
 
is an isotropic. 

Property 2.6 If iju is an isotropic tensor of second order, then show that ijiju αδ= for 

some scalarα . 

Proof: As the given tensor is isotropic, we have 

    ijij uu =′                  (2.3.8) 
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for all choices of the ix′  -system. In particular, we choose  

133221 ,, xxxxxx =′=′=′                       (2.3.9) 

    

 

 

 

 

 

 

Then     

001

100

010

=ijl                                          (2.3.10) 

and law of transformation (1.3.9), as  

     ijqjpipq uu ll=′                                          (2.3.11) 

Now     )( 31321211111111 iiiiijji uuuuu llllll ++==′  

    2121321211 )00( iiiiii uuuu llll =++=  

    2232132212121112 )( uuuu =++= llll  

⇒      2211 uu =′                                                    (2.3.12) 

Similarly, 

3322 uu =′ , 2312 uu =′ , 2312 uu =′ , 3123 uu =′ , 2113 uu =′ , 3221 uu =′   (2.3.13) 

Now, we consider the transformation:   331221 ,, xxxxxx =′−=′=′                     (2.3.14) 

2x′

1x′

3x

2x

3x′
1x

1.2Figure
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Then     

100

001

010

−=ijl                                                    (2.3.15) 

Using law of transformation defined in (2.3.11), we get 

231313 uuu ==′ , 132323 uuu −==′  

⇒ 1313 uu −=′ , 013 =u and 023 =u                               (2.3.16) 

using (2.3.13) and (2.3.16), we obtain 

   ijij αδ=l  where 332211 lll ===α                        (2.3.17) 

Note 1: If ijkl  are components of an isotropic tensor of third order, then ijkijk ∈= αl

for some scalarα . 

Note 2: If ijkml  are components of a fourth-order isotropic tensor, then 

  jkimjmikkmijijkm δγδδβδδαδ ++=l  for some scalars γβα ,, . 

2.4 Contravariant tensors (vectors) 

 A set of N  functions if  of the N  coordinates ix are said to be the 

components of a contravariant vector if they transform according to the equation.  

j
j

i
i f

x

x
f

∂
∂

=                                                             (2.4.1) 

on change of the coordinates ix  to ix . This means that any N functions can be chosen 

as the components of a contravariant vector in the coordinate systemix , and the 

equations (2.4.1) define the N  components in the new coordinate systemix . On 

multiplying equations (2.4.1) by 
i

k

x

x

∂
∂

and summing over the index ‘i ’ from 1 toN , 

we obtain  
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   kjijj
j

k
j

j

i

i

k
i

i

k fff
x

x
f

x

x

x

x
f

x

x
==

∂
∂

=
∂
∂

∂
∂

=
∂
∂ δ                        (2.4.2) 

Hence the solution of equations (2.4.1) is  

    i
i

k
k f

x

x
f

∂
∂

= .                  (2.4.3) 

When we examine equations r
r

i
i dx

x

x
xd

∂
∂

= (where repeated index r is called dummy 

index) we see that the differentials idx from the components of a contravariant vector, 

whose components in any other system are the differentials ixd of the system. It 

follow immediately that dudxi  is also a contravariant vector, called the tangent 

vector to the curve )(uxx ii = . 

 Consider now a further change of coordinates ),........,( 21 nii xxxgx =′ . Then the 

new components  

k
k

i
k

k

j

j

i
j

j

i
i f

x

x
f

x

x

x

x
f

x

x
f

∂
′∂=

∂
∂

∂
′∂=

∂
′∂=′                                           (2.4.4) 

This equation is of the same form as (2.4.1), which shows that the transformations of 

contravariant vectors form a group. 

2.5 Covariant vectors 

 A set of N  functions if  of the N  coordinates ix are said to be the 

components of a covariant vector if they transform according to the equation.  

j
i

j
i f

x

x
f

∂
∂

=                                                             (2.5.1) 

on change of the coordinates ix  to ix . Any N functions can be chosen as the 

components of a covariant vector in the coordinate system ix , and the equations 
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(2.5.1) define the N  components in the new coordinate systemix . On multiplying 

equations (2.5.1) by 
k

i

x

x

∂
∂

and summing over the index ‘i ’ from 1 toN , we obtain  

   kjjkj
k

j
j

i

k

k

i
i

k

i fff
x

x
f

x

x

x

x
f

x

x
==

∂
∂

=
∂
∂

∂
∂

=
∂
∂ δ                      (2.5.2) 

Since, 
i

j

ji x

x

xx ∂
∂

∂
Γ∂=

∂
Γ∂

, it follows immediately from (2.5.1) that the quantities 
ix∂

Γ∂
are 

the components of a covariant vector, whose components in any other system are the 

corresponding partial derivatives
ix∂

Γ∂
. Such a covariant vector is called the gradient of

Γ . We now show that there is no distinction between contravariant and covariant 

vectors when we restrict ourselves to transformations of the type 

    imimi bxax += ,                                                     (2.5.3) 

where ib are N  constants which do not necessarily form the components of a 

contravariant vector and ima  are constants ( not necessary forming a tensor) such that 

    rmimir aa δ=                                                             (2.5.4) 

We multiply equations (2.5.3) by ira and sum over the index i from 1 to N and obtain 

    iiriirr baxax −= . 

Thus,    ij
i

j

j

i a
x

x

x

x
=

∂
∂

=
∂
∂

                                                     (2.5.5) 

This shows that the equations (2.4.1) and (2.5.1) define the same type of entity. 

 

 

 

 



MAL-633 36 

Books Recommended: 

1. Y. C. Fung: Foundation of Solid Mechanics, Prentice Hall, Inc.,   

   New Jersey,1965. 

2. Sokolnikoff, I. S. Mathematical Theory of Elasticity, Tata McGraw  

 Hill Publishing Company, Ltd., New Delhi, 1977 

3. Barry Spain Tensor Calculus A Concise Course, Dover  

                               Publication, INC. Mineola, New York. 

 

     

 



MAL-633 37 

CHAPTER-III 

APPLICATONS OF TENSOR 
3.1 EIGENVALUES AND EIGEN VACTORS 

Definition: Let iju be a second order symmetric tensor. A scalarλ is called an 

eigenvalue of the tensor iju if there exists a non-zero vector iv such that 

    ijij vvu λ=  3,2,1, =∀ ji                                  (3.1.1) 

The non-zero vector iv is then called an eigenvector of tensor iju  corresponding to the 

eigen valueλ . We observe that every (non-zero) scalar multiple of an eigenvector is 

also an eigen vector. 

Property 3.1 Show that it is always possible to find three mutually orthogonal 

eigenvectors of a second order symmetric tensor. 

Proof. Let iju  be a second order symmetric tensor and λ  be an eigen value ofiju . Let 

iv  be an eigenvector corresponding toλ . Then 

ijij vvu λ=                                                              (3.1.2) 

or     0)( =− jijij vu λδ                                                   (3.1.3) 

This is a set of three homogeneous simultaneous linear equations in three unknown

321 ,, vvv . These three equations are 









=−++
=+−+
=++−

0)(

0)(

0)(

333232131

323222121

313212111

vuvuvu

vuvuvu

vuvuvu

λ
λ

λ
                                       (3.1.4) 

This set of equations possesses a non-zero solution when 

0

333231

232221

131211

=
−

−
−

λ
λ

λ

uuu

uuu

uuu

                                          (3.1.5) 
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or    0=− ijiju λδ                                                         (3.1.6) 

expanding the determinant in (3.1.6), we find 

[ ]
[ ]
[ ] 0)(

)(

))(()(

2231321213

2331331212

2332332211

=−−+
−−−
−−−−

λ
λ
λλλ

uuuuu

uuuuu

uuuuu

                                        

or 

[ ] 0)()()(

)(

)(

223132211323313321123223332211

211213313223113333222211

2
332211

3

=−+−−−+
−−−++−

+++−

uuuuuuuuuuuuuuu

uuuuuuuuuuuu

uuu

λ
λλ

   (3.1.7) 

we write (3.1.7) as 

    0321
23 =+−+− III λλλ                                       (3.1.8) 

where   iiuuuuI =++= 3322111   

 [ ]jiijjjii uuuuuuuuuuuuuuuuI −=−−−++=
2

1
3113322321121133332222112  

 3213 kjiijkij uuuuI =∈=                                                                             (3.1.9) 

Equation (3.1.8) is a cubic equation in λ .Therefore it has three roots, say 321 ,, λλλ

which may not be distinct (real or imaginary). These roots (which are scalar) are the 

three eigenvalues of the symmetric tensoriju . 

Further    1321 I=++ λλλ                                                   (3.1.10) 

    2133221 I=++ λλλλλλ                                         (3.1.11) 

    3321 I=λλλ                                                                        (3.1.12) 

Each root iλ , when substituted in equation (3.1.4), gives a set of three linear equations 

(homogeneous) which are not all independent. By discarding one of equations and 

using the condition  
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   12
3

2
2

2
1 =++ vvv                                                                (3.1.13) 

for unit vectors, the eigenvector iv
r

 is determined.  

Property 3.2 Eigen values of a real symmetric tensor iju  are real. 

Proof. Let λ  be eigenvalue with corresponding eigenvectorjv . 

Then     ijij vvu λ=                                                            (3.1.14) 

Taking the complex conjugate on both sides of (3.1.14), we find 

ijij vvu λ=  

ijij vvu λ=                                                            (3.1.15) 

since iju is a real tensor. Now 

    

ii

ij

ijijijij

vv

vv

vvuvvu

)(

)(

)(

λ

λ

=

=

=

                                                            (3.1.16) 

Taking complex conjugate of (3.1.16) both side 

   

ijij

jiji

ijij

ijijijij

vvu

vvu

vvu

vvuvvu

=

=

=

=
________

  (by changing the role of i and j)          (3.1.17) 

This shows that quantity ijij vvu is real. Hence iivvλ is real. Since iivv is always real, it 

follows that λ  is real. 

Property 3.3 Eigen vector corresponding to two distinct eigen values of the 

sysmmetric tensor iju are orthogonal. 

Proof. Let 21 λλ ≠ be two distinct eigenvalues ofiju . Let  iA  and iB  be the 

corresponding non-zero eigenvectors. Then 
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   ijij AAu 1λ= , ijij BBu 1λ=                                                 (3.1.18) 

We obtain   

  iiijij BABAu 1λ= , iiijij BAABu 2λ=                                             (3.1.19) 

Interchanging the role of i  and j  

  ijijjijiijij ABuBAuBAu ==                         (3.1.20) 

From (3.1.19) and (3.1.20), we get 

   iiii BABA 21 λλ =  

0)( 21 =− ii BAλλ  

⇒    0=ii BA             ( 21 λλ ≠Q )                      (3.1.21) 

Hence, eigenvectors iA  and iB are mutually orthogonal. This completes the proof. 

Note: Now we consider various possibilities about eigenvalues 321 ,, λλλ . 

Case 1: if 321 λλλ ≠≠ , i.e., when all eigenvalues are different and real. Then, by 

property 3.3, three eigenvectors corresponding to iλ  are mutually orthogonal. Hence 

the results holds. 

Case 2: if 321 λλλ =≠ . Let iv1
r

be the eigenvector of the tensor iju corresponding to 

the eigenvalue 1λ  and iv2
r

be the eigenvector corresponding to2λ . Then 

    021 =⋅ ii vv
rr

                                                          (3.1.22) 

 

 

 

 

 

iv1
r

iv2
r

1.3figure
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Let ip
r

 be a vector orthogonal to both iv1
r

 and iv2
r

. Then 

   021 =⋅=⋅ iiii vpvp
rrrr

                                                          (3.1.23) 

and     ijij vvu 111
rr λ= , ijij vvu 222

rr λ=                                                        (3.1.24) 

Let    == jjij qpu  a tensor of order 1                                                  (3.1.25) 

We shall show that ip  and iq are parallel. 

Now        ijijii vpuvq 11
rr =  

    jiji vpu 1
r=    (By interchanging the role of i and j ) 

    011 == jivp
rλ                                                         (3.1.26) 

Similarly,    02 =iivq
r

                                                              (3.1.27) 

Thus, iq is orthogonal to both orthogonal eigenvectors iv1
r

 and iv2
r

. Thus iq must be 

parallel to ip . So, we write 

   iiiij pqpu α==                                                            (3.1.28) 

for some scalar α . 

Relation (3.1.28) shows that α must be an eigenvalue and ip  must be the 

corresponding eigenvector ofiju . 

   
i

i
i p

p
v =3

r
                                                                          (3.1.29) 

Since iju  has only three eigenvalues 321, λλλ = , so α must be equal to 32 λλ = . Thus 

iv3
r

 is an eigenvector which is orthogonal to both iv1

r
 and iv2

r
, where ii vv 21

rr ⊥ . Thus, 

there exists three mutually orthogonal eigenvectors. 

Further, let iw
r

 be any vector which lies in the plane containing the two eigenvectors 

iv2
r

 and iv3
r

 corresponding to the repeated eigenvalues. Then 
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    iii vkvkw 3221

rrr +=  for some scalars 1k and 2k and  

    01321211 =⋅+⋅=⋅ iiiiii vvkvvkvw
rrrrrr

                       (3.1.30) 

and     )( 3221 iiijiij vkvkuwu
rrr +=  

           iijiij vukvuk 3221
rr +=  

           ii vkvk 332221

rr λλ +=                                  ( 32 λλ = ) 

           iii wvkvk 232212 )( λλ =+= rr
                            (3.1.31) 

Thus iw is orthogonal to iv1
r

 and iw  is an eigenvector corresponding to2λ . Hence, any 

two orthogonal vectors those lie on the plane normal to iv1
r

 can be chosen as the other 

two eigenvectors ofiju . 

Case 3: if 321 λλλ ==  

In this case, the cubic equation in λ becomes 

     0)( 3
1 =− λλ                                           (3.1.32) 

or      0

00

00

00

1

1

1

=
−

−
−

λλ
λλ

λλ
                               (3.1.33) 

Comparing it with equation (3.1.6), we have  

    0=iju  for ji ≠  

and      1332211 λ=== uuu  

Thus,     ijiju δλ1=                                                              (3.1.34) 

Let iv
r

 be any non-zero vector. Then 

    jijjij vvu
rr δλ1=  

            iv
r

1λ=                                                            (3.1.35) 
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This shows that iv
r

 is an eigenvector corresponding to λ1. Thus, every non-zero vector 

in space is an eigenvector which corresponds to the same eigenvalue λ1. Of these 

vectors, we can certainly choose (at least) there vectors iv1

r
, iv2
r

, iv3
r

that are mutually 

orthogonal. Thus, in every case, there exists (at least) three mutually orthogonal 

eigenvectors ofiju . 

Example 1.Consider a second order tensor iju whose matrix representation is  















 −

322

121

101

 

It is clear, the tensoriju  is not symmetric. We shall find eigenvalues and eigenvectors 

of iju .  

Solution. The characteristic equation is 0

322

121

101

=
−

−
−−

λ
λ

λ
 

or    0)]2(22[1]2)3)(2)[(1( =−−−−−−− λλλλ  

or    0)3)(2)(1( =−−− λλλ  

Hence, eigenvalues are 3,2,1 321 === λλλ , all are different.                          (3.1.36) 

We find that an unit eigenvector corresponding to 1=λ is 






= 0,
2

1
,

2

1
ˆ1iv , the unit 

vector corresponding to 2=λ is 






 −−=
3

2
,

3

1
,

3

2
ˆ2iv , the unit vector corresponding to 

3=λ is 






 −−=
6

2
,

6

1
,

6

1
ˆ3iv . We note that 0ˆˆ 21 ≠⋅ ii vv , 0ˆˆ 32 ≠⋅ ii vv , 0ˆˆ 31 ≠⋅ ii vv . This 

happens due to non-symmetry of the tensoriju . 
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Example 2. Let the matrix of the components of the second order tensor iju whose 

matrix representation is  

















100

022

022

 

Find eigenvalues and eigenvectors of iju .  

Solution. We note that the tensor is symmetric. The characteristic equation is  

0

100

022

022

=
−

−
−

λ
λ

λ
 

or      0)4)(1( =−− λλλ  

Hence, eigenvalues are 4,1,0 321 === λλλ , all are different.                         (3.1.37) 

Let 1ˆiv  be the unit eigenvector corresponding to eigenvalue 01 =λ . Then, the system 

of homogeneous equations is   

0

ˆ

ˆ

ˆ

100

022

022

3

2

1

=
































i

i

i

v

v

v

                                             (3.1.38) 

This gives 0ˆˆ 21 =+ ii vv , 0ˆˆ 21 =+ ii vv , 0ˆ3 =iv  

We find 






 −= 0,
2

1
,

2

1
ˆ1iv , 

Similarly, ( )1,0,0ˆ2 =iv  and 






= 0,
2

1
,

2

1
ˆ3iv  are eigen vectors corresponding to 

12 =λ and 43 =λ , respectively, Moreover, these vector are mutually orthogonal. 
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Practice 1. Let the matrix of the components of the second order tensor iju whose 

matrix representation is  















−

203

121

132

 

Find eigenvalues and eigenvectors of iju .  

Practice 2. Let the matrix of the components of the second order tensor iju whose 

matrix representation is  

















−

−

231

050

023

 

Find eigenvalues and eigenvectors of iju .  

Practice 3. Let the matrix of the components of the second order tensor iju whose 

matrix representation is  

















−−
−
−

321

131

251

 

Find eigenvalues and eigenvectors ofiju .  

Practice 4. Let the matrix of the components of the second order tensor iju whose 

matrix representation is  

















− 341

111

050

 

Find eigenvalues and eigenvectors ofiju .  
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Practice 4. Let the matrix of the components of the second order tensor iju whose 

matrix representation is  

















−
−

−

521

301

212

 

Find eigenvalues and eigenvectors ofiju .  

Practice 5. Let the matrix of the components of the second order tensor iju whose 

matrix representation is  

















−
−

341

111

053

 

Find eigenvalues and eigenvectors ofiju .  

Practice 6. Let the matrix of the components of the second order tensor iju whose 

matrix representation is  

















−
−

361

141

052

 

Find eigenvalues and eigenvectors ofiju .  

Books Recommended: 

1. Y. C. Fung: Foundation of Solid Mechanics, Prentice Hall, Inc.,   
   New Jersey,1965. 

2. Sokolnikoff, I. S. Mathematical Theory of Elasticity, Tata McGraw  
 Hill Publishing Company, Ltd., New Delhi, 1977 

3.  Barry Spain Tensor Calculus A Concise Course, Dover  
                              Publication, INC. Mineola, New York. 

4.  Shanti Narayan    Text Book of Cartesian Tensors, S. Chand & Co.,1950.  
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CHAPTER-IV 

ANALYSIS OF STRAIN 

4.1 INTRODUCTION 

Rigid Body:  A rigid body is an ideal body such that the distance between every pair 

of its points remains unchanged under the action of external forces. The possible 

displacementsin a rigid bodyare translation and rotation. These displacements are 

called rigid displacements. In translation, each point of the rigid body moves in a 

fixed direction. In rotation about a line, every point of the body (rigid) moves in a 

circular path about the line in a plane perpendicular to the line. 

  

 

 

 

 

 

In a rigid body motion, there is a uniform motion throughout the body. 

Elastic Body: A body is called elastic if it possesses the property of recovering its 

original shape and size when the forces causing deformation are removed. 

Continuous Body: In a continuous body, the atomistic structure of matter can be 

disregarded and the body is replaced a continuous mathematical region of the space 

whose geometrical points are identified with material points of the body. 

 The mechanics of such continuous elastic bodies is called mechanics of 

continuous. This branch covers a vast range of problem of elasticity, hydromechanics, 

aerodynamics, plasticity and electrodynamics, seismology, etc. 

 
P 

line Figure 4.1 
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Deformation of Elastic Bodies: The change in the relative position of points in a 

continuous is called deformation, and the body itself is then called a strained   body. 

The study of deformation of an elastic body is known a s the analysis of strain. The 

deformation of the body is due to relative movements or distortions within the body. 

4.2 TRANSFORMATION OF AN ELASTIC BODY 

We consider the undeformed and deformed both positions of an elastic body. Let 

321 xxox be mutually orthogonal Cartesian coordinates fixed in space. Let a continuous 

body B, referred to system 321 xxox , occupies the region R  in the undeformed state. In 

the deformed state, the points of the body B will occupy some region sayR′ . 

 

 

 

 

 

 

 

Let ),,( 321 xxxP be the coordinate of a material point P of the elastic body in the 

initial or unstained state. In the transformation or deformed state, let this material 

point occupies the geometric point ),,( 321 ξξξP′ . We shall be concerned only with 

continuous deformation of the body from region R  into the region R′ and we assume 

that the deformation is given by the equation 

    

),,(

),,(

),,(

32133

32122

32111

xxx

xxx

xxx

ξξ
ξξ
ξξ

=
=
=

           (4.2.1) 

The vector 
→

′PP is called the displacement vector of the point P and is denoted byiu . 

1x

3x  

2x

'P  P

R′R

x
r

 

ξ
r

Figure 4.2
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Thus,       

iii xu −=ξ : 3,2,1=i                                              (4.2.2) 

or    iii xu +=ξ : 3,2,1=i                                              (4.2.3) 

Equation (4.2.1) expresses the coordinates of the points of the body in the transformed 

state in terms of their coordinates in the initial undeformed state. This type of 

description of deformation is known as the Lagrangian method of describing the 

transformation of a coordinate medium. 

Another method, known as Euler’s method expresses the coordinates in the 

undeformed state in terms of the coordinates in the deformed state. 

The transformation (4.2.1) is invertible when 

     0≠J  

Then, we may write 

    ),,( 321 ξξξii xx = : 3,2,1=i                       (4.2.4) 

In this case, the transformation from the region R  into region R′ is one to one. Each 

of the above description of deformation of the body has its own advantages. It is 

however; more convenient in the study of the mechanics of solids to use Lagrangian 

approach because the undeformed state of the body often possesses certain 

symmetries which make it convenient to use a simple system of coordinates. 

A part of the transformation defined by equation (4.2.1) may represent rigid body 

motion. (i.e.translations and rotations) of the body as a whole. This part of the 

deformation leaves unchanged the length of every vector joining a pair of points 

within the body and is of no interest in the analysis of strain. The remaining part of 

the transformation (4.2.1) will be called pure deformation. Now, we shall learn how 

to distinguish between pure deformation and rigid body motions when the latter are 

present in the transformation equation (4.2.1) 
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4.3. LINEAR TRANSFORMATION OR AFFINE TRANSFORAMTION 

Definition: The transformation  

),,( 321 xxxii ξξ =  

is called a linear transformation or affine transformation when the function iξ are 

linear functionsof the coordinates 321 ,, xxx . In order to distinguish between rigid 

motion and pure deformation, we consider the simple case in which the 

transformation (4.2.1) is linear. 

We assume that the general form of the linear transformation (4.2.1) is of the type 

   








++++=
++++=

++++=

,)1(

,)1(

,)1(

333232131303

323222121202

313212111101

xxx

xxx

xxx

ααααξ
ααααξ

ααααξ
                         (4.3.1) 

or 

                                jijijii x)(0 δααξ ++=  ; 3,2,1, =ji                                     (4.3.2) 

where the coefficients ijα are constants and are well known. 

Equation (4.3.2) can written in the matrix form as  

   

































+
+

+
=

















−
−
−

3

2

1

333231

232221

131211

303

202

101

1

1

1

x

x

x

ααα
ααα
ααα

αξ
αξ
αξ

                   (4.3.3) 

or  

   

































=
















−
−
−

3

2

1

333231

232221

131211

303

202

101

x

x

x

u

u

u

ααα
ααα
ααα

α
α
α

                     (4.3.4)  

We can look upon the matrix )( ijij δα + as an operator acting on the vector ixx =r
to 

give the vector 0iα . 
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If the matrix )( ijij δα +  is non-singular, then we obtain 

   ( )
















=
















−
−
−

+ −

3

2

1

303

202

101
1

x

x

x

ijij

αξ
αξ
αξ

δα                                             (4.3.5) 

which is also linear as inverse of a linear transformation is linear. In fact, matrix 

algebra was developed basically to express linear transformations in a concise and 

lucid manner. 

Example1.Sum of two linear transformations is a linear transformation. 

Solution. Let  

and               






++=

++=

jijijii

jijijii

x

x

)(

)(

0

0

δββς
δααξ

 ;   3,2,1, =ji                                         (4.3.6) 

are two linear transformation and suppose iii ςξζ += . 

Now, 

  

jijijijii

jijijijijiji

iii

x

xx

}2){(2)(

))(())((

00

00

δβαβα
δββδαα

ςξζ

++++=

+++++=
+=

 

 )( ijij xx =δQ  

  jijijii x)(0 δϑϑζ ++=           (4.3.7) 

where ijijij βαϑ += ; 3,2,1, =ji  relation (4.3.7) is a linear transformation by 

definition of linear transformation as defined in relation (4.3.2). Hence sum or 

difference of linear transformation is linear transformation. 

Practice1. Show that product of two linear transformation is a linear transformation 

which is not commutative 

Example2.Under a linear transformation, a plane is transformed into a plane. 
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Solution. Let  

0=+++ cmzmylx (4.3.8) 

be an equation of plane which is not passes through (0,0,0) in the undeformed state 

and ),,( nml are direction ratios of the plane. Let 

    

































=
















3

2

1

333

222

111

3

2

1

x

x

x

nml

nml

nml

ξ
ξ
ξ

          (4.3.9) 

Be the linear transformation of points. Let its inverse be  

    

































=
















3

2

1

333

222

111

3

2

1

ξ
ξ
ξ

NML

NML

NML

x

x

x

                                (4.3.10) 

Then the equation of the plane is transformed to  

0)()()( 332313322212312111 =+++++++++ cNMLnNMLmNMLl ξξξξξξξξξ (4.3.11) 

or 0)()()( 332123211321 =+++++++++ cnNmNlNnMmMlMnLmLlL ξξξ  

    0321 =+++ cγξβξαξ                                (4.3.12) 

Relation (4.3.12) is again an equation of a plane in terms of new coordinates

),,( 321 ξξξ . Hence the result. 

Practice2.A linear transformation carries line segments into line segments. Thus, it is 

the linear transformation that allows us to assume that a line segment is transformed 

to a line segment and not to a curve. 

4.4. SMALL/ INFINITESIMAL LINEAR DEFORMATIONS 

Definition: A linear transformation of the type jijijii x)(0 δααξ ++= ; 3,2,1, =ji  is 

said to be a small linear transformation of the coefficients ijα  are so small that their 

products can be neglected in comparison with the linear terms. 
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Note 1: The product of two small linear transformations is small linear transformation 

which is commutative and the product transformation is obtained by superposition of 

the original transformations and the result is independent of the order in which the 

transformations are performed. 

Note 2:  In the study of fine deformation (as compared to the infinitesimal affine 

deformation), the principle of superposition of effects and the independent of the 

order of transformations are no longer valid. 

 If a body is subjected to large linear transformation, a straight line element 

seldom remains straight. A curved element is more likely to result. The linear 

transformation then expresses the transformation of elements 21PP to the tangent 11TP ′′

to the curve at 1P ′ for the curve itself. 

 

 

 

 

 

 

 

 

 

For this reason, a linear transformation is sometimes called linear tangent 

transformation. It is obvious that the smaller the element P1P2, the better 

approximation of P1
’P2

’by its tangent 11TP ′′ . 

4.5 HOMOGENEOUS DEFORMATION 

Suppose that a bodyB , occupying the region R in the undeformed state, is 

transformed to the region R′ under the linear transformation.  

R′
R

x2 

x1 

x3 

P1 

P2 

1T ′

P2
’ 

Figure. 4.3 

P1
, 
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jijijii x)(0 δααξ ++=                                           (4.5.1) 

referred to orthogonal Cartesian system 321 xxox . Let 321 ˆ,ˆ,ˆ eee be the unit base vectors 

directed along the coordinate axes 321 ,, xxx . 

 

  

 

 

 

 

 

 

 

Let ),,( 1312111 xxxP and ),,( 2322212 xxxP be two points of the elastic body in the initial 

state. Let the positions of these points in the deformed state, due to linear 

transformation (4.3.2), be ),,( 1312111 ξξξP′ and ),,( 2322212 ξξξP′ . Since transformation 

(4.3.2) is linear, so the line segment 21PP  is transformed into a line segment21PP ′′ . 

Let the vector 21PP  has component iA and vector 21PP ′′ has componentsiA′. Then 

 iieAPP ˆ21 = , iii xxA 12 −= (4.5.2) 

and 

 iieAPP ˆ21 ′=′′ , iiiA 12 ξξ −=′                                               (4.5.3) 

Let  iii AAA −′=δ                                                                     (4.5.4) 

be change in vector iA . The vectors iA and iA′, in general, differ in direction and 

magnitude. From equations (4.5.1), (4.5.2) and (4.5.3), we write 

R′

R  

x2 

x1 

x3 

ii uu δ+

iu

Figure. 4.4 

)(1 ixP  

)(2 ixP  
iA
r

)(1 iP ξ′

)(2 iP ξ′  

iA′
r

1ê  

2ê  

3ê  

o  
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[ ] [ ]

jiji

jijii

jiji

ijijii

jijijijijiji

iii

AA

AAA

AA

xxxx

xx

A

αδ
α
α

α
δααδαα

ξξ

=

=−′
+=

−+−=

++−++=
−=′

)()(

)()(

2212

1020

12

               (4.5.5) 

Thus, the linear transformation (4.3.2) changes the vector iA into vector iA′ where 

 

































+
+

+
=

















′
′
′

3

2

1

333231

232221

131211

3

2

1

1

1

1

A

A

A

A

A

A

ααα
ααα
ααα

                             (4.5.6) 

or 

 

































=
















3

2

1

333231

232221

131211

3

2

1

A

A

A

A

A

A

ααα
ααα
ααα

δ
δ
δ

                                           (4.5.7) 

Thus, the linear transformation (4.3.2) or (4.5.6) or (4.5.7) are all equivalent. From 

equation (4.5.6), it is clear that two vectors iA and iB whose components are equal 

transform into two vectors iA′ and iB′ whose components are again equal. Also two 

parallel vectors transform into parallel vectors transformation into parallel vectors. 

Hence, two equal and similarly oriented rectilinear polygons located in different part 

of the region R will be transformed into equal and similarly oriented polygons in the 

transformed region R′ under the linear transformation (4.5.1). 

Thus, the different parts of the body B, when the latter is subjected to the linear 

transformation (4.5.1), experience the same deformation independent of the position 

of the part of the body. 

For this reason, the linear deformation (4.5.1) is called a homogeneous deformation. 
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Theorem: Prove that the necessary and sufficient condition for an infinitesimal 

affine transformation 

   iξ = 0iα +( ijα + ijδ ) jx  

to represent a rigid body motion is that the matrix ijα is skew-symmetric  

Proof: With reference to an orthogonal system 321 xxox fixed in space, let the line 

segment 21PP  of the body in the undeformed state be transferred to the line segment 

'
2

'
1 PP in the deformed state due to infinitesimal affine transformation   

   iξ = 0iα  + ( ijα + ijδ ) jx
                                         

(4.5.8) 

In which ijα  are known as constants. Let iΑ  be vector 21PP   and iΑ′  be the vector

'
2

'
1 PP  

 

 

 

 

 

 

 

 

Then  

   ioii xxA −= , iA′= iξ -
0iξ                                      (4.5.9) 

 Let                     iii AAA −′=δ                                                      (4.5.10) 

From (4.5.9) and (4.5.10), we find  

R′
R  

x2 

x1 

x3 

ii uu δ+

iu

Figure. 4.5 

)(1 ixP

)(2 ixP  
iA
r

)(1 iP ξ′

)(2 iP ξ′  

iA′
r

1ê

2ê  

3ê  

o  
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0iiiA ξξ −=′  

      = )()( 000 ijoijiijiji xxxx ++−++ αααα  

     = )()( 00 jjijii xxxx −+− α  

      = jiji AA α+  

This gives  

    jijiii AAAA αδ =−= ′' .                            (4.5.11) 

Let A denotes the length of the vector. Then  

   2

3

2
2

2
1 AAAAAAA iii ++===

                     
(4.5.12) 

Let Aδ denotes the change in length A due to deformation. Then  

    ii AAA −′=δ                                            (4.5.13) 

It is obvious that iAA δδ ≠ ,but  

   iiiiii AAAAAAA −++= ))(( δδδ  

This imply 

   (A+ ))(()2
iiii AAAAA δδδ ++=  

Or 

   )(2))((2)( 2
iiii AAAAAAA δδδδδ +=+                   (4.5.14)    

Since the linear transformation (4.5.8) or (4.5.11) is small,the term 2)( Aδ and 

))(( ii AA δδ are to be neglected in (4.5.14). Therefore,after neglecting these terms 

in(4.5.14), we write 

   ii AAAA δδ 22 = , 

or 
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   332211 AAAAAAAAAA ii δδδδδ ++== (4.5.15) 

Using (4.5.11), equation (4.5.15) becomes 

    )( jiji AAAA αδ =  

    = jiij AAα  

323223133113212112
3

333
2

222
2

111 )()()( AAAAAAAAA ααααααααα ++++++++=   (4.5.16) 

Case 1: suppose that the infinitesimal linear transformation (4.5.9) represent a rigid 

body motion.Then, the length of the vector iA before deformation and after 

deformation remains unchanged. 

That is   

    0=Aδ                                                    (4.5.17) 

For all vectors iA  

Using (4.5.16), we then get  

13311332322321`2112
2

333
2

2221
2

11 )()()( AAAAAAAAA ααααααααα ++++++++    (4.5.18) 

For all vectors iA .This is possible only when 

   0332211 === ααα , 

   0322331132112 =+=+=+ αααααα , 

i.e.,   jiij αα −= ,    for all   i& j                                (4.5.19) 

i.e. , the matrix ijα  is skew- symmetric. 

Case 2:suppose ijα is skew-symmetric. Then, equation (4.5.16) shows that  

   0=AAδ                                                           (4.5.20) 

For all vectors iA . This implies  

   0=Aδ                                                             (4.5.21) 
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For all vectors iA  

This shows that the transformation (4.5.8) represents a rigid body linear small 

transformation. 

This completes the proof of the theorem. 

Remarks :when the quantities ijα  are skew –symmetric , then the linear infinitesimal  

transformation. 

   jiji AA αδ =   

Equation (4.5.19) takes the form  

   3132211 AAA ααδ +−=  

   3321212 AAA ααδ −=  

   2321132 AAA ααδ +−=                                            (4.5.22)  

Let    23321 αα −==w   

   31132 αα −==w  

   12213 αα −==w                                                   (4.5.23) 

Then, the transformation (4.5.22) can be written as the vectors product 

   AwA ×=δ ,                                                                      

(4.5.24) Where iww =  is the infinitesimal rotation vector. Further  

   iii AAA −′=δ  

         = )()( 00
iiii xx −−−ξξ  

   ==
0

ii xx δδ −                                                        (4.5.25) 

This yield  
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   iii Axx δδδ += 0 , 

iii Axx δδδ += 0
, 

or 

  )(0 Awxx ii ++= δδ                                                      (4.5.26) 

Here, the quantities  

   
000

iii xx −=ξδ  

arethe components of the displacement vector representing the translation of the point 

0P and the remaining terms of (4.5.26) represent rotation of the body about the point

0P . 

4.6    PURE DEFORMATION AND COMPONENTS OF STRAIN TENSOR  

We consider the infinitesimal linear transformation 

   jiji AA αδ = (4.6.1) 

Let    )(21 jiijijw αα −=                                                (4.6.2) 

and 

   )(
2

1
jiijije αα +=                                                    (4.6.3) 

Then the matrix ijw is anti-symmetric while ije is symmetric. 

Moreover, 

   ijijij we +=α (4.6.4) 

and this decomposition of ijα  as a sum of s symmetric and skew-symmetric matrices 

is unique. 

From (4.6.1) and (4.6.4), we write 
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   jijjiji AwAeA +=δ                                                    (4.6.5)  

This shows that the transformation of the components of a vector iA  given by 

   jiji AwA =δ                                                              (4.6.6) 

represent rigid body motion with the component of rotation vector iw given by  

   213132321 ,, wwwwww ===                                     (4.6.7) 

and the transformation  

   jiji AeA =δ ,                                                             (4.6.8) 

with    jiij ee = ,                                                                 (4.6.9)  

represents a pure deformation. 

STRAIN COMPONENTS:  The symmetric coefficients,ije , in the pure deformation  

   jiji AeA =δ  

are called the strain components. 

Note (1): These components of straincharacterizepure deformation of the elastic 

body. Since jA and iAδ  are vectors (each is a tensor of order 1),therefore,by quotient 

law, the strains components ije  form a tensor of order 2. 

Note 2: For most materials / structures, the strains are of the order 310−
, such strains 

certainly deserve to be called small. 

Note 3: The strain components 332211 ,, eee  are called normal strain components while 

323121231312 ,,,,, eeeeee  are called shear strain components, 

Example: For the deformation defined by the linear transformation  

  3213212211 ,2, xxxxxxx −+=−=+= ξξξ , 

Find the inverse transformation of rotation and strain tensor, and axis of rotation. 
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Solution:The given transformation is express as  

 

































−
−=

















3

2

1

3

2

1

111

021

011

x

x

x

ξ
ξ
ξ

                                                 (4.6.10) 

and its inverse transformation is  

  

































−
−=
















−

3

2

1

1

3

2

1

111

021

011

ξ
ξ
ξ

x

x

x

 

           =

































−
−

3

2

1

303

011

012

3

1

ξ
ξ
ξ

                                        (4.6.11)  

giving 

   )2(
3

1
211 ξξ +=x , 

   )(
3

1
212 ξξ −=x  

   313 ξξ −=x                                                            (4.6.12) 

comparing (4.6.10) with           

   jijiji x)( δαξ +=                                                (4.6.13) 

We find  

   

















−
−=

211

031

010

ijα                                              (4.6.14) 

Then   



MAL-633 63 

   

















−
−

=−=
011

100

100

2

1
)(

2

1
jiijijw αα                        (4.6.15) 

and 

   )(
2

1
jiijije αα +=  

   =























−

−

2
2

1

2

1
2

1
31

2

1
10

                                                   (4.6.16)  

and 

   ijijij ew +=α                                                        (4.6.17)  

The axis of rotation is  

   iieww ˆ=  

where 

   
2

1
321 == ww , 

   
2

1
132 −== ww , 

   0213 == ww                                                   (4.6.18) 
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4.7 GEOMETRICAL INTERPRETATION OF THE COMPONENTS OF 

STRAIN 

Normal strain component 11e : 

Let ije  be the components of strains the pure infinitesimal linear deformation of a 

vector iA  is given by  

   jiji AeA =δ
                                                        

(4.7.1) 

with jiij ee = . 

Let edenotes the extension (or change) in length per unit length of the vector iA with 

magnitude A.Then, by definition, 

   
A

A
e

δ=                                                               (4.7.2)  

We note that e is positive or negative upon whether the material line element iA

experiences an extension or a contraction. Also,0=e , if and only if the vector A

retains its length during a deformation.This number e is referred to as the normal 

strain of the vectoriA .Since the deformation is linear and infinitesimal, we have 

(proved earlier) 

    ii AAAA δδ = (4.7.3) 

Or                                             2A

AA

A

A iiδδ =    

Now from (4.7.1) and (4.7.3), we write  

   
2A

AA

A

A
e iiδδ == . 

This implies  
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[ ]322331132112

2
333

2
222

2
2112

222
1

AAeAAeAAeAeAeAe
A

e +++++=
               

(4.7.4) 

Since jiij ee =  

In particular,we consider the case in which the vector iA in the underformed state is 

parallel to the 1x -axis. Then  

   0, 321 === AAAA                                               (4.7.5) 

Using (4.7.5), equation (4.7.4) gives 

   11ee = .                                                               (4.7.6) 

Thus, the component 11e  of the strain tensor, to a good approximation to the extension 

or change in length of a material line segment (or fiber of the material) originally 

placed parallel to the 1x -axis in the undeformed state. 

Similarly, normal strains22e and 33e are to be interpreted. 

Illustration: let 

















=
000

000

0011e

eij  

Then all unit vectors parallel to the 1x -axis will be extended by an amount11e . In this 

case, one has a homogeneous deformation of material in the direction of the 1x -axis. 

A cube of material whose material whose edges before deformation are L unit along 

will become (after deformation due toije ) a rectangular parallelepiped whose 

dimension in the direction of the 2x - and 3x - axes are unchanged. 

Remark: The vector  

   ( )0,0,AAA i ==  

is changed to (due to deformation)  
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   ( ) 33211 ˆˆˆ eAeAeAAA δδδ +++=′  

in which  

   11AeAeA ijiji ==δ  

gives 

Thus    ( )AeAeAeAA 131211 ,,+=′  

this indicates that vector ( )0,0,AAi =  upon deformation,in general, changes its 

orientation also.This length of the vector due to deformation becomes( )Ae111+ . 

 

 

Question: From the relation jiji AeA =δ , find Aδ and iAδ for a vector lying initially 

along x-axis (i.e., 1̂eAA = ) and justify the fact that 11e
A

A =δ
. Does iAδ  lie along the x-

axis? 

Answer: It is given that ( )0,0,AAi = . The given relation  

   jiji AeA =δ
                                                         

(4.7.7) 

1̂eAAi =  

x1 

x2 

x3 

iA′  

Figure. 4.6 
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Gives 

   AeAAeAAeA 133122111 ,, === δδδ                             (4.7.8) 

Thus, in general, the vector iAδ  does not lie along the x-axis. 

Further  

   ( ) ( ) ( )[ ]2
13

2
12

2
111)( AeAeeAAA +++=+ δ   

      = 2
13

2
12

2
111121 eeeeA ++++ .                (4.7.9) 

Neglecting square terms as deformation is small, equation (4.7.9) gives  

    ( ) ( )11
22 21 eAAA +=+ δ , 

   ,11
222 22 eAAAAA +=+ δ  

    11
222 eAAA =δ  

    11e
A

A =δ
.                                                   (4.7.10) 

This shows that 11e  gives the extension of a vector (A, 0, 0) per unit length due to 

deformation. 

Remarks: the strain components ije refer to the chosen set of coordinate axes. If the 

axes changed, the strain component ije will, in general, changes as per tensor 

transformation laws. 

Geometrical interpretation of shearing Stress 23e : 

The shearing strain component 23e may be interpreted by considering intersecting 

vectors initially parallel to two coordinate axes -2x -and 3x -axis  

Now, we consider in the undeformed state two vectors. 

  22êAA = , 
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  33êBB =                                                                          (4.7.11) 

directed along 2x -and 3x -axis, respectively. 

The relations of small linear deformation are  

  jiji AeA =δ , 

  3BeB iji =δ ,                                                                      (4.7.12) 

Further, the vectors iA and iB due to deformation become (figure 4.7) 

  

 
( )

( ) 3332211

3322211

ˆˆˆ

ˆˆˆ

eBBeBeBB

eAeAAeAA

δδδ
δδδ

+++=′

+++=′
(4.7.13) 

Let θ be the angle between A′andB′ . Then  

( ) ( )
( ) ( ) ( ) ( ) ( )2

33
2

1
12

1
2

3
2

22
2

1

3332211

)(

.
cos 2

BBBBAAAA

BBABAABA

BA

BA

δδδδδδ

δδδδδδ
θ

+++++

++++
=

′′
′′

=           (4.7.14) 

x1 

x2 

x3 

P 

Q 

P′  

Q ′  

2Bδ 2Aδ  

1Aδ  

3Aδ  

1Bδ

3Bδ  

22ˆ Ae  

33ˆ Be

θ

Figure 4.7 
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Since , the deformation is small , we may neglect the product of the changes in the 

components of the vector iA  and iB .Neglecting these product , equation (4.7.11) 

gives  

 ( )( ) ( ) 1
33

1
223322cos −− +++= BBAAABBA δδδδθ  

          =
1

3

31

2

2

32

3322 1
1)1(

−
−








 ++++
B

B

A

A

BA

ABBA δδδδ
 

     = 







−








−








+

3

3

2

2

2

3

3

2 11
B

B

A

A

A

A

B

B δδδδ
, 

Neglecting other terms,this gives  

  
2

3

3

2cos
A

A

B

B δδθ +=                                                        (4.7.15) 

Neglecting the product terms involving changes in the components of the vectors iA

and iB . 

Since in formula (4.7.15), all increments in the components of initial vectors on  

assuming (without loss of generality)  

   021 ≡= AA δδ , 

And    031 ≡= BB δδ   , 

can be represented as shown in the figure below (it shows that vector′iA and ′
iB  lie in 

the 32xx -plane). We call that equation (4.7.13) now may be taken as 

   3322 ˆˆ eAeAA δ+=′ , 

   3322 ˆˆ eBeBB +=′ δ                                               (4.7.16) 
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Form equation (4.7.11) and 4.7.12), we obtain 

  2323 AeA =δ , 

  3232 BeB =δ                                                                        (4.7.17) 

This gives  

 OPP
A

A
e ′∠== tan

2

3
32

δ
                                                    (4.7.18)

  OQQTAN
B

B
e ′∠==

3

2
23

δ
                                                (4.7.19) 

since strain 3223 ee = are small, so  

  23eOQQOPP ≅′∠=′∠ , 

And here  

  θπθ −=−≅
2

902 23
oe                                                     (4.7.20) 

Thus, a positive value of 232e  represents the decrease in the right angle between the 

O 
x2 

x3 

P 

R Q 

P′

R′

Q ′  

3Aδ

2Bδ

32e

23e  

θ  

Figure 4.8
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vectors iA and iB due to small linear deformation which were initially directed along 

the positive 2x and 3x -axes. The quantity / strain component 23e is called the shearing 

strain. 

A similar interpretation can be made for the shear strain components of material arcs. 

Remarks 1: By rotating the parallelogram QPOR ′′′  throw an angle 23e about the 

origin (in the 32xx  -plane), we obtain the following configurations (figure 4.9) 

  

Thisfigure shows a slide or a shear of planar elements parallel to the −21xx plane. 

Remarks 2: Figure shows that areas of rectangle OQRP and the parallelogram 

PRQO ′′′  are equal as they have the same height and same base in the 32xx -plane. 

Remarks 3:For the strain tensor

















00

00

000

32

23

e

e ,  

A cubical element is deformed into a parallelepiped and the volumes of the cube and 

parallelepiped remain the same.Such a small linear deformation is called a pure shear. 

 

O 

Q 
R 

)(PP ′

R′Q ′

232e

Figure 4.9
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4.8 NORMAL AND TANGENTIAL DISPLACEMENTS 

Consider a point P ),,( 321 xxx  of the material. Let it be moved to Q under a small 

linear transformation. Let the components of the displacement vector PQ  be 321 ,, uuu

. In the plane OPQ, let nPN =  be the projection of PQ  on the line OPN and let 

tPT =  be the tangential of PQ  in the plane of OPQ or PQN. 

Definition: vectors n and t are, respectively, called the normal and the 

tangentialcomponents of the displacement of P. 

Note: The magnitude n of normal displacement n is given by the dot product of 

vectors ),,( 321 xxxOP =  and ( ).,, 321 uuuPQ =  

the magnitude t of tangential vector t is given the vector product of vectors OP  and

PQ  ( this does not give the direction of t ). 

 

Thus  

n N 

t 

x1 

x2 

x3 

P 
T 

Q 

Figure 4.10 
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OP

PQOP
NPQn

.
cos =∠= , 

  
( )( ) ( )

OP

PQOP

OP

NPQPQOP
NPQPQt

×
==∠= sin

sin , 

And 

  2
3

2
2

2
1

22 uuutn ++=+ . 

Books Recommended: 

1. Sokolnikoff, I. S. Mathematical Theory of Elasticity, Tata McGraw  

 Hill Publishing Company, Ltd., New Delhi, 1977 

2.  Shanti Narayan  Text Book of Cartesian Tensors, S. Chand & Co.,1950.  
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CHAPTER-V 

STRAIN QUADRIC OF CAUCHY 

5.1 Strain Quadric of Cauchy 

Let ( )0
3

0
2

0
1

0 ,, xxxP  be any fixed point of a continuous medium with reference axis  

0 321 xxx  fixed in space. We introduce a local system of axis with origin at point 0P

and with axes parallel to the fixed axes (figure 5.1) 

  

with reference to these axes, consider the equation  

  2kxxe jiij ±=                                                                  (5.1.1) 

where k is a real constant and is the strain tensor at 0P . This equation represents a 

quadric of Cauchy. The sign + or – in equation (5.1.1) be chosen so that the quadric 

surface (5.1.1) becomes a real one. The nature of this quadratic surface depends on 

the value of the strainije . 

P 

x1 

x2 

x3 

x1 

x2 

x3 

)( 00
ixP

Figure 5.1 
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If 0≠ije , the quadratic is either an ellipsoid or a hyperboloid. 

If 0=ije , the quadratic surface degenerates into a cylinder of the elliptic or 

hyperbolic type or else into two parallel planes symmetrically situated with respect to 

the quadric surface. 

This strain quadric is completely determined once the strain components ije at point 

( )0P are known. Let PP0  be the radius vector iA of magnitude A to any point

( )321 ,, xxxP , referred to local axis, on the strain quadric surface (5.1.1). Let e  be the 

extension of the vector iA due to some linear deformation characterized by 

 jiji AeA =δ ,                                                                           (5.1.2) 

Then, by definition, 

 
22 A

AA

A

AA

A

A
e iiδδδ ===  

This gives 

 
2A

AAe
e jiij=                                                                   (5.1.3) 

using (5.1.2) 

Since iAPP =0 and the coordinate of point P, on the surface (5.1.1), relative to 0P are

( )321 ,, xxx , it follows that 

 ii xA =                                                                                (5.1.4) 

From equation (5.1.1), (5.1.2) and (5.1.4); we obtain 

   22 kxxeAAeeA jiijjiij ±===  

Or    2

2

A

k
e ±=                                                                 (5.1.5) 



MAL-633 76 

Result (1): Relation (5.1.5) shows that the extension or elongation of any radius 

vector iA of the strain quadric of Cauchy, given by equation (5.1.1), is inversely 

proportional to the length ‘A’ of any radius vector this deformation the elongation of 

any radius vector of the strain quadric at the point )( 00
ixP . 

Result (2): we know that the length ‘A’ of the radius vector iA  of strain quadric 

(5.1.1) at the point )( 00
ixP has maximum and minimum values along the axes of the 

quadric. In general, axes of the strain quadric (5.1.1) differs from the coordinates axes 

through ( )00
ixP . Therefore, the maximum and minimum extensions or elongation of 

the radius vectors of strain quadric (5.1.1) will be along its axes. 

Result (3): Another interesting property of the strain quadric (5.1.1) is that normal iv

to this surface at the end point P of the vector iAPP =0  is parallel to the displacement 

vector iAδ . 

To prove this property, let us write equation (5.1.1) in the form  

   02 =±= kxxeG ijij                                                 (5.1.6) 

Then the direction of the normal v̂  to the strain quadric (5.1.6) is given by the 

gradient of the scalar function G. The components of the gradient are  

   kjiijjikij
k

xexe
x

G δδ +=
∂
∂

 

          = iikjkj xexe +  

          = jkj xe2  

Or 

   k
k

A
x

G δ2=
∂
∂

                                                            (5.1.7) 



MAL-633 77 

This shows that vector 
kx

G

∂
∂

and vector kAδ are parallel. Hence, the vectorAδ is 

directed along the normal at P to the strain quadric of Cauchy. 

5.2 STRAIN COMPONENTS AT A POINT IN A ROTATION OF 

COORDINATE AXES 

Let new axes ′′′
3210 xxx  be obtained from the old reference system 3210 xxx by a 

rotation. Let the directions of the new axes ′
ix be the specified relative to the old 

system ix by the following table of direction cosines in which pil is the cosine of the 

angle between the px ′ -and ix axis. 

  

That is    ( )ippi xx ,cos ′=l .  

Thus  

 

3332313

2322212

1312111

321

lll

lll

lll

x

x

x

xxx

′
′
′

 

1x  

1x′

2x

3x

2x′

3x′

O 

Figure 5.2 
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Then the transformation law for coordinates is 

   ppii xx ′= l                                                                (5.2.1) 

Or    ipip xx l=′                                                                (5.2.2) 

The well –known orthogonality relations are  

   pqqipi δ=ll                                                             (5.2.3) 

   ijpjpi δ=ll                                                              (5.2.4) 

with reference to new px′ -system, a new set of strain components pqe′  is determined at 

the  point o  while ije are the components of strain at o relative to old axes 321 xxox . 

Let  

  2kxxe jiij ±=                                                                       (5.2.5) 

be the equation of the strain quadric surface relative to old axis. The equation of 

quadric surface with reference to new prime system becomes  

  2kxxe qppq ±=′′′                                                                     (5.2.6) 

As we know that quadric form is invariant w. r. t. an orthogonal transformation of 

coordinates. Further, equation (5.2.2) to (5.2.6) together yield  

   jiijqppq xxexxe =′′′  

    = ( )( )qqjppiij xxe ′′ ll  

     =( ) qpqjpiij xxe ′′ll  

Or  

   0)( =′′−′ qpijqjpipq xxee ll                                          (5.2.7) 

Since equation (5.2.7) is satisfied for arbitrary vector px′ , we must have  

   ijqjpipq ee ll=′                                                          (5.2.8) 
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Equation (5.2.8) is the law of transformation for second order tensors. We, therefore, 

conclude that the components of strain form a second order tensor. 

Similarly, it can be verified that  

   pqqjpiij ee ′= ll                                                         (5.2.9) 

Question: Assuming that ije is a tensor of order 2, show that quadratic form jiij xxe is 

an invariant. 

Solution: We have  

   pqqjpiij ee ′= ll  

So,    jipqqjpijiij xxexxe ′= ll  

             = ( )( )jqjipipq xxe ll′  

   = qppq xxe ′′′ .                                                        (5.2.10) 

Hence the result 

5.3 PRINCIPAL STRAINS AND INVERIANTS 

From a material point ( )00
ixP , there emerge infinitely many material arcs/ filaments, 

and each of these arcs generally changes in length and orientation under a 

deformation. We seek now the lines through ( )00
ixP  whose orientation is left 

unchanged by the small linear deformation given by  

   jiji AeA =δ                      (5.3.1) 

where the strain components ije  are small and constant. In this situation, vectors iA

and iAδ  are parallel and, therefore, 

   ii eAA =δ                                                                  (5.3.2) 

for some constant e. 

Equation (5.3.2) shows that the constant e represents the extension. 
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









==

A

A

A

A
e

i

i δδ
 

of vector iA . From equation (4.11.1) and (4.11.2), we write  

   ijij eAAe =  

                   = jij Aeδ                                                            (5.3.3) 

This implies 

  ( ) 0=− jijij Aee δ                                                                 (5.3.4) 

We know that ije is a real symmetric tensor of order 2. The equation (5.3.3) shows that 

the scalar e  is an eigen value of the real symmetric tensor ije with corresponding 

eigenvector iA . Therefore, we conclude that there are precisely three mutually 

orthogonal direction are not changed on account of deformation and these direction 

coincide with the three eigenvectors of the strain tensor ije .These directions are known 

as principle direction of strain. Equation (5.3.4) gives us a system of three 

homogeneous equations in the unknown 321 ,, AAA . This system possesses a non-

trivial solution if and only if the determination of the coefficients of the 321 ,, AAA  is 

equal to zero, i.e., 

  0

3331

232221

131211

32

=
−

−
−

eeee

eeee

eeee

                                               (5.3.5) 

which is cubic equation in e. 

Let 321 ,, eee be the three roots of equation (5.3.5), these are known as principal strains. 

Evidently, the principal strains are the eigenvalues of the second order real symmetric 

strain tensorije . Consequently, these principal strains are real (not necessarily 
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distinct). Physically, the principal strains 321 ,, eee (all different) are the extensions of 

the vectors, sayiA , in the principal / invariant of strain. So, vectors iii AAAA δδ +,, are 

collinear. At the point 0P consider the strain quadric     

  2kxxe jiij ±=                                                                        (5.3.6) 

For every principal direction of strainiA , we know that iAδ is normal to the quadric 

surface (5.3.6).  Therefore, the principal directions of strain are also normal to the 

strain quadric of Cauchy. Here, principal direction of strain must be the three 

principal axes of the strain quadric of Cauchy. If some of the principal strains ie are 

equal, then the associated directions become indeterminate but one can always select 

three directions that all mutually orthogonal If the 321 eee =≠ , then the quadric 

surface of Cauchy is a surface revolution and our principal direction, say 1

~
A , will be 

directed along the axis of revolution. 

In this case, any two mutually perpendicular vectors lying in the plane normal to 1
~
A

may be taken as the other two principal directions of strain. 

If 321 eee == , then strain quadric of Cauchy becomes a sphere and any three 

orthogonal directions may be chosen as the principal directions of strain.  

Result: If the principal directions of strain are taken as the coordinate axes, then  

   333222111 ,, eeeeee ===  

And    0231312 === eee , 

As a vector initially along an axis remains in the same direction after deformation (so 

change in right angles are zero). In this case, the strain quadric Cauchy has the 

equation. 

  22
3

2
3

2
22

2
11 kxexexe ±=++                                                      (5.3.7) 

Result 2: Expanding the cubic equation (5.3.5), we write  
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  032
2

1
3 =+−+− veveve  

where        3322111 eeev ++=  

      = ( )Etreii = ,                                                                  (5.3.8) 

  2
12

2
13

2
231133332222112 eeeeeeeeev −−−++=  

       = ( ) ( )jiijjjii eeeeEtr −=
2

12 ,                                             (5.3.9) 

  kjiijk eeev 3213 ε=  

       = ( )3Etreij =                                                                (5.3.10) 

Also 321 ,, eee are roots of a cubic equation (5.3.8), so  

 








=
++=

++=

3213

1332212

3211

eeev

eeeeeev

eeev

                                                        (5.3.11) 

We know that eigenvalues of a second order real symmetric tensor are independent of 

the choice of the coordinate system. 

It follows that 321 ,, vvv are given by (5.3.10) three invariants of the strain tensor ije

with respect to an orthogonal transformation of coordinates. 

Geometric meaning of the first strain invariant iie=ϑ  

The quantity iie=ϑ  has a simple geometric meaning. Consider a volume element in 

the form of rectangle parallelepiped whose edges of length 321 ,, lll are parallel to the 

direction of strain. Due to small linear transformation /deformation, this volume 

element becomes again rectangle parallelepiped with edges of length

( ) ( ) ( )332211 1,1,1 elelel +++ , where 321 ,, eee  are principal strains. Hence, the change 

Vδ in the volume V of the element is  
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 ( )( )( ) 321321321 111 llleeelllV −+++=δ  

    = ( ) 321321321 1 llleeelll −+++ ,                ignoring small strainsie . 

   = ( )321321 eeelll ++  

This implies  

 ϑδ =++= 321 eee
V

V
 

Thus the first strain invariant ϑ represents the change in volume per unit initial 

volume due to strain produced in the medium. The quantity ϑ is called the cubical 

dilatation or simply the dilatation. 

Note: If 321 eee >>  then 3e is called the minor principal strain, 2e is called the 

intermediate principal strain, and 1e is called the major principal strain. 

Question: For small linear deformation, the strains ije are given by  

 ( )

( )

( )

( )






















+

+

+

=

2133

31
21

3
21

2

2
2

2

xxxx

xx
xx

x
xx

x

eij α ,         =α constant 

Find the strain invariants, principal strain and principal direction of strain at the point 

P(1,1,0). 

Solution: The strain matrix at the point P(1,1,0) becomes  

   ( )
















=
α

αα
αα

400

0

0

ije ,  

whose characteristics equation becomes  

   ( )( ) 042 =−− αα eee . 
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Hence, the principal strains are  

   αα 4,2,0 321 === eee . 

The three scalar invariants are  

 0,8,6 3
2

23211 ===++= vveeev αα  

The three principal unit directions are found to be  

 






 −= 0,
2

1
,

2

11
iA ,       







= 0,
2

1
,

2

12
iA ,  ( )1,0,03 =iA  

Exercise: The strain field at a point P(x, y, z) in an elastic body is given by 

 610

852

5103

2320
−×

















−
−=ije . 

Determine the strain invariant and the principal strains. 

Question: Find the principal directions of strain by finding the extremal value of the 

extensionϑ . OR, Find the direction in which the extension ϑ  is stationary. 

Solution: Let ϑ  be the extension of a vector iA due to small linear deformation  

   jiji AeA =δ                                                          (5.3.12)  

Then  

   
A

Aδϑ =                                                                  (5.3.13) 

We know that for an infinitesimal linear deformation (5.3.12), we have  

   ii AAAA δδ =                                                       (5.3.14) 

Thus    222 A

AAe

A

AA

A

AA jiijii === δδϑ                                  (5.3.15) 

Let    i
i a

A

A =                                                                  (5.3.16) 
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Then    1=iiaa                                                     (5.3.17) 

And equation (5.3.15) then gives  

   jiij aaeaaae =),,( 321                                            (5.3.18) 

Thus the extension ie is a function of 321 ,, aaa  which are not independent because of 

relation (5.3.17). The extreme/stationary (or max/min) values of the extension e are to 

be found by making use of Lagrange’s method of multipliers. For this purpose, we 

consider the auxiliary function  

   ( ) ( )1,, 321 −−= iijiij aaaaeaaaF λ                          (5.3.19) 

where λ is a constant. 

In order to find the values of 32,, aaai  for which the function (5.3.18) may have a 

maximum or minimum, we solve the equations. 

   0=
∂
∂

ka

F
,   k=1, 2, 3.                                            (5.3.20) 

Thus, the stationary values of e are given by  

   ( ) 02 =−+ ikijkijikij aaae δλδδ  

Or    02 =−+ kiikjkj aaeae λ  

Or    022 =− kiki aae λ  

Or    kiki aae λ= .                                                          (5.3.21) 

This shows that λ is an eigenvalue of the strain tensor ije and ia  is the corresponding 

eigenvector. Therefore, equation in (5.3.21) determines the principal strains and the 

stationary/extreme values are precisely the principal strains. 

Thus, the extension e  assumes the stationary values along the principal direction of 

strain and the stationary/extreme values are precisely the principal strains. 
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Remarks: Let M be the square matrix with eigenvectors of the strain tensor ije as 

columns. That is  

   

















=

333231

232221

131211

AAA

AAA

AAA

M  

Then     ijij AeAe 111 =  

   ijij AeAe 222 =  

   ijij AeAe 333 =  

The matrix M is called the modal matrix of strain tensor ije . 

Let  

   ( ) ( )321 ,,, eeediaDeE ij == . 

Then, we find  

   EM=MD 

Or    DEMM =−1 . 

This shows that the matrices E and D are similar. 

We know that two similar matrices have the same eigenvalues. Therefore, the 

characteristic equation associated with EMM 1−  is the same as the one associated with 

E. Consequently, eigenvalues of E and D are identical. 

Question: Show that, in general, at any point of the elastic body there exists (at least) 

three mutually perpendicular principal directions of the strain due to an infinitesimal 

linear deformation. 

Solution: Let 321 ,, eee be the three principal strains of the strain tensorije . Then, they 

are the roots of the cubic equation  

   ( )( )( ) 0321 =−−− eeeeee  
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And    iieeeeeee =++=++ 332211321 , 

   ( )jiijjjii eeeeeeeeee −=++
2

1
133221 , 

   kjiijkij eeeeeee 321321 =∈= . 

 We further assume that coordinate axes coincide with the principal directions of 

strain. Then, the strain components are given by  

   333222111 ,, eeeeee === , 

   0231312 === eee , 

and the strain quadric of Cauchy becomes 

   22
33

2
22

2
11 kxexexe ±=++ .                                      (5.3.22) 

Now, we consider the following three possible cases for principal strains. 

Case: 1 When 321 eee ≠≠ . In this case, it is obvious that there exists three mutually 

orthogonal eigenvectors of the second order real symmetric strain tensorije . These 

eigenvectors are precisely the three principal directions that are mutually orthogonal. 

Case: 2 When 321 eee =≠ . 

Let iA1 and iA2 be the corresponding principal orthogonal directions corresponding to 

strains (distinct) 1e and 2e , respectively. Then  

   ijij AeAe 111 =  

   ijij AeAe 222 =                                                         (5.3.23) 

Let ip be a vector orthogonal to both iA1 and iA2 . Then   

   021 == iiii ApAp                                                   (5.3.24) 

Let    jiij qpe =                                                               (5.3.25) 
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Then   ( ) ( ) 011111 ==== iiijijjiijjj pAepAeApeAq                       (5.3.26a) 

similarly    02 =jj Aq                                                            (5.3.26b) 

This shows that the vector jq is orthogonal to both jA1 and jA2 . Hence, the vectors iq

and ip must be parallel. Let  

   ii pq α=                                                               (5.3.27) 

for some scalarα . From equation (5.3.25) and (5.3.27), we write  

   iijij pqpe α==                                                  (5.3.28) 

which shows that the scalar α is an eigenvalue /principal strain tensor ije with 

corresponding principal directionip . Since ije has only three principal strains α,, 21 ee

and two of these are equal, so α must be equal to 32 ee = . We denote the normalized 

form of ip by iA3 . This shows the existence of three mutually orthogonal principal 

directions in this case. Further, let iv be any vector normal to iA1 . Then iv lies in the 

plane containing principal directions iA2 and iA3 . Let  

   iii AkAkv 3221 +=    for some constant 1k and 2k   (5.3.29) 

Now    ( )jjijjij AkAkeve 3221 +=  

           = ( ) ( )jijjij AekAek 3221 +  

           = ( ) ( )ii AekAek 332221 +  

           = ( )ii AkAke 32212 + ( )32 ee =Q  

            = ive2  

This shows that the direction iv is also a principal directions strain2e . Thus, in this 

case, any two orthogonal (mutually) vectors lying on the plane normal to iA1 can be 
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chosen as the other two principal directions. In this case, the strain quadric surface is a 

surface of revolution. 

Case3: when 321 eee == , then the strain quadric of Cauchy is a sphere with equation  

   ( ) 22
3

2
2

2
11 kxxxe ±=++  

Or    
1

2
2
3

2
2

2
1 e

k
xxx ±=++  

and any three mutually orthogonal directions can be taken as the coordinate axes 

which are coincident with principal directions of strain. Hence, the result. 

5.4 GENERAL INFINITESIMAL DEFORMATION  

Now we consider the general functional transformation and relation to the linear 

deformation. Consider an arbitrary material point ( )00
ixP in a continuous medium. let 

the same material point assume after deformation the point ( )00
iQ ξ . Then  

   ( )0
3

0
2

0
11

00 ,, xxxuxii +=ξ                                            (5.4.1)  

where iu are the components of the displacement vector00QP . We assume that as 

well as their partial derivatives is a continuous function. The nature of the 

deformation in the neighborhood of the point 0P can be determined by considering 

the change in the vector iAPP =0 ; in undeformed state. 

Let ( )321 ,, ξξξQ  be the deformed position of P. then the displacement iu at the point P 

is  

   ( ) iii xxxxu −= ξ321 ,,                                                (5.4.2) 

The vector    0
iii xxA −=                                                             (5.4.3) 

Has now deformed to the vector  
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   iii A′=− 0ξξ  (say)                                                   

(5.4.4) 

Therefore,    iii AAA −′=δ  

          =( ) ( )00
iiii xx −−−ξξ  

          =( ) ( )00
iiii xx −−− ξξ  

          = ( ) ( )0
3

0
2

0
1321 ,,,, xxxuxxxu ii −  

          = ( ) ( )0
3

0
2

0
13

0
32

0
21

0
1 ,,,, xxxuAxAxAxu ii −+++  

          = j
j

i A
x

u














∂
∂

                                                       (5.4.5) 

plus the higher order terms of  Taylor’s series. The subscript o indicates that the 

derivatives are to be evaluated at the point0P . If the region in the neighborhood of 

0P is chosen sufficiently small, i.e. if the vector iA is sufficiently small, then the 

product terms like ji AA , may be ignored. Ignoring the product terms and dropping the 

subscript 0  in (5.4.5), we write  

   jjii AuA ,=δ                                                          (5.4.6) 

where the symbol jiu , has been used for
j

i

x

u

∂
∂ . Result (5.4.6) holds for small vectorsiA . 

If we further assume that the displacements iu as well as their partial derivatives are 

so small that their products can be neglected, then the transformation (which is linear) 

given by (5.4.4) becomes infinitesimal in the neighborhood of the point 0P under 

consideration and 

   jiji AA αδ =                                                               (5.4.7) 

with                                         jiij u ,=α                                              (5.4.8) 
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Hence, all results discussed earlier are immediately applicable. The transformation 

(5.4.6) can be spited into deformation and rigid body motion as  

 j
ijjiijji

jjii A
uuuu

AuA 






 −
+

+
==

22
,,,,

,δ  

       = jijjij AwAe +                                                                (5.4.9)  

Where   ( )ijjiij uue ,,2

1 +=                                                               (5.4.10) 

  ( )ijjiij uuw ,,2

1 −=           (5.4.11) 

The transformation  

  jiji AeA =δ                       (5.4.12) 

represents pure deformation and  

  jiji AwA =δ                                                                        (5.4.13) 

represents rotation. In general, the transformation (5.4.9) is no longer homogeneous as 

both strain components ije and components of rotation ijw are function of the 

coordinates. We find  

  udivu
x

u
ev ii

i

i
ij ==

∂
∂== ,                                                   (5.4.14) 

That is, the cubic dilatation is the divergence of the displacement vector u and it 

differs, in general, from point of the body. The rotation vector iw is given by  

  213132321 ,, wwwwww === .                                             (5.4.15) 

Question: For the small linear deformation given by 

( ) ( ) 33212121 ˆ2ˆˆ exxxeexxu +++= αα , α =constant. 

Find the strain tensor, the rotation and the rotation vector. 
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Solution: We have 

 ( ) 3213212211 2,, xxxuxxuxxu +=== ααα . 

Then strains are given by 

 ( )21
3

3
331

2

2
222

1

1
11 2,, xx

x

u
ex

x

u
ex

x

u
e +=

∂
∂==

∂
∂==

∂
∂= ααα  

 ( )21
2

2

1

1
12 22

1
xx

x

u

x

u
e +=









∂
∂+

∂
∂= α

 

 3233
1

3

3

1
13 ,

2

1
xex

x

u

x

u
e αα ==









∂
∂+

∂
∂=  

We know that  

  














∂
∂

−
∂
∂=

i

j

j

i
ij x

u

x

u
w

2

1
                                                      (5.4.16) 

We find  

 0332211 === www  

  [ ] 212112 2
wxxw −=−= α

, 31313 wxw −=−= α , 32323 wxw −=−= α  

Therefore  

 ( )

( )

( )























−−−

−−

=

0

0
2

2
0

33

3
21

3
21

xx

x
xx

x
xx

wij α                              (5.4.17) 

The rotation vector iww = is given by kjijki uw =∈ . We find 

 ( )1221331323321 2
,, xxwwxwwxww −==−==== ααα  
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So  ( ) ( ) 312213 ˆ
2

ˆˆ exxeexw −+−= αα
                                         

(5.4.18) 

Exercise 1: For small deformation defined by the following displacement, find the 

strain tensor, rotation tensor and rotation vector. 

(i) 0,, 3212321 ==−= uxxuxxu αα  

(ii)  ( ) ( ) =−=+=−= αααα ,,, 213
2

32
2

2
2

31
2

1 xxuxxuxxu constant            (5.4.19) 

Exercise 2: the displacement components are given by 

 ( )yxwxzvyzu ,,, φ==−= calculate the strain components.              (5.4.20) 

Exercise 3: Given the displacements 

 yzzwxzyvyxu 26,6,3 222 +=+==  

Calculate the strain components at the point (1, 0, 2). What is the extension of a line 

element (parallel to the x- axis) at this point?                                                      (5.4.21) 

Exercise 4: Find the strain components and rotation components for the small 

displacement components given below 

(a) Uniform dilation- u=ex, v=ey, w=ez 

(b) Simple extension- u=ex, v=w=0 

(c) Shearing strain- u=2sy, v=w=0 

(d) Plane strain-   u=u(x, y), v=v(x, y), w=0                                    (5.4.22) 

5.5 SAINT-VENANT’S EQUATIONS OF COMPATIBILITY 

By definition, the strain components ije  in terms of displacement components iu are 

given by  

 ][
2

1
,, ijjiij uue +=                                                         (5.5.1) 

Equation (5.5.1) is used to find the components of strain if the components of 

displacement are given. However, if the components of strain, ije ,are given then 
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equation (5.4.1) is a set of six partial differential equations in the three unknown 

321 ,, uuu .Therefore, the system (5.5.1) will not have single valued solution for iu

unless given strains ije satisfy certain conditions which are known as the conditions of 

compatibility or equations of compatibility. 

Equations of compatibility  

we have   ( )ijjiij uue ,,2

1 +=                                                                 (5.5.2) 

so,   ( )ikljjkliklij uue ,,, 2

1 +=                                                           (5.5.3)  

Interchanging i  with k and j with l  in equation (5.4.3), we write  

 ( )kijllijkijkl uue ,,, 2

1 +=                                                            (5.5.4) 

adding (5.5.3) and (5.5.4), we get  

 ( )kijllijkikljjkliijklklij uuuuee ,,,,,, 2

1 +++=+                               (5.5.5) 

Interchanging i and l in (5.5.5), we get 

 ( )ljkilijklkijjkilljkikilj uuuuee ,,,,,, 2

1 +++=+                               (5.5.6) 

From (5.5.5) and (5.5.6), we obtain 

 ljkikiljijklklij eeee ,,,, +=+  

Or  0,,,, =−−+ ikjljlikijklklij eeee                                                 (5.5.7) 

These equations are known as equations of compatibility. 

These equations are necessary conditions for the existence of a single valued 

continuous displacement field. These are 81 equations in number. Because of 

symmetry in indices ji, and lk, ; some of these equations are identically satisfied and 
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some are repetitions. Only 6 out of 81 equations are essential. These equations were 

first obtained by Saint-Venant’s in 1860. 

A strain tensorije that satisfies these conditions is referred to as a possible strain 

tensor. 

Show that the conditions of compatibility are sufficient for the existence of a 

single valued continuous displacement field. 

Let ( )00
ixP  be some point of a simply connected region at which the displacements 0iu

and rotations 0
ijw are known. The displacements iu of an arbitrary point ( )ixP ′′ can be 

obtained in terms of the known functions ije by mean of a line integral along a 

continuous curve C joining the point 0P and P′ . 

 ( ) ( ) ∫
′

+=′′′
P

P

jjj duxxxuxxxu
0

0
3

0
2

0
1

0
321 ,,,,                                      (5.5.8) 

If the process of deformation does not create cracks or holes, i.e., if the body remains 

continuous, the displacements ju′  should be independent of the path of integration. 

That is, ju′  should have the same value regardless of whether the integration is along 

curve C or any other curve. We write  

 ( ) kjkjkkkjk
k

j
j dxwedxudx

x

u
du +==

∂
∂

= ,                                (5.5.9) 

Therefore  

              
∫∫ ++=′

''
0

00

P

p

kjk

P

P

kjkjj dxwdxeuu , ( )kxP  being point the joining curve.   (5.5.10) 

Integrating by parts the second integral, we write  
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( )∫∫ −=
''

00

'
P

P

kkjk

P

p

kjk xxdwdxw  the point ( )kxP '' being fixed so

0' =kdx  

                ={ } ( )∫ −−−
'

,
'0

0

')'(
P

P

lljkkk
P
Pjkkk dxwxxwxx o                            (5.5.11) 

From equations (5.5.10) and (5.5.11), we write  

 
( ) ( ) ( )∫∫ −++−+=

'

,

'
000

321 ''',','
P

P

lljkkk

P

P

kjkjkkkjj
oo

dxwxxdxewxxuxxxu  

                    = ( ) ( )∫ −++−+
'

,
000

0

]'['
P

P

lljkkkjljkkkj dxwxxewxxu                       (5.5.12) 

where the dummy indexk of jke has been changed tol . 

but  
][

2

1
,,, jkkj

l
ljk uu

x
w −

∂
∂=

 

         = ][
2

1
,, jlkklj uu −  

          = ][
2

1
][

2

1
,,,, jlkjkljklklj uuuu −−+  

         = jlkkjl ee ,, −                                                                 (5.5.13) 

using (5.5.13), equation (5.5.12) becomes 

( ) ∫ −−++−+=
'

,,
000

321
0

}]}{'{[')',','(
P

P

ljklkjlkkjljkkkjj dxeexxewxxuxxxu  

                         = ( ) ∫+−+
'

000

0

'
P

P

ljljkkkj dxUwxxu                                              (5.5.14) 

where for convenience we have set 
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 ( )( )jklkjlkkjljl eexxeU ,,' −−+=                                            (5.5.15) 

which is known function asije are known. The first two terms in the side of equation 

(5.5.14) are independent of the path of integration. From the theory of line integrals, 

the third term becomes independent of the path of integration when the integrands 

1dxU jl  must be exact differentials. Therefore, if the displacements ( )',',' 321 xxxui  are 

to be independent of the path of integration, we must have 

 
l

ji

i

jl

x

U

x

U

∂
∂

=
∂

∂
                            for lji ,, =1,2,3                  (5.5.16)   

Now 

 ( ) ( )jklkjlkijiklkijlkkijlijl eeeexxeU ,,,,,, )'( −−−−+= δ  

         = ( ) )(' ,,,,, jiklkijlkkjliiklijl eexxeee −−++−                      (5.5.17) 

and  

 ( ) ( )jkikjikljlkikljikkljiijl eeeexxeU ,,,,,, )(' −−−−+= δ  

         = ( )( )jlkikljikkjliljilji eexxeee ,,,,, ' −−++−                       (5.5.18) 

Therefore, equations (5.5.16) and (5.5.17), (5.5.18) yields 

 ( ) 0][' ,,,, =+−−− klkikljijiklkijlkk eeeexx  

Since this is true for an arbitrary choice of kk xx −'  (as 'P is arbitrary), it follows that  

 0,,,, =−−+ kijljlikjiklklji eeee                                                (5.5.19) 

This is true as these are the compatibility relations. Hence, the displacement (5.5.8) 

independent of the path of integration. Thus, the compatibility conditions (5.5.7) are 

sufficient also. 

Remarks1: The compatibility conditions (5.4.7) are necessary and sufficient for the 

existence of a single valued continuous displacement field when the strain 

components are prescribed. 
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In details form, these 6 conditions are 

 








∂
∂+

∂
∂+

∂
∂−

∂
∂=

∂∂
∂

3

12

2

31

1

23

132

11
2

x

e

x

e

x

e

xxx

e
 

 








∂
∂+

∂
∂+

∂
∂−

∂
∂=

∂∂
∂

1

23

3

12

2

31

213

22
2

x

e

x

e

x

e

xxx

e
 

 








∂
∂+

∂
∂+

∂
∂−

∂
∂=

∂∂
∂

2

31

1

23

3

12

321

33
2

x

e

x

e

x

e

xxx

e
 

 2
1

22
2

2
2

11
2

21

12
22

x

e

x

e

xx

e

∂
∂+

∂
∂=

∂∂
∂

 

 2
3

33
2

2
3

22
2

32

23
22

x

e

x

e

xx

e

∂
∂+

∂
∂=

∂∂
∂

 

 2
3

11
2

2
1

33
2

13

31
22

x

e

x

e

xx

e

∂
∂+

∂
∂=

∂∂
∂

.                                                  (5.5.20) 

These are the necessary and sufficient conditions for the components ije to give single 

valued displacements iu for a simply connected region. 

Definition: A region space is said to be simply connected if an arbitrary closed curve 

lying in the region can be shrunk to a point, by continuous deformation, without 

passing outside of the boundaries. 

Remarks2: The specification of the strains ije only does not determine the 

displacements iu uniquely because the strains ije characterize only the pure 

deformation of an elastic neighborhood of the pointix . 

The displacements iu may involve rigid body motions which do not affectije . 

Example1: (i) Find the compatibility condition for the strain tensor ije if 332211 ,, eee

are independent of 3x and 0333231 === eee . 
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(ii)  Find the condition under which the following are possible strain 

components. 

 ( ) ,,', 21222112
2

2
2

111 xkxexxkexxke ==−=  

 '&,0333231 kkeee === are constants  

(iii)  When ije given above are possible strain components, find the 

corresponding displacements, given that 03 =u  

Solution: (i) We verify that all the compatibility conditions except one are obviously 

satisfied. The only compatibility to be satisfied by ije is  

 .2 21,1211,2222,11 eee =+                                                        (5.5.21) 

(ii) Five conditions are trivially satisfied. The remaining condition (5.5.20) is satisfied 

iff 

 kk ='  as  0,',2 11,2212,1222,11 ==−= ekeke  

(iii) We find 

 ( ) ,211,22,1212,2
2
2

2
11,111 2,, xkxuuxkxuxxkue −=+=−== )'( kk −=∴  

 03,13,2 == uu  

This shows that the displacement components 1u and 2u are independent of 3x . 

We find (exercise) 

 12
3

2
2

21

3

11 )62(
6

1
ccxxxxxu +−+−=  

 21
2

212 2

1
ccxxkxu ++= where 21,cc and c constants. 

Example: Show that the following are not possible strain components 

 ( ) ( ) 0,, 33
2

3
2

222
2

2
2

111 =+=+= exxkexxke  
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 '&,0,' 211332112 kkeexxxke ===  being constants. 

Solution: The given components ije are possible strain components if each of the six 

compatibility conditions are satisfied. On substitution, we find  

 3'22 xkk =  

This can’t be satisfied for 03 ≠x . For 03 =x , this gives k=0 and then all ije vanish. 

Hence, the given ije are not possible strain components. 

Exercise1: Consider a linear strain field associated with a simply connected region R 

such that 0,,, 3323132112
2

122
2

211 eeexBxeAxeAxe ==== .find the relationship between 

constant A and B such that it is possible to obtain a single- valued continuous 

displacement field which corresponds to the given strain field. 

Exercise2: Show by differentiation of the strain displacement relation that the 

compatibility conditions are necessary condition for the existence of continuous 

single-valued displacements. 

Exercise3: Is the following state of strain possible? (c=constant) 

( ) 0,2,, 333231321123
2

2223
2

2
2

111 =====+= eeexxcxexcxexxxce  

Exercise4: Show that the equations of compatibility represent a set of necessary and 

sufficient conditions for the existence single-valued displacements. Drive the 

equations of compatibility for plane strain. 

Exercise 5:  If 213332211 ,,0 φ==== eeee and 1,23 φ=e ; where φ is a function of 1x and 

2x , show that φ must satisfy the equation 

 φ2∇ =constant 

Exercise 6: If 13e and 23e are the only non-zero strain components and 2313,ee are 

independent of3x , show that the compatibility condition may be reduced to the 

following condition 
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 =− 1,232,13 ee constant. 

Exercise 7: Find which of the following values of ije are possible linear strains 

(i) ( ) ======+= αααα ,0,2,, 3332312112
2

222
2

2
2

111 eeexxexexxe constant. 

(ii)  

















+
+

+
=

3132

3321

2121

xxxx

xxxx

xxxx

eij  

Compute the displacements in the case (i). 

5.6 FINITE DEFORMATIONS  

All the results reported in the preceding sections of this chapter were that of the 

classical theory of infinitesimal strains. Infinitesimal transformations permit the 

application of the derivatives of superposition of effects. Finite deformations are those 

deformations in which the displacements iu together with their derivatives are no 

longer small. Consider an aggregate of particles in a continuous medium. We shell 

use the same reference frame for the location of particles in the deformed and 

undeformed states. 

Let the coordinates of a particle lying on a curve0C , before deformation, be denoted 

by ( )321 ,, aaa  and let the coordinates of the same particle after deformation (now lying 

same curve C) be( )321 ,, xxx . Then the elements of arc of the curve 0C and C are 

given, respectively, by  

 iio dadads =2
                                                                        (5.6.1) 

and  iidxdxds =2                                                                         (5.6.2) 

we consider first the Eulerian description of the strain and write  

 ( )321 ,, xxxaa ii =                                                                   (5.6.3)  

then  kkijjii dxadxada ,, ==                                                           (5.6.4) 
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substituting from (5.6.3) into (5.6.1), we write 

 kjkiji dxdxaads ,,
2

0 =                                                             (5.6.5) 

using the substitution tensor, equation (5.6.2) can be rewritten as 

 kjjk dxdxds δ=2                                                                    (5.6.6) 

We know that the measure of the strain is the difference 
2

0
2 dsds −  

from equations (5.6.5) and (5.6.6), we get 

 ( ) kjkijijk dxdxaadsds ,,
2

0
2 −=− δ  

                  = kjjk dxdxη2                                                         (5.6.7) 

where 

 kijijkjk aa ,,2 −= δη                                                                (5.6.8) 

We now write the strain components jkη in term of displacement componentsiu , 

where 

 iii axu −=                                                                            (5.6.9) 

this gives  

 iii uxa −=  

Hence  

 jiijji ua ,, −= δ                                                                     (5.6.10) 

 kiikki ua ,, −= δ                                                                     (5.6.11) 

Equations (5.6.8), (5.6.10) and (5.6.11) yield  

 ( )( )kiikjiijjkjk uu ,,2 −−−= δδδη  

          = ][ ,,,, kijikjjkjkjk uuuu +−−− δδ  
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          =( ) kijijkkj uuuu ,,,, −+                                                 (5.6.12) 

The quantities jkη  are called the Eulerian strain components. 

If, on the other hand, Lagrangian coordinates are used, and equations of 

transformation are of the form  

 ( )321 ,, aaaxx ii =                                                                 (5.6.13) 

then  

 kkiijii daxdaxdx ,, ==                                                          (5.6.14) 

and  kikiji dadaxxds ,,
2 =                                                              (5.6.15) 

while 

 kjij dadads δ=2
0                                                                  (5.6.16) 

 The Lagrangian components of strain jk∈  are defined by 

 kjjk dadadsds ∈=− 22
0

2                                                    (5.6.17) 

Since  

 iii uax +=                                                                          (5.6.18) 

Therefore, 

 jiijji ux ,, += δ  

 kiikki ux ,, += δ  

Now  

 ( ) kjjkkiji dadaxxdsds δ−=− ,,
2

0
2  

                  =( )( )[ ] kjjkkiikjiij dadauu δδδ −++ ,,  

                  =( ) kjkijijkkj dadauuuu ,,,, ++                               (5.6.19) 
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Equation (5.6.17) and (5.6.19) give 

 kijijkkjjk uuuu ,,,,2 ++=∈                                                    (5.6.20) 

It is mentioned here that the differentiation in (5.6.12) is carried out with respect to 

the variable ix , while in (5.6.19) the ‘ ia ’  are regarded as the independent as the 

independent variables. To make the difference explicitly clear, we write out the 

typical expressions jkη and jk∈ in unabridged notation, 

 




















∂
∂+









∂
∂+









∂
∂−

∂
∂=

222

2

1

x

w

x

v

x

u

x

u
xxη                             (5.6.21) 

 








∂
∂

∂
∂+

∂
∂

∂
∂+

∂
∂

∂
∂−









∂
∂+

∂
∂=

y

w

x

w

y

v

x

v

y

u

x

u

x

v

y

u
xyη2                  (5.6.22) 

 




















∂
∂+









∂
∂+









∂
∂+

∂
∂=∈

222

2

1

a

w

b

v

a

u

a

u
xx                             (5.6.23) 

 








∂
∂

∂
∂+

∂
∂

∂
∂+

∂
∂

∂
∂+









∂
∂+

∂
∂=∈

b

w

a

w

b

v

a

v

b

u

a

u

a

v

a

u
xy2                 (5.6.24) 

When the strain components are large, it is no longer possible to give simple 

geometrical interpretations of the strain jk∈
 
and jkη . 

Now we consider some particular cases. 

Case1: Consider a line element with 

 0,0, 3210 === dadadads                                                (5.6.25) 

Define the extension 1E of this element by 

 
0

0
1 ds

dsds
E

−=  

then 

 odsEds )1( 1+=                                                                (5.6.26) 
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and consequently 

 kjjk dadadsds ∈=− 22
0

2  

                 =
2

112 jda∈                                                        (5.6.27) 

Equation (5.6.25) to (5.6.27) yield 

 ( ) 11
2

1 211 ∈=−+ E  

Or  121 111 −∈+=E                                                          (5.6.28) 

When the strain `11∈ is small,(5.6.28) reduced to  

 111 ≅∈E  

As was shown in discussion of strain infinitesimal strains. 

Case II: Consider next two line elements 

 0,0, 3120 === dadadads                                                   (5.6.29) 

and  

 0, 2130 === adadadsd                                                    (5.6.30) 

These two elements lie initially along the 2a -and 3a -axes. 

Let θ denote the angle between the corresponding deformed idx and ixd , of length ds 

and sd respectively. Then  

 ii xddxsdsd =θcos  = βαβα addaxx ii ,,  = 323,2, addaxx ii  

                  = 322 adda∈                                                      (5.6.31) 

Let  θπα −=
223                                                                        (5.6.32) 

Denotes the change in the right angle between the line elements in the initial state. 

Then, we have 



MAL-633 106 

 
















∈=
sd

ad

ds

da 32
2323 2sinα                                               (5.6.33) 

              =
3322

23

2121

2

∈+∈+
∈

                                          (5.6.34) 

using relations (5.6.26) and (5.6.28). 

Again, if the strains ij∈  are so small that their products can be neglected, then 

 2323 2∈≅α                                                                          (5.6.35) 

As proved earlier for infinitesimal strains. 

Remarks: If the displacements and their derivatives are small, then it is immaterial 

whether the derivatives are calculated at the position of a point before or after 

deformation. In this case, we may neglect the nonlinear terms in the partial derivatives 

in (5.6.12) and (5.6.20) and reduce both sets of formulas to 

 jkjkkjjk uu ∈=+= 22 ,,η  

Which were obtained for an infinitesimal transformation, It should be emphasized of 

finite homogeneous strain are not in general commutative and that the simple 

superposition of effects is no longer applicable to finite deformation. 

Books Recommended: 

1. Sokolnikoff, I. S. Mathematical Theory of Elasticity, Tata McGraw Hill   

Publishing Company, Ltd., New Delhi, 1977 

2. S. Timoshenko and N. Goodier,       Theory of Elasticity, McGraw Hill, New  

York, 1970.  
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CHAPTER-VI 

ANALYSIS OF STRESS 

6.1 INTRODUCTION 

Deformation and motion of an elastic body are generally caused by external forces 

such as surface loads or internal forces such as earthquakes, nuclear explosions etc. 

When an elastic body is subjected to such force, its behaviour depends on magnitude 

of forces, upon their direction and upon the inherent strength of the material of which 

the body is made. Such forces give rise to interaction between neighbouring portions 

in the interior parts of the elastic solid. The concept of stress vector on a surface and 

state of stress at a point of the medium shall be discussed. 

An approach to the solutions of problems in elastic solid mechanics is to examine 

deformation initially and then consider stresses and applied loads. Another approach 

is to establish relationship between applied loads and internal stresses first and then to 

consider deformations. Regardless of the approach selected, it is necessary to derive 

the components relations individually. 

6.2 BODY FORCES AND SURFACE FORCES 

Consider a continuous medium. We refer the points of this medium to a rectangular 

Cartesian coordinate system. Let τ represents the region occupied by the body in 

deformed state. A deformable body may be acted upon by two different types of 

external forces. 

(i) Body forces: These forces are those forces which act on every volume element of 

the body and hence on the entire volume of the body. Forexample, gravitational force 

and magnetic forces are body forces. Let ρ denotes the density of a volume element∆τ 

of the bodyτ. Let g be the gravitational force/acceleration. Then the force acting on 

mass ρ∆τ contained in volume ∆τ is g ρ∆τ. 
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(ii) Surface forces: These forces act on every surface element of the body .Such 

forces are also called contact forces. Loads applied over the external surface or 

bounding surface are examples of surface forces. Hydrostatic pressure acting on the 

surface of a body submerged in a liquid /water is a surface force. 

(iii) Internal forces: Internal forces such as earthquakes, nuclear explosions arise 

from the mutual interaction between various parts of the elastic body. 

Now we consider an elastic body in its unreformed state with no forces acting on it. 

Let a system of forces applied on it. Due to these forces, the body is deformed and a 

system of internal forces is set up to oppose this deformation. These internal forces 

give rise to stress within the body. It is therefore necessary to consider how external 

forces are transmitted through the medium. 

6.3 STRESS VECTOR ON A PLANE AT A POINT 

Let us consider an elastic body in equilibrium under the action of a system of external 

forces.  
 

 

 

 

 

 

Figure 6.1 

 

Let us pass a fictitious plane π through a point P(x1, x2, x3,) in the interior of this 

body. The body can be considered as consisting of two parts, say, A and B and these 

parts are in welded contacts at the interface.Part A of the body is in equilibrium under 

forces(external) and the effect of part B on the plane π. We assume that this effect is 

continuously distributed over the surface of intersection around the point P, let us 

π 

B 

P 

A 

δS 

^
ν
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consider a small surface δS(on the place π) and let
^
ν be an outward unit normal unit 

vector (for the part A of the body).The effect of part B on this small surface element 

can be reduced to a force and a vector couple C . Now let usshrink in size towards 

zero in amanner such that the point P always remains aside and remains the normal 

vector. 

),,,( 321
0

xxxT
S

Q
Lim
S

=
→ δδ

 

,0
0

=
→ S

C
Lim
S δδ

 

Now �� is a surface force per unit area. The force  �� is called the stress vector or 

traction on the plane πat P. 

Note 1: Forces acting over the surface of a body are never idealized point forces; they 

are, in reality, forces per unit area applied over some finite area. These external forces 

per unit area are also called tractions. 

Note 2:Cauchy’s stress postulate 

If we consider another oriented plane containing same point P(xi), then the stress 

vector is likely to have a different direction. For this purpose, Cauchy made the 

following postulated known as Cauchy’s stress postulate 

“The stress vector
~
T  depends on the orientation of the plane upon which it acts”. 

ν−
^

T

Let
^

ν be the unit normal to the plane π  through the point P.This normal characterizes 

the orientation of the plane upon which the stress vector acts. For this reason, we 

write the stress vector as
^

~

ν
T , indicating the dependence on the orientation

^

ν . 

Cauchy’s Reciprocal Relation 

When the plane π  is in the interior of the elastic body, the normal
^

ν has two possible 

directions that are opposite to each other and we choose one of these directions. 
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^
ν−  

 

 

 

 

^

ν  

Figure 6.2 

For a chosen
^

ν ,the stress vector 
^

~

ν
T is interpreted as the internal surface force per unit 

area acting on plane π due to the action of part B of the material/body which
^

ν is 

directed upon the part A across the planeπ. 

Consequently,
^

~

ν−
T is the internal surface force per unit area acting on π due to the action 

of part A for which 
^

ν  is the outward drawn unit normal. By Newton’s third law of 

motion, vectors
^

~

ν−
T and -

^

~

ν
T balance each other as the body is in equilibrium. 

∴                          
^

~

ν−
T =   -

^

~

ν
T  

which is known as Cauchy’s Reciprocal Relation. 

 

Homogenous State of Stress 

If π and π ′are any two parallel planes through any two points P and P′ of a 

continuous elastic body, and if the stress vector on π  at P is equal to the stress  on π ′

at P′ , then the state of stress in the body is said to be a homogeneous state of stress. 

 

 

ν� 
P 

B 

A 

ν
^

Tν−
^

T
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6.4 NORMAL AND TANGENTIAL STRESSES 

In general, the stress vector 
^

~

ν
T  is inclined to the plane on which it acts and need not 

be in the direction of unit normal. The projection of 
^

~

ν
T on the normal 

^
ν is called the 

normal stress. It is denoted by σ or nσ . The projection of 
^

~

ν
T on the plane π, in the 

plane of 
^

~

ν
T and 

^
ν , is called the tangential or shearing stress. It is denoted byτ or tσ  

. 

 nσ
^
ν  

 α  

     
ν

^

T  

 

Figure 6.3 

Thus,       .T  
^

~

^

νσσ
ν

== n  

    
   .T  

^

~

^

tt

ν
στ ==      (6.4.1)  

222

~

^

tnT σσ
ν

+=                        (6.4.2) 

where

^

~
T
ν

unit vector normal to 
^

ν  and lies in the place π. 

A stress in the direction of the outward normal is considered positive (i.e.σ> 0) and 

is called a tensile stress. A stress in the opposite direction is considered negative (σ< 

0) and is called a compressible stress. 

tσ
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If σ = 0,

^

~
T
ν

is perpendicularto
^
ν .The stress vector 

^

~
T
ν

 is called a pure shear stress or a 

pure tangential stress. 

If τ = 0, then  

^

~
T
ν

 is parallel to
^
ν .The stress vector 

^

~
T
ν

 is then called pure normal 

stress.When 

^

~
T
ν

 acts opposite to the normal
^

ν ,then the pure normal stress is called 

pressure (σ <0, τ= 0). 

From (6.4.1), we can write    T  
^^

~

^

tτνσ
ν

+=                        (6.4.3) 

                                                    

                                                                         

                                                      (6.4.4) 

Note: αστ
ν

SinT  t ==                               (6.4.5) 

                                   

as             1
^

=ν                                                 

     

Thisτ in magnitude is given by the magnitude of vector product of 

^

~
T
ν

and
^

ν . 

 

6.5 STRESS COMPONENTS 

Let P(xi) be any point of the elastic medium whose coordinates are (x1 , x2 , x3) 

relative to rectangular Cartesian system ox1x2 x3. 

 

 

 T 2

~

2

^

στ
ν

−=

 T 

^

^
ν

νσ ×=
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Figure6.4 

Let 
^
1

T  denote the stress vector on theplane, with normal along −1x axis, at the point 

P. Let the stress vector 
^
1

T  has components τ11,τ12, τ13, i.e.  

jeeee
^

1j3

^

132

^

121

^

11

1

~

^

T ττττ =++=              6.5.1) 

Let 
^
2

T   denote the stress vector on the plane, with normal along −2x axis, at the point 

P.  

jeeee
^

2j3

^

232

^

221

^

21

2

~

^

T ττττ =++=            (6.5.2) 

Similarly jeeee
^

3j3

^

332

^

321

^

31

3

~

^

T ττττ =++=            (6.5.3) 

Equations (6.5.1) to (6.5.3) can be condensed in the following form 

j

i

e
^

ij
~

^

T τ=                                                (6.5.4)

 ikij

^^

ij

^

~
).(.T

^

τδττ === jkkjk

i

eee           (6.5.5) 

Thus, for given i & j, the quantity τij represent the jth components of the stress vector 
^

~
T
i

 acting on a plane havingie
^

 as the unit normal. Here, the first suffix i indicates the 

 

x1 

e1 

 

e2 x2 
e3 o 

P(xi) 

x3 
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direction of the normal to the plane through P and the second suffix j indicates the 

direction of the stress component. In all, we have 9 components τij at the point P(xi) in 

the ox1x2 x3 system. These quantities are called stress — components. The matrix 

  
















=

333231

232221

131211

)(

τττ
τττ
τττ

τ ij

                                                 (6.5.6)

 

whose rows are the components of the three stress vectors, is called the matrix  of the 

state of stress at P. The dimensions of stress components are force/(length)2=ML -1T-2. 

The stress components11τ , 22τ , 33τ are called normal stresses and other components

323123211312 ,,,,, ττττττ  are called as shearing stresses( ..T ,T 122

^1

~
111

^1

~
etceeee == ). In 

CGS system, the stress is measured in dyne per square centimetre.In English 

system, it measured in pounds per square inch or tons per square inch. 

 

DYADIC REPRESENTATION OF STRESS 

It may be helpful to consider the stress tensor as a vector - like quantity having a 

magnitude and associated direction (s), specified by unit vector. The dyadic is such a 

representation. We write the stress tensor or stress dyadic as 

3

^

3

^

332

^

3

^

321

^

3

^

313

^

2

^

23

2

^

2

^

221

^

2

^

213

^

1

^

132

^

1

^

121

^

1

^

11

^^

ij

eeeeeeee

eeeeeeeeeeee ji

ττττ

τττττττ

+++++

++++==
      (6.5.7) 

where the juxtaposed double vectors are called dyads. 

The stress vector 
i

~
T  acting on a plane having normal along ie

^
 is evaluated as follows: 

jjkijikji

i

eeeeeee
^

ij

^

ji

^

jk

^^^

jk

^

~
.)( T ττδττσ =====

                             
(6.5.8) 
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6.6 STATE OF STRESS AT A POINT-THE STRESS TENSOR 

We shall show that the state of stress at any point of an elastic medium on an oblique 

plane is completely characterized by the stress components at P. 

ANALYSIS OF STRESS 

Let 

^

~
T
ν

 be the stress vector acting on an oblique plane at the material point P, the unit 

normal to this plane being
iνν =

^

. 

Through the point P, we draw three planar elements parallel to the coordinate planes. 

A fourth plane ABC at a distance h from the point P and parallel to the given oblique 

plane at P is also drawn. Now, the tetrahedron PABC contains the elastic material. 

  

 

 

 

 

 

Figure6.5 

Let τij be the components of stress at the point P regarding the signs (negative or 

positive) of scalar quantities τij, we adopt the following convention. 

If one draws an exterior normal (outside the medium) to a given face of the 

tetrahedron PABC ,then the positive values of components τij are associated with 

forces acting in the positive directions of the coordinate axes. On the other hand, if 

the exterior normal to a given face is pointing in a direction opposite to that of the 

coordinate axes, then the positive values of τij are associated with forces directed 

oppositely to the positive directions of the coordinate axes. 

iνν =
^

 

A 

B 

C 

P 
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Let σ be the area of the face ABC of the tetrahedron in figure. Let σ1, σ2, σ3be the 

areas of the plane faces PBC, PCA and PAB (having normal’s along −1x , −2x &

−3x axes) respectively. 

Then  i

^

ii ),cos( σννσσ == x             (6.6.1) 

The volume of the tetrahedron is 

σhv
3

1
 =               (6.6.2) 

Assuming the continuity of the stress vector iTT
νν

=
^

~
, the xi component of the stress 

force acting on the face ABC of the tetrahedron PABC (made of elastic material) is

σε
ν

)( iiT +  

provided    0lim
0

=
→ i

h
ε             (6.6.3) 

Here iε are inserted because the stress force acts at points of the oblique plane ABC 

and not on the given oblique plane through P. Under the assumption of continuing of 

stress field, quantities1ε ′ are infinitesimals. We note that the plane element PBC is a 

part of the boundary surface of the material contained in the tetrahedron. As such, the 

unit outward normal to PBC is -ie
^

 . Therefore, the xi component of force due to stress 

acting on the face PBC of area σi is 

                                                                    11i1i )( σετ +          (6.6.4a) 

where 0lim 1i
0h

=
→

ε  

Similarly forces on the face PCA and PAB are 

22i2i )( σετ + , 33i3i )( σετ +  
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with   0lim lim 3i
0h

2i
0h

==
→→

εε                                    

(6.6.4b) 

On combining (6.6.4a) and (6.6.4b) , we write 

jjiji )(- σετ +                                        (6.6.5) 

as the xi -- component of stress force acting on the face of area provided 0lim ji
0h

=
→

ε  

In equation (6.6.5), the stress components are taken with the negative sign as the 

exterior normal to a face of area σj is in the negative direction of the xj axis.Let Fi be 

the body force per unit volume at the point P. Then the xicomponent of the body force 

acting on the volume of tetrahedron PABC is 

                       iiFh εσ ′+(
3

1
)             (6.6.6) 

where iε ′ 's are infinitesimal and 

0lim 
0h

=′
→ iε  

Since the tetrahedral element PABC of the elastic body is in equilibrium, therefore, 

the resultant force acting on the material contained in PABC must be zero. Thus 

0)(
3

1
)()( jiji =′+++−++ hFhT ijii εσσετσε

ν

   

Using (6.6.1), above equation (after cancellation of σ) becomes 

0)(
3

1
)()( jiji =′+++−++ hFhT ijii εσνετε

ν

                            
(6.6.7) 

As we take the 0lim →h in (6.6.7), the oblique face ABC tends to the given oblique 

plane at P. Therefore, this limit gives 

   
0=− jjiiT ντ

ν
 

or   jjiiT ντ
ν

=
                        (6.6.8) 
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This relation connecting the stress vector

^

~

ν
T  and the stress componentsijτ  is known as 

Cauchy's law or formula. 

It is convenient to express the equation (6.6.8) in the matrix notation. This has the 

form 

































=





















3

2

1

332313

322212

312111

3

2

1

v

v

v

T

T

T

τττ
τττ
τττ

ν

ν

ν

           (6.6.8a) 

As 

^

~

ν
T  and νi are vectors. Equation (6.6.8) shows, by quotient law for tensors, that new 

components form a second order tensor. 

This stress tensor is called the CAUCHY'S STRESS TENSOR. 

We note that, through a given point, there exist infinitely many surface plane 

elements. On every one of these elements we can define a stress vector. The totality of 

all these stress vectors is called the state of stress at the point. The relation (6.6.8) 

enables us to find the stress vector on any surface element at a point by knowing the 

stress tensor at that point. As such, the state of stress at a point is completely 

determined by the stress tensor at the point. 

Note: In the above, we have assumed that stress can be defined everywhere in a body 

and secondly that the stress field is continuous. These are the basic assumptions of 

continuum mechanics. Without these assumptions, we can do very little. However, in 

the further development of the theory, certain mathematical discontinuities will be 

permitted / allowed. 
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6.7 BASIC BALANCE LAWS 

(A) Balance of Linear Momentum: 

So far, we have discussed the state of stress at a point. If it is desired to move from 

one point to another, the stress components will change. Therefore, it is necessary to 

investigate the equations / conditions which control the way in which they change. 

While the strain tensor eij has to satisfy six compatibility conditions, the components 

of stress tensor must satisfy three linear partial differential equations of the first 

order. The principle of balance of linear momentum gives us these differential 

equations. This law, consistent with the Newton's second law of motion, states that 

the time rate of change of linear momentum is equal to the resultant force on the 

elastic body. 

Consider a continuous medium in equilibrium with volume τ and bounded by a closed 

surface σ. Let Fi be the components of the body force per unit volume and 
ν

iT be the 

component of the surface force in the xi direction. For equilibrium of the medium, the 

resultant force acting on the matter within τ must vanish i.e. 

0=+∫ ∫
τ σ

ν
στ dTdF ii                        for i = 1,2,3               (6.7.1) 

We know the following Cauchy's formula 

jjiiT ντ
ν

=    for i = 1,2,3          (6.7.2) 

whereτij is the stress tensor and νj is the unit normal to the surface. Using (6.7.2) into 

equation (6.7.l), we obtain 

0=+∫ ∫
τ σ

σνττ ddF jjii      
for i = 1,2,3         (6.7.3) 

We assume that stresses τij and their first order partial derivatives are also continuous 

and single valued in the regionτ . Under these assumptions, Gauss-divergence 

theorem can be applied to the surface integral in (3) and we find 
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∫ ∫=
τ σ

σντττ dd jjijji,             (6.7.4) 

From equations (6.7.3) and (6.7.4), we write 

0)( =+∫
τ

ττ dFiji

                                                             

(6.7.5) 

for each i = l, 2 , 3. Since the region τ of integration is arbitrary (every part ofthe 

medium is in equilibrium) and the integrand is continuous, so, we must have
 

0. =+ ijji Fτ                            (6.7.6) 

for each i = 1,2,3 .and at every interior point of the continuous elastic body. These 

equations are 

,01
3

31

2

21

1

11 =+
∂
∂

+
∂
∂

+
∂
∂

F
xxx

τττ
 

,02
3

32

2

22

1

12 =+
∂
∂

+
∂
∂

+
∂
∂

F
xxx

τττ
           (6.7.7) 

,03
3

33

2

23

1

13 =+
∂
∂

+
∂
∂

+
∂
∂

F
xxx

τττ
 

These equations are referred to as Cauchy's equations of equilibrium. These 

equations are also called stress equilibrium equations. These equations are 

associated with undeformed Cartesian coordinates. These equations were obtained by 

Cauchy in 1827. 

Note 1: In the case of motion of an elastic body, these equations (due to balance of 

linear momentum) take the form 

iijji uF &&ρτ =+.                                    (6.7.8) 

where iu&&  is the acceleration vector and p is the density (mass per unit volume) of the 

body. 
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Note 2: When body force Fi is absent (or negligible), equations of equilibrium reduce 

to 

          0. =jjiτ                        (6.7.9) 

Example: Show that for zero body force, the state of stress for an elastic body given 

by 

22
11 3zyx ++=τ , zyx 22 2

22 ++=τ , 
2

33 2 zyx ++−=τ  

3
2112 zxy +−== ττ , xzy −== 2

3113 ττ ,  yzx −== 2
3223 ττ is possible. 

Example: Determine the body forces for which the following stress field describes a 

state of equilibrium 

zyx 532 22
11 −−−=τ  , 72 2

22 +−= yτ , 53433 −++= zyxτ  

642112 −+== xyzττ , 1233113 ++−== yxττ ,  03223 ==ττ  

Example: Determine whether the following stress field is admissible in an elastic 

body when body forces are negligible. 

[τij] =
















+
+++

xyz

xyxz

zyxzyz

2..

83.

524
3

2

 

(B) Balance of Angular momentum 

The principle of balance of angular momentum for an elastic solid is"The time rate 

of change of angular momentum about the origin is equal to the resultant 

moment about of origin of body and surface forces."This law assures the 

symmetry of the stress tensor τij. 

Let a continuous elastic body in equilibrium occupies the regionτ bounded by surface 

σ. Let Fi be the body force acting at a point P(xi) of the body, Let the position vector 
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of the point P relative to the origin be ii exr
^

= Then , the moment of force F is 

kjijk FxFr ε=× , where ijkε is the alternating tensor. 

As the elastic body is in equilibrium, the resultant moment due to body and surface 

forces must be zero. So 

0=+∫ ∫
τ σ

ν
σετε dTxdFx kjijkkjijk for each i = 1,2,3                     (6.7.9) 

Since, the body is in equilibrium, so the Cauchy's equilibrium equationsgive 

llkkF ,τ−=
                                                            

(6.7.10) 

The stress vector kT
ν

 in terms of stress components is given by llkkT ντ
ν

=
      

(6.7.11) 

The Gauss divergence theorem gives us  

[ ]∫∫ =
τσ

ττεσντε dxdx
llkjijkllkjijk ,

 

                           =∫ +
τ

ττδτε dx lkjlllkjijk ][ ,  

    = ∫ +
τ

τττε dx jkllkjijk ][ ,

                                           

(6.7.12) 

From equations (6.7.9), (6.7.10) and (6.7.12); we write  

0][)( ,, =++− ∫∫
ττ

τττεττε dxdx jkllkjijkllkjijk

                 

(6.7.13) 

This gives  

0=∫
τ

ττε dx jkjijk

                                                 

(6.7.14) 

fori = 1, 2 , 3. Since the integrand is continuous and the volume is arbitrary, so  

  
0=jkijkτε            (6.7.15) 

fori = 1, 2 , 3 and at each point of the elastic body. Expanding (6.7.5) , we write  
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03213223123 =+ τετε  

03223 =−⇒ ττ  

03123113213 =+ τετε  

03223 =−⇒ ττ  

02132112312 =+ τετε  

02112 =−⇒ ττ  

i.e. jiforjiij ≠=⇒ ττ at every point of the medium.                      (6.7.16) 

This proves the symmetry of stress tensor. This law is also referred to as Cauchy's 

second law. It is due to Cauchy in 1827.  

Note 1: On account of this symmetry, the state of stress at every point is specified by 

six instead of nine functions of position.  

Note 2: In summary, the six components of the state of the stress must satisfy three 

partial differential equations 0, =+ ijij Fτ  within the body and the three relations (

jjjiiT ντ
ν

,= ) on the bounding surface. The equations jjjiiT ντ
ν

,=  are called the 

boundary conditions.  

Note 3: Because of symmetry of the stress tensor, the equilibrium equations may be 

written as 0, =+ ijij Fτ  

Note 4: Since ji

i

jT τ= , equations of equilibrium (using symmetry of τij) may also be 

expressed as   i

i

jj FT −=,        or  i

i

FTdiv −=
~

 

Note 5: Because of the symmetry of τij , the boundary conditions can be expressed as  

jijiT ντ
ν

=  
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Remark: It is obvious that the three equations of equilibrium do not suffice for the 

determination of the six functions that specify the stress field. This may be expressed 

by the statement that the stress field is statistically indeterminate. To determine the 

stress field, the equations of equilibrium must be supplemented by other relations that 

can't be obtained from static considerations.  

 

6.8 TRANSFORMATION OF COORDINATES  

We have defined earlier the components of stress with respect to Cartesian system 

oxlx2x3. Let 321 xxxo ′′′ be any other Cartesian system with thesame origin but oriented 

differently. Let these coordinates be connected by the linear relations  

                        ipip xx l=′
     (6.8.1)

 

where pil are the direction cosines of the px′ - axis with respect to the 1x - axis.  

i.e    ),(cos ippi xx′=l     (6.8.2) 

Let pqτ ′ be the components of stress in the new reference system (Figure 6.6)  
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 τ’22 

Figure 6.6& 6.7 

Figure 6.7, Transformation of stress components under rotation of co-ordinates 

system. 

Theorem: let the surface elementσ∆  and 'σ∆ , with unit normal
^
ν and 

^
ν ′  , pass 

through the point P. Show that the component of the stress vector 
^

~

ν
T  acting on σ∆  in 

the direction of
^

ν ′ is equal to the component of the stress vector 
^

~

ν ′
T  acting on 'σ∆  in the 

direction of 
^
ν  

Proof: In this theorem, it is required to show that  

τ33 x3 

τ11 

τ22 

x2 

x3 

x’ 1 

x’ 3 

τ’33 
x3 

τ’ 11 

x2 

x1 

x’ 2
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Thus,       .T  .T
^

~

^

~

^^

νν
νν

=′
′

            (6.8.3)
 

The Cauchy's formulagives us  

jjiT ντ
ν

=
^

~                                  (6.8.4) 

and 

jjiT ντ
ν

′=
′

^

~                        (6.8.5) 

due to symmetry of stress tensors as with  

jνν =
^

, jνν ′=′
^

 

Now     
^^

~
..

^^

iiTT νν
νν ′′

=
 

     = ijij νντ )( ′
 

                  = ijji νντ )( ′  

                  = iiT ν
ν

′
^

                                                                  
(6.8.6) 

This completes the proof of the theorem.  

Article : Use the formula (6.8.3) to derive the formulas of transformation of the 

components of the stress tensor τij.  

Solution: Since the stress components pqτ ′ is the projection on the px′ — axis of the 

stress vector acting on a surface element normal to the px′  — axis (by definition), we 

can write 

                              
==

P

qpq T'τ
^

.

^

ν
ν ′
T                       (6.8.7) 
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where 

 
^

ν ′ is parallel to the x'p-axis                                  (6.8.8) 

 
^

ν is parallel to the x'q - axis       

Equations (6.8.6) and (6.8.7) imply  

    jiijpq ννττ ′=′             (6.8.9) 

Since  

 piipi xxv l=′=′ ),(cos                                              (6.8.10) 

 qiiqi xxv l=′= ),(cos  

Equation (6.8.9) becomes  

                                      jiijpq ννττ ′=′
                               (6.8.11) 

Equation (6.8.11) and definition of a tensor of order 2, show that the stress 

components τij transform like a Cartesian tensor of order 2. Thus, the physical concept 

of stress which is described by τijagrees with the mathematical definition of a tensor 

of order 2 in a Euclidean space.  

 

6.9 Theorem: Show that the quantity 

            332211 τττ ++=Θ is invariant relative to an orthogonal 

transformation of Cartesian coordinates.  

Proof: Let ijτ be the tensor relative to the Cartesian system 321 xxox . Let these axes be 

transformed to 321 xxxo ′′′  under the orthogonal transformation 

ipip xx l=′                        (6.9.1) 

where 

),cos( ippi xx′=l                                  (6.9.2) 
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Let piτ be the stress components relative to new axes, then these components are given 

by the rule for second order tensors. 

ijpjpipp ττ ll=′                                              (6.9.3)                                           

Putting q= p and taking summation over the common suffix, we write  

This implies    ijpjpipp aa ττ =′  

                 ijijτδ= = ijτ   

Θ=++=′+′+′ 332211332211 ττττττ                       (6.9.4) 

This proves the theorem.  

Remark: This theorem shows that whatever be the orientation of three mutually 

orthogonal planes passing through a given point, the sum of the normal stresses is 

independent of the orientation of these planes.  

Exercise 1: Prove that the tangential traction parallel to a line l , across a plane at 

right angles to a line l' , the two lines being at right angles to each other , is equal to 

the tangential traction, parallel to the line l' , across a plane at right angles to l.  

Exercise 2: Show that the following two statements are equivalent.  

(a) The components of the stress are symmetric.  

(b) Let the surface elements ∆σ and ∆σ' with respective normal
^

ν   and 
^

ν ' passes 

through a point P. Then
^

~

^

~
..

^^

νν
νν ′

=′ TT  

Hint : (b) ⇒ (a)  

Let     
^^

i=ν   and 
^^

j=′ν  

Then     ijj

ii

TjTT τν
ν

===′
^

~

^

~
..

^
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and    jii

ji

TiTT τν
ν

===
^

~

^

~
..

^

 

by assumption   
^

~

^

~
..

^^

νν
νν ′

=′ TT , 

therefore   jiij ττ =  

This shows that ijτ   is symmetric.  

Example l: The stress matrix at a point P in a material is given as  

[ ]
















−
−=
054

521

413

ijτ . 

Find 

(i) The stress vector on a plane element through P and parallel to the plane 2xl +x2 –x3 

= 1, 

(ii) The magnitude of the stress vector, normal stress and the shear stress. 

(iii) The angle that the stress vector makes with normal to the plane.  

Solution: (i) The plane element on which the stress vector is required is parallel to the 

plane 2xl +x2 –x3 = 1. Therefore, direction ratios of the normal to the required plane at 

P are< 2, 1,-1>. So, the d.c.'s of the unit normal iνν =
^

 to the required plane at P are

6

2
1 =ν ,

6

1
2 =ν ,

6

1
3 −=ν  

let
νν

~~
. iTT = be the required stress vector. Then, Cauchy's formula gives  
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























−















−
−=





















6

1
6

1
6

2

054

521

413

3

2

1

ν

ν

ν

T

T

T

 

or         2/31 =
ν
T , 2/332 =

ν
T , 2/33 =

ν
T  

So, the required stress vector at P is  

)(2/3 3

^

2

^

1

^

1 eeeT ++=
ν

and 2/33
~

=
ν
T  

(ii)  The normal stress is given by  

 24
2

1
1)-3(2 

6

1
..

2

3
 .T  

^

~

^

=×=+== νσ
ν

the shear stress is 

given by  

 

 

(As 0≠τ ,so the stress vector .T

^

~

ν
need not be along the normal to the plane element) 

iii)letθbe the angle between the stress vector .T

^

~

ν
 and normal 

^

ν .  

Then  

33/8
2/33

2

.T

.T
cos

^

~

^

~
^

^

===

ν

ν
θ

ν

ν

 

This determines the required inclination.   

 

2

5
4-33/2 T 2

~

2

^

==−= στ
ν
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Example 2: The stress matrix at a point P(xi) in a material is given by  

[ ]
















−
−=

00

0

0

2

2
2
3

2
313

x

xx

xxx

ijτ  

Find the stress vector at the point Q (l, 0, -l) on the surface 1
2
3

2
2 xxx =+  

Solution: The stress vector 
^

~
T
ν

 is required on the surface element  

f(x l , x2 , x3) = 02
3

2
21 =−− xxx , at the point Q(l , 0 , -l). We find 3

^

1

^

2eef +=∇ and

5=∇f at the point Q.  

Hence, the unit outward normal iνν =
^

to the surface f = 0 at the pointQ(1,0,-1) is 

)2(
5

1
3

^

1

^^

ee
f

f
+=

∇
∇

=ν  

giving    
5

1
1 =ν , 02 =ν ,

5

2
3 =ν  

The stress matrix at the point Q(1, 0, -l) is 

[ ]














−
=

001

001

011

ijτ

 

let
νν

~~
iTT = be the required stress vector at the point Q. Then, Cauchy's formula gives  



































−
=





















5

2
0
5

1

000

001

011

3

2

1

ν

ν

ν

T

T

T
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or          5/11 −=
ν
T , 5/12 =

ν
T , 03 =

ν
T  

So, the required stress vector at P is  

)(
5

1
2

^

1

^

1 eeT +−=
ν

 

Example 3: The stress matrix at a certain point in a given material is given by 

                   

[ ]
















=
021

201

113

ijτ  

Find the normal stress and the shear stress on the octahedral plane element through 

the point.  

Solution: An octahedral plane is a plant whose normal makes equal angles 

withpositive directions of the coordinate axes.Hence, the components of the unit 

normal iνν =
^

 are  

  

 

let
νν

~~
iTT = be the required stress vector. Then, Cauchy's formula gives  

















=
































=





















3

3

5

3

1

1

1

1

021

201

113

3

2

1

ν

ν

ν

T

T

T

 

or         3/51 =
ν
T , 32 =

ν
T , 33 =

ν
T  

The magnitude of this stress vector is  

3/43
~

=
ν
T  

3

1
321 === ννν
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let σ be the normal stress and τ be the shear stress.Then 

3

11
)335(

3

1
.

^
^

~
=++== νσ

ν
T and

3

22

9

8

9

121

3

43 ==−=τ  

Since σ> 0, the normal stress on the octahedral plane is tensile.  

Example 4: The state of stress at a point P in cartesian coordinates is given by  

τ11=500, τ12= τ21=500, τ13= τ31=800, τ22=1000,τ33= -300, τ23= τ32= -750  

Compute the stress vector T and the normal and tangential components of stress on 

the plane passing through P whose outward normal unit vector is

^

3

^

2

^

1

^

2

1

2

1

2

1
eee ++=ν  

Solution: The stress vectoris given by ,jjiiT ντ
ν

=  

We find 24002502503312211111 ++=++= ντντντ
ν
T  =1064(approx.) 

.)(221
2

750
5002503322221122 approxT =++=++= ντντντ

ν
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.)(23721503754003332231133 approxT =+−=++= ντντντ
ν



MAL-633 134 

CHAPTER-VII 

STRESS QUADRIC OF CAUCHY 

7.1 Stress Quadric of Cauchy 

In a rectangular Cartesian coordinate systems 321 xxox , consider the equation  

     2kxjx iij ±=τ             (7.1.1)  

where (xl, x2, x3 ) are the coordinates a point P relative to the point P0 whose 

Coordinates relative to origin O are (xl
0, x2

0 ,x3
0 ), τij is the stress tensor at the point 

P0(xi
0) and k is a real constant . The sign + or - is so chosen that the quadric 

surface (7.1.1) is real. 

The quadric surface (7.1.1) is known as the stress quadric of Cauchy with its centre at 

the point P0(xi
0). 

  

 

 

                                                                      Fig. (2.8)  

 

                                                                    Figure 7.1 

 

 

Let Ai be the radius vector, of magnitude A, on this stress quadric surface which is 

normal on the plane π through the point P0 having stress tensor τij. Let 
^

ν  be the unit 

vector along the vector Ai. Then  

A
x

A
A ii

i ==ν                       (7.1.2)  

P 

ν
^

T

x2 

Ai 

x1 

o 

P0(xi
0) 

x3 



MAL-633 135 

Let 
ν

~
T  denote the stress vector on the plane at the point P0. Then, the normal stress N 

on the plane is given by  

jiijijijiiTTN νντνντνν
νν

====
^

~
. .                                  (7.1.3) 

From equations (7.1.l) and (7.1.2), we obtain  

2))(( kAA jiij ±=νντ   

22 / Akjiij ±=νντ   

22 / AkN ±=                        (7.1.4) 

This gives the normal stress acting on the plane π with orientation iνν =
^

in terms of 

the length of the radius vector of the stress quadric from the point (centre) 0 along 

the vector. The relation (7.1.4) shows that the normal stress N on the plane π through 

P0 along with orientation along Ai is inversely proportional to the square of that radius 

vector PPAi
0=  of the stress quadric.  

The positive sign in (7.1.1) or (7.1.4) is chosen whenever the normal stress N 

represents tension (i.e., N > 0) and negative sign when N represents compression (i.e. 

N < 0).  

The Cauchy's stress quadric (7.1.l) possesses another interesting property. This 

property is "The normal to the quadric surface at the end of the radius vector Ai 

is parallel to the stress vector 
ν

~
T  acting on the plane π  at P0."   

To prove this property, let us write equation (7.1.l) in the form  

0),,( 2
321 == kxxxxxG jiij mτ            (7.1.5) 

Then the direction of the normal to the stress quadric surface is given by the gradient 

of the scalar point function ),,( 321 xxxG . The components of gradient are  
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n

j
iij

n

i
jij

n x

x
x

x

x
x

x

G

∂
∂

+
∂
∂

=
∂
∂ ττ

n

j
iij

n

i
jij x

x
x

x

x
x

∂
∂

+
∂
∂

= ττ  

jniijjinij xx δτδτ += )( jnjjnj xx ττ +=  

      jnj xτ2=    jnjA ντ2=  

                                                                          

ν

nTA2=              (7.1.6) 

 

 

 

 

 

 

 

                                                         Figure 7.2  

 

Equation (7.1.6) shows that vectors 
n

n
x

G
andT

∂
∂ν

 are parallel. Hence the stress vector 

~

ν
T on the plane π at P0 is directed along the normal to the stress quadric at P, P being 

the end point of the radius vector Ai = pp0   

Remark 1: Equation (7.1.6) can be rewritten as  

G
A

T ∇=
2

1
~

ν
                       (7.1.7)  

G=0 
normal P 

ν

~
T

P0 

νi 



MAL-633 137 

This relation gives an easy way of constructing the stress vector 
~

ν
T  from the 

knowledge of the quadric surface G(x1, x2, x3) = constant and the magnitude A of the 

radius vector A .  

Remark 2: Taking principal axes along the coordinate axes, the stress quadric of 

Cauchy assumes the form  

     22
33

2
212

2
11 kxxx ±=++ τττ                      (7.1.8)  

Here the coefficients 321 ,, τττ are the principal stresses. Let the axes be so numbered 

that 321 τττ ≥≥   

If 0321 >>> τττ  , then equation (7.1.8) represents an ellipsoid with plus sign. Then, 

the relation N = k2/A2 implies that the force acting on every surface element through 

P0 is tensile (as N < 0).  

If 3210 τττ >>>  then equation (7.1.8) represents an ellipsoid with a negative sign on 

the right and N = -k2/A2 indicates that the normal stress is compressive (N > 0). 

lf 321 τττ ≠= or 321 τττ =≠ or 231 τττ ≠= ,Then the Cauchy's stress quadric is an 

ellipsoid of revolution. If 321 τττ == , then the stress quadric is a sphere.  

 

7.2 PRINCIPAL STRESSES  

In a general state of stress, the stress vector 

^

~

ν
T  acting on a surface with outer normal 

^

ν  depends on the direction of 
^

ν .  

Let us see in what direction 
^

ν  the stress vector 

^

~

ν
T  becomes normal to the surface, on 

which the shearing stress is zero. Such a surface shall be called a principal plane, its 
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normal as principal axis, and the value of normal stress acting on the principal plane 

shall be called a principal stress.  

Let 
^

ν  defines a principal axis at the point P0(xi
0) and let τ be the corresponding 

principal stress and  τij be the stress tensor at that point. Let 

^

~

ν
T  be the stress vector. 

Then 

                         
^

~

^

ντ
ν

=T  

or                     iiT τν
ν

=            (7.2.1) 

            jijiT ντ
ν

=            (7.2.2) 

or                   0)( =− jijij ντδτ            (7.2.3) 

The three equations i =1, 2, 3 are to be solved for ν1, ν2, ν3 Since 
^

ν  is a unit vector, we 

must find a set of non- trivial solutions for which  

12
3

2
2

2
1 =++ ννν  

Thus, equation (7.2.3) posses an eigenvalue problem, equation (7.2.3) has a set of non 

vanishing solutions, ν1, ν2, ν3 iff the determinant of the coefficients vanishes  

 i.e.,      0=− ijij τδτ  

or     0

332313

232212

131211

=
















−
−

−

ττττ
ττττ
ττττ

       (7.2.3a)
 

On expanding (7.2.2), we find 

032
2

1
3 =+−+− θτθτθτ

       (7.2.3b)
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where 

         3322111 τττθ ++=          (7.2.4a) 

   








+








+








=

3332

2322

2221

1211

3331

1311
2 ττ

ττ
ττ
ττ

ττ
ττ

θ       (7.2.4b) 

   )det(3213 ijkjiijk ττττθ ==∈                                 (7.2.4c) 

Equation (7.2.3) is a cubic equation in τ. Let its roots be τ1, τ2, τ3, since   the matrix of 

stress, (τij) is real and symmetric; the roots (τi) of (7.2.3) are all real. Thus τ1, τ2, τ3 are 

the principal stresses. For each value of the principal stress, a unit normal vector 
^
ν  

can be determined. 

Case I: When 321 τττ ≠≠  

let i

1

ν  , i

2

ν  , i

3

ν , be the unit principal axes corresponding to the principal stresses τ1, τ2, 

τ3, respectively. Then principal axes are mutually orthogonal to each other. 

Case II: If 321 τττ ≠=  are the principal stresses then the directioni

3

ν , corresponding 

to principal stress τ3 is a principal direction and any two mutually perpendicular lines 

in a plane with normali
3

ν , may be chosen as the other two principal direction of stress. 

Case III: If  321 τττ ==  then any set of orthogonal axes through0P may be taken as 

the principal axes. 

Remark: Thus, for a symmetric real stress tensor, there are three principal stresses 

which are real and a set of three mutually orthogonal principal directions. If the 

reference axes xl , x2 ,x3 are chosen to coincide with the principal axes ,then the 

matrix of stress components becomes 

















=

3

2

1

00

00

00

τ
τ

τ
τ ij            (7.2.5) 
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Invariants of the stress tensor: 

Equation (7.2.3) can be written as 

(τ - τl) (τ - τ 2) (τ - τ 3) = 0,          (7.2.6) 

and we find 

3211 τττθ ++=  

3132212 ττττττθ ++=  

3213 τττθ =             (7.2.7) 

Since the principal stress1τ , 2τ , 3τ  characterize the physical state of stress at point , 

they are independent of any coordinates of reference. 

Hence, coefficients 321 ,, θθθ of equation (7.2.3) are invariant with respect to the 

coordinate transformation. Thus 321 ,, θθθ are the three scalar invariants of the stress 

tensor τij. These scalar invariants are called the fundamental stress invariants. 

Components of Stress ijτ  in terms of ατ ′  

Let Xα be the principal axes. The transformation law for axes is 

 ii xX αα l=  

or  αα Xx ii l=            (7.2.8) 

where   ),cos( αα Xxii =l           (7.2.9) 

The stress matrix relative to axes Xα is  

),,( 321 ττττ αβ diag=′         (7.2.10) 

Let τij be the stress matrix relative to axes xi axes .Then the transformation rule for 

second order tensor is  

∑
=

=′=
3

1

)(
α

ααααββαα τττ jiiii llll  
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This gives 

∑
=

=
3

1

)(
α

αααα ττ jii aa          (7.2.11) 

Definition (Principal axes of stress) 

A system of coordinate axes chosen along the principal directions of stress is referred 

to as principal axes of stress.  

Question: Show that, as the orientation of a surface element at a point P varies the 

normal stress on the surface element assumes an extreme value when the element is a 

principal plane of stress at P and that this extremum value is a principal stress.  

Solution: Let τij be the stress tensor at the point P. Let τ be the normal stress on a 

surface element at P having normal in the direction of unit vector iνν =
^

. Thus, we 

have to find jiij vvττ =  .We have to find iνν =
^

for which τ is an extremum. Since 

iνν =
^

is a unit vector, we have the restriction 

      01=−kkνν            (7.2.12) 

We use the method of Lagrange multiplier to find the extreme values of τ. The 

extreme values are given by 

0)}1{{ =−−
∂
∂

kkjiij
i

ννλνντ
ν        (7.2.13) 

where λ is a Lagrange’s multiplier. From (7.2.13), we find 

    0}2{}{ =−+ ikkjijiij δνλνδντ
   

022 =− iiij λνντ
    

0=− jijiij νλδντ
  

0)( =− jijij νλδτ
                              (7.2.14) 
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These conditions are satisfied iff jνν =
^

is a principal direction of stress and τ=λ is the 

corresponding principal stress. Thus, τ assumes an extreme value on a principal plane 

of stress and principal stress is an extreme value of τ given by (7.2.12). 

 

7.3 MAXIMUM NORMAL AND SHEAR STRESSES 

Let the coordinate axes at a point P0 be taken along the principle directions of stress 

τ=λ is the corresponding principal stress. Let τ1, τ2,τ3 be the principal stresses at 

P0
.Then 

0;,, 312312333222111 ====== τττττττττ  

Let  0

^

~
=

ν
T be the stress vector on a planar element at P0 having the normals iνν =

^

 

Let N be the normal stress and S be the shearing stress. Then  

           
22

~

SNT +=
ν

            (7.3.1)
 

 The relation jijiT ντ
ν

=  so that   2
33

2
22

2
11

^

~
. ντντντν

ν
++== TN           (7.3.1a) 

N is a function of three variables 321 ,, ννν  connected by the relation  

01=−kkνν             (7.3.2) 

From (7.3.l) and (7.3.2) we write  

2
33

2
22

2
3

2
21 )1( ντντνντ ++−−=N  

2
313

2
2121 )()( νττντττ −+−+=N           (7.3.3) 

The extreme value of N are given by  

0,0
32

=
∂
∂=

∂
∂

νν
NN

  

which yield  
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0,0 32 == νν for 1312 & ττττ ≠≠  

Hence    1321 &0,1 τννν ===±= N  

Similarly, we can find other two directions  

2321 &0,1,0 τννν ==±== N  

3321 &1,00 τννν =±=== N   

Thus, we find that the extreme values of the Normal stress N are along the principal 

directions of stress and the extreme values are themselves principal stresses. So, the 

absolute maximum normal stress is the maximum of the set {τl, τ2, τ3}. Along the 

principal directions, the shearing stress is zero (i.e. the minimum) 

Now    22
33

2
22

2
11

2
3

2
3

2
2

2
2

2
1

2
1

2 )()( ντντντντντντ ++−++=S       (7.3.3a) 

To determine the directions associated with the maximum values of  SN =  .We 

maximize the function S( 321 ,, ννν ) in (7.3.3) subject to the relation 1=jiνν  

For this, we use the method of Lagrange multipliers to fin the free extremum of the 

functions  

         F(ν1, ν2, ν3) = S2 - λ(νi νi-1)           (7.3.4) 

For extreme values of F, we must have  

0
321

=
∂
∂=

∂
∂=

∂
∂

ννν
FFF

          (7.3.5) 

The equations 0=
∂
∂

i

F

ν
, gives 

02)(42 1
2
33

2
22

2
11111

2
1 =−++− λνντντντντντ  

or     )(2 2
33

2
22

2
111

2
1 ντντντττλ ++−=         (7.3.6) 

Similarly from the equation, we obtain  

     )(2 2
33

2
22

2
112

2
2 ντντντττλ ++−=          (7.3.7) 
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)(2 2
33

2
22

2
113

2
3 ντντντττλ ++−=          (7.2.8) 

Equations (7.3.6) & (7.3.7) yield  

))((2 2
33

2
22

2
1112

2
1

2
2 ντντντττττ ++−=−    

For 21 ττ ≠ , This leads to 

)(2 2
33

2
22

2
1112 ντντντττ ++=+  

or     02)12()12( 3
2
32

2
21

2
1 =+−+− τντντν  

This relation is identically satisfied if  

0,
2

1
,

2

1
321 ==±= ννν            (7.3.9)  

From equations (7.3.lb), (7.3.3a) and (7.3.9), the corresponding maximum value of S  

is  

12max 2

1 ττ −=S   

and     122

1 ττ +=N  

Also, for the direction  

2

1
,

2

1
,0 321 ±=±== ννν  

the corresponding values of  and 
max

S and N   are , respectively ,  

122

1 ττ − and  122

1 ττ +  

The result can recorded in the following table  

1ν  2ν  3ν  
minmax/

S  N  

0 0 1±  Min S=0 .3 Max=τ  
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0 1±  0 0(Min.) .2 Max=τ  

1±  0 0 0(Min). .1 Max=τ  

0 
2

1±  
2

1±  .
2

1
32 Max=−ττ  .

2

1
32 Min=+ττ  

2

1±  0 
2

1±  .
2

1
13 Max=−ττ  .

2

1
13 Min=+ττ  

2

1±  
2

1±  0 
.

2

1
21 Max=−ττ  .

2

1
21 Min=+ττ  

 

If 321 τττ >> , then 1τ  is the absolute maximum values of N and3τ  is its minimum 

value, and the maximum value of S  is  

             13max 2

1 ττ −=S  

and the maximum shearing stress acts on the surface element containing the x2 

principal axis and bisecting the angle between the x1 and x3  axes. Hence the 

following theorem is proved.  

Theorem: Show that the maximum shearing stress is equal to one half the differences 

between the greatest and least normal stress and acts on the plane that bisects the 

angle between the directions of the largest and smallest principal stresses.  

7.4 MOHR'S CIRCLE OR MOHR’S DIAGRAM 

(GEOMETRICAL PROOF OF THE THEOREM AS PROPOSED BY O.  

MOHR, 1882)  

We know that  

 2
33

2
22

2
11 ντντντ ++=N                     (7.4.1) 

and  2
3

2
3

2
2

2
2

2
1

2
1

22 ντντντ ++=+ NS         (7.4.2) 
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Also  12
3

2
2

2
1 =++ ννν          (7.4.3) 

Solving equations (7.4.l) to (7.4.3), by Cramer's rule, for  2
3

2
2

2
1 ,, ννν  we find 

))((

))((

3121

32
2

2
1 ττττ

ττν
−−

−−+= NNS
                     (7.4.4) 

))((

))((

3212

13
2

2
2 ττττ

ττν
−−

−−+
=

NNS
                     (7.4.5) 

))((

))((

2313

21
2

2
3 ττττ

ττν
−−

−−+
=

NNS
          (7.4.6)  

Assume that 321 τττ >>  so that 021 >−ττ  and 031 >−ττ . Since 2
1ν  is non - 

negative. We conclude from equation (7.4.4) that  

0))(( 21
2 ≥−−+ ττ NNS  

or     0)( 3232
22 ≥++−+ ττττNNS  

2

32

2

322

22

)(







 −
≥







 +
−+

ττττ
NS

                    
(7.4.7) 

This represents a region outside the circle  

2

32

2

322

22

)(







 −
=







 +
−+

ττττ
NS  in the (N, S) plane.  

 

 

 

 

 

 

     

C3 

C1 
τ2 τ3 

τ2 

C2 

O O1 N 
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Figure (7.3) Mohr's Circles 

 This circle, say Cl, has centre 






 +
0,

2
31 ττ

 and radius 






 −
2

32 ττ
 in the Cartesian 

SN-plane with the values of N as abscissas and those of S as ordinates. Since

032 >−ττ and 012 >−ττ  , we conclude from (7.4.5) that  

0))(( 13
2 ≤−−+ ττ NNS                      (7.4.8) 

The region defined by (7.4.8) is a closed region, interior to the circle, whose equation 

is  

      0))(( 13
2 =−−+ ττ NNS                                (7.4.8a) 

The circle C2 passed through the points (τ3, 0), (τ1, 0) have centre on the N — axis.  

Finally, equation (7.4.6) yields  

0))(( 21
2 ≥−−+ ττ NNS           (7.4.9) 

Since, 013 <−ττ and 023 <−ττ . The region defined by (7.4.9) is exterior to the 

circle C3, with centre on the N-axis and passing through the points (τ1, 0), (τ2, 0). It 

follows from inequalities (7.4.7) to (7.4.9) that the admissible values of S and N lie in 

the shaded region bounded by the circles as shown in the figure.  

From figure, it is clear that the maximum value of shearing stress S is represented by 

the greatest ordinate QO′ of the circle C2.  

Hence        
2

31
max

ττ −=S        (7.4.10a) 

The value of N, corresponding to Smax is OO ′  where  

22
' 3131

3

ττττ
τ

+
=

−
+=OO                  (7.4.10b)  
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Putting the values of S & N from equations (7.4.l0a, 7.4.10b) into equations (7.4.4) to 

(7.4.6) We find  

                                     
2

12
3

2
1 ==νν , 02

2 =ν  

                               or      0,
2

1
231 =±== ννν

   (7.4.11)
 

Equation (7.4.11) determines the direction of the maximum shearing stress and shows 

that the maximum shearing stress acts on the plane that bisects the directions of the 

largest and smallest principal stresses.  

7.5 OCTAHEDERAL STRESSES 

Consider a plane which is equally inclined to the principal directions of stress. 

Stresses acting on such a plane are known as octahedral stresses. Assume that 

coordinate axes coincide with the principal directions of stress, Let 321 ,, τττ  be the 

principal stresses. Then the stress matrix is  

                                  















3

2

1

00

00

00

τ
τ

τ

                                                     

(7.5.1) 

A unit normal iνν =
^

to this plane is  

3

1
, 321 === ννν  

Then the stress vector 
ν

~
T  on a plane clement with normal 

^

ν  is given by  

              
jijiT ντ

ν
=  

This gives 

111 ντ
ν

=T  ,
 

222 ντ
ν

=T ,
 

333 ντ
ν

=T  
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Let N be the normal stress and S be the shear stress. Then  

^

~
.ν

ν
TN =  )(

3

1
321

2
3

2
3

2
2

2
2

2
1

2
1 τττντντντ ++=++= , 2

~

2 NTS
v

−=  

 
2

321
2
3

2
3

2
2

2
2

2
1

2
1 )(

9

1
)( τττντντντ ++−++=  

 

                          
2

321
2
3

2
2

2
1 )(

9

1
)(

3

1 ττττττ ++−++=
 

                        )]222()(3[
9

1
313221

2
3

2
2

2
1

2
3

2
2

2
1 ττττττττττττ +++++−++=

 

                        )]2()2()2[(
9

1
13

2
1

2
332

2
3

2
221

2
2

2
1 ττττττττττττ −++−++−+=  

                      ])()()[(
9

1 2
13

2
32

2
21 ττττττ −+−+−=

                                                  

(7.5.2) 

giving 

2
13

2
32

2
21 )()()(

3

1 ττττττ −+−+−=S  

Example: At a point P, the principal stresses are 2,1,4 321 −=== τττ . Find the stress 

vector, the normal stress and the shear stress on the octahedral plane at P.  

[Hint: )24(
3

1
,6,1 3

^

2

^

1

^

~
eeeTSN −+===

ν
 ] 

7.6. STRESS DEVIATOR TENSOR  

Let τij be the stress tensor. Let  

)(
3

1
)(

3

1
3213322110 ττττττσ ++=++=

 

Then the tensor 

)0
)(

ijij
d

ij δσττ −=  
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is called the stress deviator tensor. It specifies the deviation of the state of stress from 

the mean stress σ0.  

 

Books Recommended: 

1. Sokolnikoff, I. S.     Mathematical Theory of Elasticity, Tata  McGraw  

                                                 Hill Publishing Company, Ltd., New Delhi, 1977 

2. S. Timoshenko and N. Goodier,    Theory of Elasticity, McGraw Hill, New  

                                                                    York, 1970.  
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CHAPTER-VIII 

EQUATIONS OF ELASTICITY:GENERALIZED HOOKE’S LAW 

8.1 INTRODUCTION 

 An ordinary solid body is constantly subjected to forces of gravitation, and, if 

it is in equilibrium, it is supported by other forces. We have no experience of a body 

which is free from the action of all external forces. From the equations of motion we 

know that the application of forces to a body necessitates the existence of stress 

within the body. Again, solid bodies are not absolutely rigid. By the application of 

suitable forces they can be made to change both in size and shape. When the induced 

changes of size and shape are considerable, the body does not, in general, return to its 

original size and shape after the forces which induced the change have ceased to act. 

On the other hand, when the changes are not too great the recovery may be apparently 

complete. The property of recovery of an original size and shape is the property that is 

termed elasticity. The changes of size and shape are expressed by specifying strains. 

The “unstrained state” with reference to which strains are specified, is as it were, an 

arbitrary zero of reckoning, and the choice of it is in our power. When the unstrained 

state is chosen, and the strain is specified, the internal configuration of the body is 

known. 

 We shall suppose that the differential coefficients of the displacement ),,( wvu

by which the body could pass from the unstrained state to the strained state, are 

sufficiently small to admit of the calculation of the strain by the simplified method 

and we shall regard the configuration as specified by this displacement. The object of 

experimental investigations of the behavior of elastic bodies may be said to be the 

discovery of numerical relations between the quantities that can be measured, which 

shall be sufficiently varied and sufficiently numerous to serve as a basis for the 

inductive determination of the form of the intrinsic energy function.  When such a 

function exists, and its form is known, we can deduce from it the relations between 



MAL-633 152 

the components of stress and the components of strain and conversely, if, from any 

experimental results, we are able to infer such relations, we acquire thereby data 

which can serve for the construction of the function. 

 The components of stress or of strain within a solid body can never from the 

nature of the case be measured directly. If their values can be found it must always be 

by a process of inference from measurements of quantities that are not, in general 

components of stress or of strain. Instruments can be devised for measuring average 

strains in bodies of ordinary size, and others for measuring particular strains of small 

superficial parts. For example, the average cubical compression can be measured by 

means of a piezometer; the extension of a short length of a longitudinal filament on 

the outside of a bar can be measured by means of an extensometer. Sometimes, as for 

example in experiments on torsion and flexure, a displacement is measured. External 

forces applied to a body can often be measured with great exactness, e.g. when a bar 

is extended or bent by hanging a weight at one end. In such cases it is a resultant force 

that is measured directly, not the component tractions per unit of area that are applied 

to the surface of the body. In the case of a body under normal pressure, as in the 

experiments with the piezometer, the pressure per unit of area can be measured. 

 In any experiment designed to determine a relation between stress and strain, 

some displacement is brought about, in a body partially fixed, by the application of 

definite forces which can be varied in amount. We call these forces collectively “the 

load”. It is a fact of experience that deformation of a solid body induces stresses 

within. The relationship between stress and deformation is expressed as a constitutive 

relation for the material and depends on the material properties and also on other 

physical observables like temperative and perhaps the electromagnetic field. An 

elastic deformation is defined to be one in which the stress is determined by the 

current value of the strain only, and not on rate of strain or strain history: )(eττ = . 

 An elastic solid that undergoes only an infinitesimal  deformation and for 

which the governing material is linear is called a linear elastic solid or Hooken 
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solid. From experimental observations, it is known that under normal loading many 

structural materials such as metals, concrete, wood and rocks behave as linear elastic 

solids. The classical theory of elasticity (or linear theory) serves as an excellent model 

for studying the mechanical behavior of a wide variety of such solid materials.     

8.2. Hook’s Law 

The first attempt at a scientific description of the strength of solids was made 

by Galileo. He treated bodies as inextensible, however, since at that time there existed 

neither experimental data nor physical hypotheses that would yield a relation between 

the deformation of a solid body and the forces responsible for the deformation. It was 

Robert Hooke who, some forty years after the appearance of Galileo’s Discourses 

(1638), gave the first rough law of proportionality between the forces and 

displacements. Hooks published his law first in the form of an anagram 

“ceiinosssttuu” in (1676), and two years later gave the solution of the anagram: “ ut 

tension sic vis,” which can be translated freely as “ the extension is proportional to the 

force.”  

Most hard solid show that same type of relation between load and measurable 

strain. It is found that, over a wide range of load, the measured strain is proportional 

to the load. This statement may be expressed more fully by saying that  

1) When the load increases the measured strain increases in the same ratio, 

2) When the load diminishes the measured strain diminishes in the same 

ratio, 

3) When the load is reduced to zero no strain can be measured. 

The most striking exception to this statement is found in the behavior of cast metals. It 

appears to be impossible to assign any finite range of load, within which the 

measurable strains of such metals increase and diminish in the sameproportion as the 

load.The experimental results which hold for most hard solids, other than cast metals. 

It appears to be impossible to assign any finite range of load, within which the 
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measurable strains of such metals increase and diminish in the same proportion as the 

load. 

 The experimental results which hold for most hard solids, other than cast 

metals, lead by a process of inductive reasoning to the Generalized Hooke’s Law of 

the proportionality of stress and strain. The general form of the law is expressed by 

the statement: Each of the six components of stress at any point of a body are linear 

functions of the six components of strain at the point.  

 In 1678, Robert Hook, on experimental grounds, stated that the extension is 

proportional to the force. Cauchy in 1822 generalized Hook law for the deformation 

of elastic solids. According to Cauchy, “Each component of stress at any point of an 

elastic body is a linear function of the components of strain at the point”. 

 In general, we write the following set of linear relations 

  33113312111211111111 .............................. ececec +++=τ  

  33123312121211121112 .............................. ececec +++=τ  

…………………………………………….. 

…………………………………………….. 

33333312331211331133 .............................. ececec +++=τ  

Or 

klijklij ec=τ , 3,2,1,,, =lkji (8.2.1) 

where ijτ is the stress tensor and kle  is the strain tensor. The coefficients, which are 

81=34 in number, are called elastic moduli. In general, these coefficients depend on 

the physical properties of the medium and are independent of the strain components

.ije We suppose that relations (8.2.1) hold at every point of the medium and at every 

instant of time and are solvable for ije  in terms of ijτ . From (8.2.1), it follows that ijτ

are all zero whenever all ije are zero. It means that in the initial unstrained state the 
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body is unstressed. From quotient law for tensors, relation (8.2.1) shows that cijkl  are 

components of a fourth order tensor. This tensor is called elasticity tensor. Since ije

are dimensionless quantities, it follows that elastic moduli cijkl  have the same 

dimensions as the stresses (force/Area). If, however, cijkl  do not change throughout the 

medium for all time, we say that the medium is (elastically) homogeneous.Thus, for 

a homogeneous elastic solid, the elastic moduli are constants so that the mechanical 

properties remain the same throughout the solid for all times. The equation (8.2.1) 

represents the generalized Hooke’s law in the xi–system. These coefficientsijklc very 

from point to point of the medium and are called elastic constants. If ijklc  are 

independent of position of point then the medium is called elastic homogeneous. 

These are 81 in numbers now we shall discussed onwards only those media which are 

homogeneous continuous and elastic. Also, components ijτ are symmetric, 

 i.e., jiij ττ =                                                                                                            (8.2.2) 

on interchanging the indicesi and j in the formula will not change so that jiklijkl cc = . 

Now let we denotes ijklc is also symmetric with respect to the last two indicesk andl

for this let we define 

   klijlkojklijlkijklij ecccc






 −++= )(

2

1
)(

2

1τ (8.2.3) 

Let    { } { }ijlkijklijklijlkijklijkl cccccc −=′′+=′
2

1
,

2

1
 

   { } klijklijklij ecc ′′+′=∴ (τ (8.2.4) 

Now    { } { } ijklijklijlkijlkijklijkl cccccc ′′−=−−=−=′′
2

1

2

1
 

⇒   { } klijklijklij ecc ′′+′= (τ                                                        (8.2.5) 

adding (8.2.4) and (8.2.5) we get  
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{ } klijklij ec′= (τ     ( 3,2,1, =jiQ ) 

where ijklijkl cc =′  then  

   klijklij ec=τ (8.2.6) 

where ijklc is symmetric with respect to first two indices and also with respect to last  

two indices. With the help of this symmetric property, the 81 constants in equations 

(8.2.6) are reduced into 45 constants. (out of these 81 constants 36 constants are 

decreased due to symmetric property of the constants).  Introducing the notations 

(known as engineering notations)  





======
======

612513423333222111

612513423333222111

2,2,2,,,

,,,,,

eeeeeeeeeeee

ττττττττττττ
(8.2.7) 

Using the above into (8.2.1), the six equations becomes 

   
















+++=
+++=
+++=
+++=
+++=

+++=

6662621616

6562521515

6462421414

6362321313

6262221212

6162121111

..............................

..............................

..............................

..............................

..............................

..............................

ececec

ececec

ececec

ececec

ececec

ececec

τ
τ
τ
τ
τ
τ

               (8.2.8) 

The equation (8.2.8) in tensor form can be given below: 

   jiji ec=τ )6,5,4,3,2,1,( =ji   (8.2.9) 

For unique solution of equation (8.2.9), we must have 0≠ijc  then ie can be 

expressed as  

   jiji Ce τ= )6,5,4,3,2,1,&( =≠ jicC (8.2.10) 

Therefore 36 elastic constant are required to study the properties of elastic continuous 

medium. But the numbers of constants reduce to 21 in number,whenever there exists a 

function  
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jiij eecW
2

1= )6,5,4,3,2,1,( =ji    

such that   i
ie

W τ=
∂
∂

                                                                           (8.2.11) 

This potential function W was first introduced by Green and W is called the strain 

energy density function and it exists when the process of deformation is Isothermal 

and Adiabatic. Also jiij eecW
2

1=  and taking its partial derivative with respect to ke

we get, 

   










∂
∂

+
∂
∂

=
∂
∂

k

j
ij

k

i
ij

k e

e
ee

e

e
c

e

W

2

1
                                          (8.2.12) 

Now    




=
≠

==
∂
∂

kiif

kiif

e

e
ik

k

i

1

0
δ  

⇒   ( ) ijkijjikijjkijikij
k

ececeec
e

W δδδδ
2

1

2

1

2

1 +=+=
∂
∂

 

but   jkjjkjkjjkjk
k

eccceec
e

W
)(

2

1

2

1

2

1 +=+==
∂
∂ τ  (8.2.13) 

now by the Hook’s law  

jiji ec=τ )6,5,4,3,2,1,( =ji  

⇒   or jkjk ec=τ )6,5,4,3,2,1,( =jk (8.2.14) 

using (8.2.13) and (8.2.14) we get   

jkjjkjjk ececc =+ )
2

1

2

1
(  

⇒   ijjkkj ccc 2)( =+ or kjjk cc =  
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Thus jkc are symmetric.So we have, if process is isothermal or adiabatically, then

jiij cc = . Now our formula (8.2.8) in which elastic constants are 36 in number can be 

written in matrix form is  
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





















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

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






















=



























6

5

4

3

2

1

666564636261

262524232221

161514131211

6

5

4

3

2

1

......

......

......

e

e

e

e

e

e

cccccc

cccccc

cccccc

τ
τ
τ
τ
τ
τ

                   (8.2.15)  

So due to symmetric properties, these constants further reduce to 21. If the media is 

elastically symmetric in certain direction then the numbers of elastic constants ijc are 

further reduced. We shall discuss two types of elastic symmetry 

8.3 Case-1: Symmetry with respect to plane- Consider that medium is elastically 

symmetric with respect to the −21xx plane 

 ⇒   332211 ,, xxxxxx ′−=′=′=                                     (8.3.1) 

 

 

 

 

 

 

 

 

 

11 xx ′=

22 xx ′=

3x

33 xx −=′  

Figure 8.3.1 
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The elastic constants ijc are invariant under the transformation, now we know that the 

law of transformation of tensor of order one is 

   ipip xx l=′    ( ),( ippi xxCos ′=lQ                                       (8.3.2) 

where  

















−
=

















=
100

010

001

333231

232221

131211

lll

lll

lll

l pi

                                   

(8.3.3) 

we know Hook’s law is  

  jiji ec ′=′τ and jiji ec=τ )6,5,4,3,2,1,( =ji  

⇒  6162121111 ................................................ ececec ′++′+′=′τ  

  6262221212 ................................................ ececec ′++′+′=′τ   

  6362321313 ................................................ ececec ′++′+′=′τ  

  6462421414 ................................................ ececec ′++′+′=′τ  

  6562521515 ................................................ ececec ′++′+′=′τ  

  6662621616 ................................................ ececec ′++′+′=′τ          (8.3.4) 

and    

6162121111 ................................................ ececec +++=τ  

  6262221212 ................................................ ececec +++=τ  

  6362321313 ................................................ ececec +++=τ  

  6462421414 ................................................ ececec +++=τ  

  6562521515 ................................................ ececec +++=τ  

  6662621616 ................................................ ececec +++=τ            (8.3.5) 

Law of transformation of tensor of order two is as given below 
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   ijqjpipq ττ ll=′
                                                                    

(8.3.6) 

   

( )

)(

)(

)(

33133212311113

23132212211112

13131212111111

31321211111111

τττ
τττ

τττ
τττττ

llll

llll

llll

llllll

+++
+++

++=

++==′ iiiiijji

using 

(8.3.3), we get  1113121111 00)001(1' τττττ =++++=  

 ⇒    1111 ττ =′ or 11 ττ =′
                                              

(8.3.7) 

Similarly,  22 ττ =′ , 33 ττ =′ , 66 ττ =′ , 44 ττ −=′ and 55 ττ −=′ ;  

11 ee =′ , 22 ee =′ , 33 ee =′ , 66 ee =′ , 44 ee −=′ and 55 ee −=′
                   

(8.3.8) 

from relations (8.3.5),(8.3.6),(8.3.7)and (8.3.8), we get 

0)(2 515414

616515414313212111616515414313212111

616515414313212111616515414313212111

11

=+
+++++=+−−++
+++++=′+′+′+′+′+′

=′

ececor

ecececececececececececec

ecececececececececececec

ττ

(8.3.9) 

⇒     01514 == cc                                              (8.3.10)  

Similarly   22 ττ =′ ⇒ 02524 == cc ,    

    33 ττ =′ ⇒ 03534 == cc , 

    44 ττ −=′ ⇒ 046434241 ==== cccc , 

    55 ττ −=′ ⇒ 056535251 ==== cccc , 

    66 ττ =′ ⇒ 06564 == cc ,                                     (8.3.11) 

Then elastic constants reduces to 13, so matrix of coefficients is 
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                  (8.3.12) 

8.4 Case-II: Let us consider symmetrywith respect to another plane is- consider 

that medium is elastically symmetric with respect to the −32xx plane 

 ⇒   332211 ,, xxxxxx ′=′=′−=  (8.4.1) 

again applying same transformation law as earlier, we get 

   06362615145362616 ======== cccccccc                    (8.4.2) 

Such materials which have three mutually orthogonal planes of symmetry are called 

orthotropic.T hus for orthotropic media matrix for ijc takes the following form 
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τ

        (8.4.3) 

From the relation (8.4.3) there are nineconstants required to study the elastic property 

of the material.  

Definition:-Orthotropic Material:  A material is said to be orthotropic if it has three 

mutually orthogonal plane of elastic symmetry for example, wood, is a common 

example of an orthotropic material.  
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8.5 Case-III: Transversely Isotropic Media: If an orthotropic medium exists elastic 

symmetry with respect to arbitrary rotation about one of the axis, say −3x axis. Then it 

is called transversally isotropic. Let the system 321 xxxo ′′′ be obtains from the system 

321 xxox by a rotation about the −3x axis to an angleθ then direction cosine are given 

by  

 

   

 

 

 

 

 

 

 

 

 

 

Law of transformation of tensor of order two is  

ijqjpipq ττ ll=′ where

















−=
100

0cossin

0sincos

θθ
θθ

ijl

                           

(8.5.1) 

Then ijc must be invariant under this rotation, using relation (8.5.1) we have 

θθτθτθτττ sincossincos 6
2

2
2

1111 ++=′=′  

θθτθτθτττ sincoscossin 6
2

2
2

1222 −+=′=′  

1x′  

2x′  

33 xx =′

1x  

2x  

θ 

θ 

Figure 8.2 
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3333 τττ =′=′ ; θτθτττ sincos 54423 −=′=′ ; 

θτθτττ cossin 54513 +=′=′  

  )sin(cossincos)( 22
621612 θθτθθττττ −+−−=′=′                    (8.5.2) 

and  

θθθθ sincossincos 6
2

2
2

1111 eeeee ++=′=′  

θθθθ sincoscossin 6
2

2
2

1222 eeeee −+=′=′  

3333 τ=′=′ ee ;  θθ sincos 54423 eeee −=′=′ ; 

θθ cossin 54513 eeee +==′ , 612513423 ''2,''2,''2 eeeeee ===  

  )sin(cossincos)( 22
621612 θθθθ −+−−=′=′ eeeee                   (8.5.3) 

For all possible value of θ. 

Sub case:- (i)If we take 
2

πθ = then the relations (8.5.2) and (8.5.3) becomes 
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(8.5.4)  

using the relation (8.4.3)  and (8.5.4) we have 

  

231322112112

323132221111221
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,,
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Similarly, by comparison of other relations of (8.5.4), we get the constants as follows 

  

31325544132311222112 ,,,, cccccccccc =====                              (8.5.5) 

 

Sub case:- (ii)If we take 
4

πθ = then the relations (8.5.2) and (8.5.3) gives a new 

relation between that stresses as follows 
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112212
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and )( 126 eee −=′                                  (8.5.6) 

after comparing the coefficient on both sides of (8.5.6) we get 

  )(
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1
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2

1
1211122266 ccccc −=−=                                                     (8.5.7) 

Thus, the matrix of elastic moduli given in relation (8.4.3) becomes  
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                    (8.5.8) 

This matrix has fiveindependent elastic constants. 

8.6 Case-IV: Homogenous Isotropic Medium: In the case of an isotropic material 

the elastic coefficientsijc are independent of orientation of coordinate axes.In 

particular, every plane is the plane of isotropic elastic symmetry and is a particular 

case of a transversely isotropic elastic symmetry in addition to elastic symmetric 



MAL-633 165 

about the −3x axis. Let there is an elastic symmetry about the −1x axis, i.e. a rotation 

of axis through a right angle about the −1x axis is given by the transformation.  

    322311 ,, xxxxxx ′−=′=′=                                     (8.6.1) 

this transformation leads to the relation  

 

1331446611331312 ,,, cccccccc ====                                                                     (8.6.2)  

If we define   µλ ==== 44661312 , cccc                                                (8.6.3) 

 then    ,2332211 µλ +=== ccc  

Therefore the number of independent elastic coefficients for an isotropic medium are 

two,i.e.,λ andµ , these coefficients are known as Lame’s constants. Thus the 

generalized Hooke’s law becomes 

11 xx =′  

2x

23 xx ′=  

23 xx −=′  

Figure 8.6.1 
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(8.6.4) 

This can be written as  

   ijkkijij ee µλδτ 2+= (8.6.5) 

The results in relation (8.6.5) are known as stress-strain relation. Putting ji = , we find 

   iikkii ee µλτ 23 +=  

   )(2)(3 332211332211332211 eeeeee +++++=++ µλτττ  

   ϑµλ )23( +=Θ      (8.6.6) from 

relation (8.6.5)  

kkijijij ee δ
µ

λτ
µ 22

1 −= (8.6.7) 

using (8.6.6) into (8.6.7) we get 

   kkijijije τδ
µλµ

λτ
µ )23(

1

22

1

+
−=  

⇒   ijkkijije τ
µ

τδ
µλµ

λ
2

1

)23(

1

2
+

+
−=                                     (8.6.8) 

This is possible when 0≠µ and 023 ≠+ µλ . So this relation express as strains as a 

linear combination of stress components. 

 

 

8.7. The generalized Hooke’s law for anisotropic linear elastic medium. 
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Solution: Let kle and ijτ be the components of strain and stress tensors, respectively. 

According to the generalized Hooke’s law for an elastic media 

   klijklij ec=τ                                                                          (8.7.1) 

where ijklc  is a tensor of order four since the media is isotropic therefore the tensor ijklc

is an isotropic tensor. Hence ijklc  can be represented in the form 

   jkiljlikklijijklc δγδδβδδαδ ++=                                        (8.7.2) 

where α , β  and γ are scalars from (8.7.1) and (8.7.2) we obtains 

   )()()( kljkilkljlikklklijij eee δγδδβδδαδτ ++=    

   jliljkikkkijij eee γδβδαδτ ++=  

   jiijkkijij eee γβαδτ ++=  

   ijkkijij ee µαδτ 2+=                                                           (8.7.3) 

where λα = and γβµ +=2  

Hence, ijkkijij ee µλδτ 2+=  is known as Hooke’s law for anisotropic linear elastic 

medium. 

Question: Show that if the medium is isotropic, the principal axes of stress are 

coincident with the principal axes of strain. 

Solution: Let the −ix axes be directed along the principal axes of strain. Then 

  0231312 === eee                                                                           (8.7.4) 

The stress-strain relations for an isotropic medium are 

  ijkkijij ee µλδτ 2+=                                                                         (8.7.5) 

Combining (8.7.4) and (8.7.5), we find 

  0231312 === τττ                                                                           (8.7.6) 
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This shows that the coordinates axes ix are also the principal axes of stress. This 

proves the result. Thus, there is no distinction between the principal axes of stress and 

of strain for isotropic media.  

Books Recommended: 

1. Y.C. Fung: Foundation of Solid Mechanics, Prentice Hall, Inc.,   

 New Jersey, 1965. 

2. Sokolnikoff, I.S. Mathematical Theory of Elasticity, Tata McGraw  

 Hill Publishing Company, Ltd., New Delhi, 1977 
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CHAPTER-IX 

ELASTIC MODULI FOR ISOTROPIC MEDIA 

 

9.1 INTRODUCTION 

To study the statement “the extension is proportional to the force”, we 

discuss the deformation of a thin rod subjected to a tensile stress. Consider a thin rod 

(of a low-carbon steel, for example), of initial cross sectional areaa , which is 

subjected to a variable tensile forceF . If the stress is assumed to be distributed 

uniformly over the area of the cross section, then the nominal stress a
FT =  can be 

calculated for any applied loadF . The actual stress is obtained, under the assumption 

of a uniform stress distribution, by dividing the load at any stage of the test by the 

actual area of the cross section of the rod at that stage. The difference between the 

nominal and the actual stress is negligible, however, through-out the elastic range of 

the material. 

If the nominal stress T is plotted as a function of the extension e (change in 

length per unit length of the specimen), then for some ductile metals a graph is very 

nearly a straight line with the equation  

   EeT =                                                                   (9.1.1) 

until the stress reached the proportional limit. The position of this point, however, 

depends on a considerable extent upon the sensitivity of the testing apparatus. The 

constant of proportionality E  is known as Young’s modulus. In most metals, 

especially in soft and ductile materials, careful observation will reveal very small 

permanent elongations which are the results of very small tensile forces. In many 

metals, however (for example, steel and wrought iron), if these very small permanent 

elongations are neglected (less that 000,1001 of the length of a bar under tension), 

then the graph of stress against extension is a straight line, as noted above, and 
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practically all the deformation disappear after the force has been removed. The 

greatest stress that can be applied without producing a permanent deformation is 

called the elastic limit of the material. When the applied force is increased beyond this 

fairly sharply defined limit, the material exhibits both elastic and plastic properties. 

The determination of this limit requires successive loading and unloading by ever 

larger forces until a permanent set is recorded. For many materials the proportional 

limit is very nearly equal to the elastic limit, and the distinction between the two is 

sometimes dropped, particularly since the former is more easily obtained. When the 

stress increases beyond the elastic limit, a point is reached  

   

(Y on the graph) at which the rod suddenly stretches with little or no increase in the 

load. The stress at point Y is called the yield-point stress. 

 The nominal stress T  may be increased beyond the yield point until the 

ultimate (pointU ) is reached. The corresponding force TaF = is the greatest load that 

the rod will bear. When the ultimate stress is reached, a brittle material (such as high-

Strain 

Stress 

P Y 
U 

B 

Figure 9.1 
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carbon steel) breaks suddenly, while a rod of some ductile metal begins to “neck”; 

that is, its cross sectional area is greatly reduced over a small portion of the length of 

the rod. Further elongation is accompanied by an increase in actual stress but by a 

decrease in total load, in cross-sectional area, and in nominal stress until the rod 

breaks (point B). 

 We shall consider only the behavior of elastic materials subjected to stresses 

below the proportional limit; that is, we shall be concerned only with those materials 

and situations in which Hooke’s law, expressed by or a generalization of it, is valid.  

9.2 PHYSICAL MEANINGS OF ELASTIC MODULI 

We have already introduced two elastic moduliλ and µ in the generalized 

Hooke’s law for an isotropic medium. In order to gain some insight into the physical 

significance of elastic constants entering in generalized Hooke’s law, we consider the 

behavior of elastic bodies subjected to simple tension, pure shear and hydrostatic 

pressure.  

Sub Case-I:-  Simple Tension 

 Consider a right cylinder with its axis parallel to the −1x axis which is 

subjected to longitudinal forces applied to the ends of the cylinder. These applied  

 

 

 

 

 

 

forces give rise to a uniform tension T in every cross-section of the cylinder so that 

the stress tensor ijτ has only one non-zero component T=11τ , i.e., 

  0, 233322131211 ====== ττττττ T                                          (9.2.1) 

1x

2x

3x

T T T
1x

Figure  9.2

v̂
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Since the body forces are absent 0=iF , the state of stress given by (9.2.1) satisfies the 

equilibrium equations 0, =jijτ  in the interior of the cylinder. A normalv̂ to the lateral 

surface lies in the plane parallel to −32xx plane, so ),,0(ˆ 32 vvv = .  

The relation jij

v

i vT τ=  implies that 0321 ===
vvv

TTT . 

Hence 0=
v

iT .                                                                                                         (9.2.2) 

This shows that the lateral surface of the cylinder is free from tractions. The 

generalized Hooke’s law giving stains in terms of stresses is  

   ijkkijije τ
µ

τδ
µλµ

λ
2
1

)23(2
+

+
−=                                         (9.2.3) 

We find from equations (9.2.1) and (9.2.3) that 

   Te
)23(11 µλµ

µλ
+

+=  

   Tee
)23(23322 µλµ

λ
+

−== , 0312312 === eee                    (9.2.4) 

Since   
)23(

1
µλµ

µλ
+

+=
E

 and 
)23(2 µλµ

λσ
+

=
E

                          (9.2.5) 

Therefore   
E

T
e =11 , 113322 eT

E
ee σσ −=−== ; 0231312 === eee        (9.2.6) 

These strain components obviously satisfy the compatibility equations 

   0,,,, =−−+ ikjljlikijklklij eeee                                              (9.2.7) 

and therefore, the state of stress given in (9.2.1) actually corresponds to one which 

can exist in a deformed elastic body. From equation (9.2.6), we write 
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   ,
11

11 E
e

=τ
 σ−==

11

33

11

22

e

e

e

e
                                            (9.2.8) 

Experiments conducted on most naturally occurring elastic media show that a tensile 

longitudinal stress produces a longitudinal extension together with a contraction in a 

transverse directions. According to 011 >= Tτ , we take 

    011 >e and 0,0 3322 << ee . 

It then follows from (9.2.8) that  

   0>E and 0>σ                                                                            (9.2.9) 

From equation (9.2.8), we see that E represents the ratio of the longitudinal stress 11τ

to the corresponding longitudinal stain 11e produced by the stress11τ . From equation 

(9.2.8), we get  

   σ==
11

33

11

22

e

e

e

e
                                                                 (9.2.10) 

Thus, the Poisson’s ratio σ  represents the numerical value of the ratio of the 

contraction 22e (or 33e ) in a transverse direction to the corresponding extension 11e

in the longitudinal direction. 

Sub Case-II:-  Pure Shear 

 From generalized Hooke’s law for an isotropic medium, we write 

   
23

23

13

13

12

122
eee

τττµ ===                                                         (9.2.11) 

The constant µ2  is thus the ratio of a shear stress component to the corresponding 

shear strain component. It is, therefore, related to the rigidity of the elastic material. 

For this reason, the coefficientµ is called the modulus of rigidity  or the shear 

modulus.  
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 The other Lame’s constant λ  has no direct physical meaning. The value of µ

in terms of Young’s modulus E and Poisson ratioσ is given by  

   
)1(2 σ

µ
+

= E
                                                                                  (9.2.12) 

Since  0>E , 0>σ , it follows that 0>µ                                                           (9.2.13) 

Sub Case-III:-  Hydrostatic Pressure 

  Consider an elastic body of arbitrary shape which is put in a large vessel 

containing a liquid. A hydrostatic pressure p  is exerted on it by the liquid and the 

elastic body experience all around pressure. The stress tensor is given by ijij pδτ −= . 

That is,  

   0, 312312332211 ===−=== ττττττ p                        (9.2.14) 

 

    

 

 

 

 

 

 

 

 

 

These stress components satisfy the equilibrium equations for the zero body force. We 

find 

    pkk 3−=τ   

Figure 9.3 

Hydrostatic 
Pressure  
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And the generalized Hooke’s law giving strains in terms of stresses 

    ijkkijije τ
µ

τδ
µλµ

λ
2
1

)23(2
+

+
−=                           (9.2.15) 

using (9.2.14) in to (9.2.15) we get 

   0312312 === eee  

   
µλµλ

λ
µ 2323

3

2

1
332211 +

−=






 −
+

=== p
p

p
eee                 (9.2.16) 

which obviously satisfy the compatibility equations. We find 

   
k

ppp
ekk

−=
+

−=
+

−=
µλµλ

3

223

3
                                       (9.2.17) 

That is, 

   
k

p
dilatationcubical

−=)(ϑ                                            (9.2.18) 

From experiments, it has been found that a hydrostatic pressure tends to reduce the 

volume of the elastic material. That is, if 0>p , then 

    0<= vekk .                                                           (9.2.19) 

Consequently, it follows from (9.2.19) that 0>k . Relation (9.2.18) also shows that the 

constant k  represents the numerical value of the ratio of the compressive stress to 

the dilatation. 

 Substituting the value of λ and µ in terms of E  and σ , we find 

    
)21(3 σ−

= E
k                                                        (9.2.20) 

Since 0>k and 0>E , if follows that 
2

1
0 << σ for all physical substances. Since  
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)21)(1( σσ

σλ
−+

= E
                                              (9.2.21) 

and 0>E , 
2

1
0 << σ , it follows that 0>λ . 

Remark: The solutions of many problems in elasticity are either exactly or 

approximately independent of the value chosen for Poisson’s ratio. This fact suggests 

that approximate solutions may be found by so choosing Poisson’s ratio as to simplify 

the problem.  

Question: Show that, if 0=σ  then 0=λ ,
2

E=µ ,
3

E
k = and Hooke’s law is 

expressed by 

   )(
2

1
,, ijjiijij uuEEe +==τ                                               (9.2.22) 

Note 1: The elastic constants,µ E ,σ ,k have physical meanings. These constants are  

called engineering elastic modulus.  

Note 2: The material such as steel, brass, copper, lead, glass, etc. are isotropic elastic  

materials. 

Note 3: We find    kk
kk

kk Ek
e τστ 21

3

−==                                            (9.2.23) 

Thus  0=kke  iff 
2

1=σ , provided E  and kkτ remain finite. 

when   
2

1→σ , ∞→λ , ∞→k ,
3

E=µ , 0, === iiii uev                     (9.2.24) 

This limiting case corresponds to which is called an incompressible elastic body. 

Question: In an elastic beam placed along the −3x axis and bent by a couple about 

the −2x axis, the stresses are found to be 
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  133 x
R

E−=τ , ,02313122211 ===== τττττ =R constant 

Find the corresponding strains. 

Solution: The strains in terms of stresses and elastic moduliE  and σ are given by the 

Hooke’s law 

   ijkkijij EE
e τστδσ ++−= 1

                                                 (9.2.25) 

Here    1x
R

E
kk −=τ   

Hence, (9.2.25) becomes 

   ijijij E
x

R
e τσδσ ++−= 1

1                                          (9.2.26) 

This gives 12211 x
R

ee
σ== , 133

1
x

R
e −= , 0132312 === eee   

Question: A beam placed along the −1x axis and subjected to a longitudinal stress 

11τ  at every point is so constrained that 03311 == ee at every point. Show that

1122 σττ = , 11

2

11

1 τσ
E

e
−= , 1133

)1( τσσ
E

e
+−= . 

Solution: The Hooke’s law giving the strain in terms of stresses is   

ijkkijij EE
e τστδσ ++−= 1

                                     (9.2.27) 

It gives    2233221122

1
)( τστττσ

EE
e

++++−=  

    )(
1

33112222 ττστ +−−=
EE

e                                          (9.2.28) 

Putting 03322 == ee in (9.2.28), we get 

    1122 σττ =                                                                          (9.2.29) 
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Also, from (9.2.27) we find 

    1133221111

1
)( τστττσ

EE
e

++++−=
 

    
111111

1
)( τσσττσ

EE

+++−=
 

               
11

2 ]1[
1 τσσσ ++−−=
E                                  

(9.2.30) 

Also, from (9.2.27), we get 

    33221133

1
)( τσττσ

EE
e

+++−=
 

     )( 1111 σττσ +−=
E  

      11)1( τσσ +−=
E                                              

(9.2.31) 

 

Practice:1  Find the stresses with the following displacement fields:- 

(i) kyzu = , kzxv = , kxyw =    

(ii)  kyzu = , kzxv = , )( 22 yxkw −=  

(iii)  )( 22 zyku += , kzxv = , kxyw =  

(iv) kyzu = , )( 22 xzkv += , kxyw =  

(v) kyzu = , kzxv = , kxyw =  

(vi) 32zkyu = , )( 32 xzkv −= , kxyw =  

(vii)  kyzu = , )( 23 xzkv += , ykxw 2=  

Practice: 2 (i) A rod placed along the −1x axis and subjected to a longitudinal stress 

11τ is so constrained that there is no lateral contraction. Show that 
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    1111 )21)(1(

)1(
e

E

σσ
στ

−+
−=  

(ii)   A rod placed along the −3x axis and subjected to a longitudinal stress 

33τ is so constrained that there is no lateral contraction. Show that 

    3333 )21)(1(

)1(
e

E

σσ
στ

−+
−=  

(iii)  A rod placed along the −2x axis and subjected to a longitudinal stress 

22τ is so constrained that there is no lateral contraction. Show that 

    2222 )21)(1(

)1(
e

E

σσ
στ

−+
−=

 

Practice: 3 Determine the distribution of stress and the displacements in the interior 

of an elastic body in equilibrium when the body forces are prescribed and the 

distribution of the forces acting on the surface of the body is known. 

Practice: 2 Determine the distribution of stress and the displacements in the interior 

of an elastic body in equilibrium when the body forces are prescribed and the 

displacements of the points on the surface of the body are prescribed functions. 

Practice: 3 Are the principal axes of strain coincident with those of stress for an 

anisotropic medium with Hooke’s law expressed? For a medium with one plane 

elastic symmetry? For an orthotropic medium?  

Practice: 4 Show directly from the generalized Hooke’s law that in an isotropic body 

the principal axes of strain coincide with those of stress.  

9.3  RELATIONSHIP BETWEEN YOUNG MODULUS OF ELASTICI TY  

AND LAME’S CONSTANTS 

We have already introduced two elastic moduli λ and µ in the generalized 

Hooke’s law for an isotropic medium. We introduce three more elastic moduli defined 

below 
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µλ
µλµ

+
+= )23(

E ,  
)(2 µλ

λσ
+

= , µλ
3

2+=k                                          (9.3.1) 

The quantity σ is dimensionless and is called the Poisson ratio. It was introduced by 

Simon D. Poisson in 1829.  

The quantity E  is called Young’s modulus after Thomas Young who introduced it in 

the early 19th century, probably in 1807. Its dimension is that of a stress (force/area). 

The elastic modulus k  is called the modulus of compression or the bulk modulus.  

Solving the first two equations for λ and µ (in terms σ andE ), we find 

    
)21)(1( σσ

σλ
−+

= E
,  

)1(2 σ
µ

+
= E

                                   (9.3.2) 

from relation (9.3.2), we find the following relations 

   
)21)(1(

)1(
2

σσ
σµλ
−+

−=+ E
, 

σµ
µλ

21

1

−
=+

 

    
)21(

)1(22

σ
σ

µ
µλ

−
−=+

,  
σ

σ
µλ

λ
−

=
+ 12

                                       (9.3.3) 

Practice: Derive the following relations between the Lame coefficients λ andµ , 

Poisson’s ratio σ , Young’s modulus E , and the bulk modulus k : 

Ek

EkkkEE
k

E

E

−
−=

+
=

−+
=−=

−
−=

−
=

9

)3(3

1

3

)21)(1(3

2

3

)2(

21

2

σσσ
σµ

µ
µµ

σ
µσλ  (9.3.4) 

Ek

kEkE
k

−
=

+
−=

+
=−=−=

9

3

)1(2

)21(3

)1(2
)(

2

3

2

)21(

σ
σ

σ
λ

σ
σλµ                     (9.3.5) 

k

Ek

k

kE

k 6

3

)3(2

23
1

23)(2

−=
+

−=−=
−

=
+

=
µ
µ

µλ
λ

µλ
λσ

                             
(9.3.6) 

)21(3
3

9
)1(2

3

)(9

)21)(1()23(

σ
µ

µσµ
λ
λ

σ
σσλ

µλ
µλµ

−=
+

=+=
−
−=

−+=
+
+=

k
k

k

k

kk

E

                                  (9.3.7) 
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)21(3)3(3)21(3

)1(2

3

)1(

3

2

σµ
µ

σ
σµ

σ
σλµλ

−
=

−
=

−
+=+=+= E

E

E
k                   (9.3.8) 

 

9.4  EQUILIBRIUM EQUATIONS FOR ISOTROPIC ELASTIC SO LID 

 We know that Cauchy’s equation’s of equilibrium in term of stress 

components are 

    0, =+ ijij Fτ                                                          (9.4.1) 

where iF  is the body force per unit volume and .3,2,1, =ji The generalized Hooke’s 

law for a homogeneous isotropic elastic body is 

    ijkkijij ee µλδτ 2+=                                               (9.4.2) 

    )( ,,, ijjikkij uuu ++= µλδ                                   (9.4.3) 

where λ and µ  are Lame constants. Putting the value of ijτ form (9.4.3) into equation 

(9.4.1), we find 

    0),,(, =+++ iijjjjikjkij Fuuu µλδ  

    0,, 2 =++∇+ ikikikik Fuuu µµλ  

    0)( 2 =+∇+
∂
∂+ ii

i

Fu
x

µϑµλ                                  (9.4.4) 

where dilatationcubicaludivu kk === ,ϑ  and 3,2,1=i . 

Equations in (9.4.4) form a synthesis of the analysis of strain, analysis of stress and 

the stress-strain relation. 

These fundamental partial differential equations of the elasticity theory are known a 

Navier’s equations of equilibrium, after Navier (1821). Equation (9.4.4.) can be put in 

several different forms. 

 (I): In vector form, equation (9.4.4) can be written as  
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   0)( 2 =+∇++ Fuudivgrad µµλ                                (9.4.5) 

 (II): We know that the following vector identity 

   uudivgradu 2∇−=×∇×∇                                            (9.4.6) 

Putting the value of u2∇ from (9.4.6) into (9.4.5), we obtain 

  0][)( =+−++ Fucurlcurludivgradudivgrad µµλ         (9.4.7) 

 or   0)2( =+−+ Fucurlcurludivgrad µµλ   

 (III): Putting the value of  udivgrad  from (9.4.6) into (9.4.5), we get 

  0])[( 22 =+∇++∇+ Fuucurlcurlu µµλ  

or    0)()2( 2 =+++∇+ Fucurlcurlu µλµλ                               (9.4.8) 

 (IV): We know that  

  
σµ

µλ
21

1

−
=+

                                                                             (9.4.9) 

Form (9.4.9) and (9.4.5), we find 

  0
1

21

12 =+
−

+∇ Fudivgradu
µσ

                                                   (9.4.10) 

9.5 DYNAMIC EQUATIONS FOR ISOTROPIC ELASTIC SOLID 

 Let ρ be the density of the medium. The components of the force (mass×

acceleration /volume) per unit volume are
2

2

t

ui

∂
∂ρ . Hence, the dynamical equations in 

terms of the displacements iu become
 

 

   
2

2
2)(

t

u
Fu

x
i

ii
i ∂

∂
=+∇+

∂
∂+ ρµϑµλ , for 3,2,1=i .             (9.5.1)  

Various form of it can be obtained as above for equilibrium equations. 
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Practice: In an isotropic elastic body in equilibrium under the body force 321 êxaxf =
r

, 

where  

a is constant, the displacements are of the form 32
2
11 xxAxu = , 3

2
212 xxBxu = , 

2
3213 xxCxu =   where A, B, C are constants. Find A, B, C. Evaluate the 

corresponding stresses. 

Practice: In an isotropic elastic body in equilibrium under the body force 132 êxaxf =
r

, 

where  

a is constant, the displacements are of the form 3
2
2

3
11 xxAxu = , 3

2
2

2
12 xxBxu = , 

2
3

3
213 xxCxu =   where A, B, C are constants. Find A, B, C. Evaluate the 

corresponding stresses. 

9.6  BELTRAMI-MICHELL COMPATIBILITY EQUATIONS IN TERMS  

OF THE STRESSES FOR ISOTROPIC SOLID 

 The strain-stress relations for an isotropic elastic solid are  

  Θ−+= ijijij EE
e δστσ1

,           ijτ=Θ                                            (9.6.1) 

In which σ is the Poisson’s ration and E  is the Young’s modulus. The Saint-

Venant’s compatibility equations in terms of strain components are  

  0,,,, =−−+ ikjljlikijklklij eeee                                                             (9.6.2) 

Which impose restrictions on the strain components to ensure that given ije  yield 

single-valued continuous displacementsiu . 

When the region τ is simply connected, using (9.6.1) in (9.6.2), we find 

},,,,{},,{
1

,, ikjljlikijklklijkijljlikijklklij EE
Θ−Θ−Θ+Θ=−−++ δδδδσττττσ
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},,,,{
1

},,{ ,, ikjljlikijklklijkijljlikijklklij Θ−Θ−Θ+Θ
+

=−−+ δδδδ
σ

σττττ          (9.6.3) 

with     
lk

ij
klij xx ∂∂

∂
=

τ
τ

2

, ,  
ji

ij xx ∂∂
Θ∂=Θ

2

, . 

These are equations of compatibility in stress components. These are 81 (34) in 

number but all of them are not independent. If i and j or k and l are interchanged, we 

get same equations. Similarly for lkji === , equations are identically satisfied. 

Actually, the set of equations (9.6.3) contains only six independent equations obtained 

by setting 

   1== lk ,  2== ji  

   2== lk ,  3== ji  

   3== lk ,  1== ji  

   1== lk ,  3,2 == ji  

   2== lk ,  1,3 == ji  

   3== lk ,  2,1 == ji  

Setting lk = in (9.6.3) and then taking summation over the common index, we get 

  },,,,{
1

,,,, ikjkjkikijkkkkijikjkjkikijkkkkij Θ−Θ−Θ+Θ
+

=−−+ δδδδ
σ

σττττ  

Since   Θ∇=Θ 2,kk , ijkkij ττ 2
, ∇=  , ijijkk ,, Θ=τ  and 3=kkδ                      (9.6.4) 

Therefore, above equations become 

  ],2,3[
1

, 2
,,

2
ijijijikjkjkikijij Θ−Θ+Θ∇

+
=−−Θ+∇ δ

σ
στττ  

or    Θ∇
+

=−−Θ
+

+∇ 2
,,

2

1
,

1

1
ijikjkjkikijij δ

σ
σττ

σ
τ                                          

(9.6.5) This is a set of nine equations and out of which only six are independent due 
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to the symmetry of i  and j . In combining equations (9.6.3) linearly, the number of 

independent equations is not reduced.  

Hence the resultant set of equations in (9.6.5) is equivalent to the original equations in 

(9.6.3). Equilibrium equations are  

   0, =+ ikik Fτ                                                                       (9.6.6) 

where iF is the body force per unit volume. Differentiating these (9.6.6) equations 

with respect to jx , we get 

   jikjik F ,, −=τ                                                                        (9.6.7) 

Using (9.6.7), equation (9.6.5) can be rewritten in the form 

   ),,(
1

,
1

1 22
ijjiijijij FF +−=Θ∇

+
+Θ

+
+∇ δ

σ
σ

σ
τ .              (9.6.8) 

Setting ij = in relation (9.6.8) and adding accordingly, we write 

   iiF ,2
1

3

1

1 222 −=Θ∇
+

−Θ∇
+

+Θ∇
σ

σ
σ

 

   iiF ,2)
1

3

1

1
1( 2 −=Θ∇

+
−

+
+

σ
σ

σ
 

   FdivF ii

r
2,2

1

)1(2 2 −=−=Θ∇
+
−
σ
σ

, 

giving  

   Fdiv
r

σ
σ

−
+−=Θ∇

1

12                                                         (9.6.9) 

Using relation (9.6.9) in the relations (9.6.8) , we find the final form of the 

compatibility equations in terms of stresses. 

   ),,(
1

,
1

12
ijjiijijij FFFdiv +−

+
−=Θ

+
+∇

r
δ

σ
σ

σ
τ            (9.6.10) 

These equations in Cartesian coordinates (x, y, z) can be written as  
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x

F
Fdiv

x
x

xx ∂
∂−

−
−=

∂
Θ∂

+
+∇ 2

11
1

2

2
2

r

σ
σ

σ
τ  

   
y

F
Fdiv

y
y

yy ∂
∂

−
−

−=
∂

Θ∂
+

+∇ 2
11

1
2

2
2

r

σ
σ

σ
τ  

   
z

F
Fdiv

z
z

zz ∂
∂−

−
−=

∂
Θ∂

+
+∇ 2

11
1

2

2
2

r

σ
σ

σ
τ     

   








∂
∂+

∂
∂

−=
∂∂
Θ∂

+
+∇

y

F

z

F

zy
zy

yz

2
2

1

1

σ
τ  

   








∂
∂

+
∂

∂−=
∂∂
Θ∂

+
+∇

z

F

x

F

xz
xz

zx

2
2

1

1

σ
τ  

   








∂
∂

+
∂

∂
−=

∂∂
Θ∂

+
+∇

x

F

y

F

yx
yx

xy

2
2

1

1

σ
τ                                (9.6.11) 

In 1892, Beltrami obtained these equations for 0
vr

=F  and in 1900 Michell obtained 

them in the form as given in (9.6.11). The equations (9.6.11) are called the Beltrami-

Michell compatibility equations. 

 

9.7 HARMONIC AND BIHARMONIC FUNCTIONS 

Definition: A function V of class 4C is called a biharmonic function when  

    022 =∇∇ V   

Theorem 1: When the components of the body force F
r

are constants, show that the 

stress and strain invariants Θ and ϑ  are harmonic functions and the stress 

components ijτ and strain components ije are biharmonic functions. 

Proof: The Beltrami-Michal compatibility equations in terms of stress are 

  ),,(
1

,
1

12
ijjiijijij FFFdiv +−

+
−=Θ

+
+∇

r
δ

σ
σ

σ
τ                          (9.7.1) 
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In which F
r

is the body force per unit volume. 

It is given that the vector F
r

is constant. In this case, equations in (9.7.1) reduce to  

  0,
1

12 =Θ
+

+∇ ijij σ
τ                                                                     (9.7.2) 

Setting ji = in (9.7.2) and taking summation accordingly, we get 

   0,
1

12 =Θ
+

+∇ iiii σ
τ  

   0
1

1 22 =Θ∇
+

+Θ∇
σ

 

   0)
1

1
1( 2 =Θ∇

+
+

σ
 

   02 =Θ∇                                                                              (9.7.3) 

This shows that the stress invariant kkτ=Θ is harmonic function. 

The standard relation between the invariants Θ and ϑ is  

   ϑµλ )23( +=Θ                                                                 (9.7.4) 

and the equation (9.7.3) implies that  

   02 =∇ ϑ                                                                            (9.7.5) 

showing that the strain invariant kke=ϑ is also a harmonic function. Again 

   






 Θ
+

−∇=∇∇ ijij ,
1

1222

σ
τ  

   ),(
1

1 2
ijΘ∇

+
−=

σ
 

   ij),(
1

1 2Θ∇
+

−=
σ

                                                 (9.7.6) 

Using (9.7.3) in the relations (9.7.6), we get 
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   022 =∇∇ ijτ                                                                    (9.7.7) 

This shows that the stress components ijτ are biharmonic functions.  

The following stain-stress relations 

   ijijije τ
µ

δ
µλµ

λ
2

1

)23(2
+Θ

+
−=  

give    ijijije τ
µ

δ
µλµ

λ 222222

2

1

)23(2
∇∇+Θ∇∇

+
−=∇∇

 

   
022 =∇∇ ije

                                                                       
(9.7.8) 

Equation (9.7.8) shows that the strain components ije are also biharmonic functions. 

Theorem 2: If the body force F
r

is derived from a harmonic potential function, show 

that the strain and stress invariants ϑ and Θ are harmonic functions and the strain 

and stress components are biharmonic function. 

Proof:  Let φ be the potential function and F
r

is derived from φ so that 

   φ∇=
rr

F or jjF ,φ=                                                                        (9.7.9) 

Then 

   0, 2 =∇== φφ jjFdiv
r

                                                  (9.7.10) 

Since φ  is a harmonic function (given). Further 

   ijijji FF ,,, φ==                                                               (9.7.11) 

The Beltrami-Michell compatibility equations in term of stresses, in this case, reduce 

to  

   ijijij ,2,
1

12 φ
σ

τ −=Θ
+

+∇                                                          (9.7.12) 

Putting ij =  in relation (9.7.12) and taking the summation accordingly, we obtain 
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   iiiiii ,2,
1

12 φ
σ

τ −=Θ
+

+∇  

   φ
σ

222 2
1

1 ∇−=Θ∇
+

+Θ∇  

Using relations (9.7.10) we get  

02 =Θ∇                                                                                           (9.7.13) 

This shows that Θ is harmonic. And, the relation ϑµλ )23( +=Θ immediately shows 

that ϑ is also harmonic. 

 From relation (9.7.12), we write  

   ijijij ,2,
1

1 2222 φ
σ

τ ∇−=Θ∇
+

+∇∇   

This gives   022 =∇∇ ijτ  as 022 =∇=Θ∇ φ                                       (9.7.14) 

It shows that the components ijτ are biharmonic. The strain-stress relations yield that 

the strain components are also biharmonic function. 

 

9.8  APPLICATION OF THE BELTRAMI-MICHELL EQUATIONS 

Example 1: Find whether the following stress system can be a solution of an 

elastostatic problem in the absence of body forces: 

  3211 xx=τ , 1322 xx=τ , 
2
312 x=τ , 0323313 === τττ .                           (9.8.1) 

Solution: In order that the given stress system can be a solution of an elastostatic 

problem in the absence of body forces, the following equations are to be satisfied: 

(i) Cauchy’s equations of equilibrium with 0=iF , i.e. 

0,,, 313212111 =++ τττ  

0,,, 323222112 =++ τττ  

0,,, 333223113 =++ τττ                                                    (9.8.2) 
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(ii)  Beltrami-Michell equations with 0=iF , i.e. 

0),(
1

1
1133221111

2 =++
+

+∇ τττ
σ

τ  

0),(
1

1
2233221122

2 =++
+

+∇ τττ
σ

τ  

0),(
1

1
3333221133

2 =++
+

+∇ τττ
σ

τ  

0),(
1

1
1233221112

2 =++
+

+∇ τττ
σ

τ  

0),(
1

1
1333221113

2 =++
+

+∇ τττ
σ

τ  

0),(
1

1
2333221123

2 =++
+

+∇ τττ
σ

τ                                          (9.8.3) 

It is easy to check that all the equilibrium equations in (9.8.2) are satisfied. Moreover, 

all except the fourth one in (9.8.3) are satisfied by the given stress system. 

Since the given system does not satisfy the Beltrami-Michell equations fully, it cannot 

form a solution of an elastostatic problem.  

Remark: The example illustrates the important fact that a stress system may not be a 

solution of an elasticity problem even though it satisfies Cauchy’s equilibrium 

equations. 

Practice 1: Show that the stress-system 01223132211 ===== τττττ , 333 gxρτ = , 

where ρ and g are constants, satisfies that equations of equilibrium and the equations 

of compatibility for a suitable body force. 

Practice 2: Show that the following stress system cannot be a solution of an 

elastostatic problem although it satisfies cauchy’s equations of equilibrium with zero 

body forces: )( 2
2

2
1

2
211 xxx −+= στ , )( 2

1
2
2

2
122 xxx −+= στ , )( 2

2
2
133 xx += στ , 

2112 2 xxστ −= , 03123 == ττ where σ  is a constant of elasticity. 
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Practice 3: Determine whether or not the following stress components are a possible 

solution in elastostatics in the absence of body forces: 3211 xax=τ , 1322 xbx=τ , 

2133 xcx=τ , 
2
312 xd=τ , 

2
213 xe=τ , 

2
123 xf=τ  where a, b, c, d, e and f  all are 

constants. 

Practice 4: In an elastic body in equilibrium under the body force 321 êxaxf =
r

, where 

a is constant, the stresses are of the form: 32111 xxax=τ , 32122 xxbx=τ , 32133 xxcx=τ , 

3
2
2

2
112 )( xbxxa +=τ , 1

2
3

2
223 )( xcxxb +=τ , 2

2
1

2
313 )( xaxxc +=τ ;  where a, b, c are 

constants. Find these constants 

Practice 5: Define the stress functionS by 
ji

ijij xx

S
S

∂∂
∂==

2

,τ and consider the case of 

zero body force. Show that, if 0=σ , then the equilibrium and compatibility equations 

reduce to  

tConsS tan2 =∇ . 

 

 Books Recommended:  

1. Y.C.Fung: Foundation of Solid Mechanics, Prentice Hall, Inc.,   

   New Jersey, 1965. 

2. Sokolnikoff, I.S. Mathematical Theory of Elasticity, Tata McGraw  

 Hill Publishing Company, Ltd., New Delhi, 1977 

3. A. E. H. Love A Treatise on the Mathematical Theory of 

Elasticity,  

                                    Combridge University Press, London. 
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CHAPTER-X 

STRAIN ENERGY DENSITY FUNCTION 

 

10.1 INTRODUCTION 

The energy stored in an elastic body by virtue of its deformation is called the 

strain energy. This energy is acquired by the body when the body force and surface 

traction do same work. This is also termed as internal energy. It depends upon the 

shape and temperature of the body. 

10.2 STRAIN-ENERGY FUNCTION 

Let ijτ be the tensor and ije be the strain tensor for an infinitesimal affine deformation 

of an elastic body. We write  

  
612531423

333222111

,,

,,

ττττττ
ττττττ

===
===

                                                           
(10.2.1) 

and 

  
612513423

333222111

2,2,2

,,

eeeeee

eeeeee

===
===

                                                        
(10.2.2) 

In terms of engineering notations. 

We assume that the deformation of the elastic body is isothermal or adiabatic. Love 

(1944) has proved that, under this assumption there exist a function of strains 

  ),,,,,( 654321 eeeeeeWW =                                                            (10.2.3) 

with the property 

  i
ie

W τ=
∂
∂

                           for i=1,2,….,6.                                    (10.2.4) 

This function W is called the strain energy function. 
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W represents strain energy, per unit of undeformed volume, stored up in the body 

by the strains ie . 

The units of W  are
23 L

force

L

Lforce =× that of a stress. 

The existence of W  was first introduced by George Green (1839).Expanding the 

strain energy function W , given by (10.2.3) in a power series in terms of strains ie , 

we write  

  jiijii eededdW ++= 22 0 i,j=1,2,….,6                                         (10.2.5) 

After discarding all terms of order 3 and higher in the strain ie as strainsie are 

assumed to be small. In second terms, summation of i  is to be taken and in rd3 term, 

summation over dummy suffices i & j are to be taken. 

In the natural state, 0=ie , consequentlyW =0 for 0=ie . 

This gives 

  00 =d                                                                                         (10.2.6) 

Even otherwise, the constant term in (10.2.5) can be neglected since we are interested 

only in the partial derivatives ofW . therefore, equation (10.2.5) and (10.2.6) yield  

   jiijii eededW += 22
                                                     

(10.2.7) 

This gives  

   
}{

2

1
jiij

k
iki

k

eed
e

d
e

W

∂
∂+=

∂
∂ δ

 

= }{
2

1
kjiijjkiijk ededd δδ ++  

 =
][

2

1
ikijkjk ededd ++

 

    = jkjkjk eddd )(
2

1 ++  
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   = jjkjk eedd )(+  

This gives  

   jijii ecd +=τ                                                                 (10.2.8) 

where  

   jijiijij cddc =+= )(
2

1

                                                    
(10.2.9) 

we observe that theijc is symmetric. 

we further assume that the stress 0=iτ  in the undeformed state, when ie =0. 

This assumption, using equation (10.2.8), gives  

  0=id                         i=1, 2,….,6                                              (10.2.10) 

Equations (10.2.7), (10.2.8) and (10.2.10) give 

  jiji ec=τ                                                                                      10.2.11) 

And  

  iijiij eeecW τ
2

1

2

1 ==                                                                 (10.2.12) 

Since, two quadric homogeneous forms for W are equal as 

  jiijjiij eeceed =                                                                           (10.2.13) 

Equation (10.2.12) shows that the strain energy function W  is a homogeneous 

function of degree 2 in strains ie , 6,5,4,3,2,1=i , and coefficients ijc are symmetric. 

The generalized Hooke’s law under the conditions of existence of strain energy 

function is given in equations (10.2.9) and (10.2.11). 

The matrix form, it can be expressed as 
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



















































=



























12

13

23

33

22

11

665646362616

565545352515

464544342414

363534332313

262524232212

161514131211

12

13

23

33

22

11

2

2

2

e

e

e

e

e

e

cccccc

cccccc

cccccc

cccccc

cccccc

cccccc

τ
τ
τ
τ
τ
τ

                          (10.2.14) 

This law contains 21 independent elastic constants. 

Result 1: From equation (10.2.2); we write 

  

[ ]

[ ]

3,2,1,
2

1

222
2

1
2

1

121213132323333322221111

665544332211

===

+++++=

+++++=

jie

eeeeee

eeeeeeW

ijijτ

ττττττ

ττττττ

          

(10.2.15) 

The result in (10.2.14) is called Claperon formula. 

Result II: For an isotropic elastic medium, the Hooke’s law gives 

  ijkkijij ee µλδτ 2+= , 3,2,1, =ji (10.2.16) 

This gives 

  

[ ]

)222()(
2
1
2
1
2

1

2
2

1

2
23

2
13

2
12

2
33

2
22

2
11

2
332211

22

eeeeeeeee

ee

eeee

eeeW

ijkk

ijijkkkk

ijkkijij

++++++++=

+=

+=

+=

µλ

µλ

µλ

µλδ

  (10.2.17) 

Result 3:  Also, we have 

  ijkkijij EE
e τστδσ ++−= 1

                                                                     

(10.2.18) 

Hence,   
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  






 ++−= ijkkijij EE
W τστδστ 1

2

1
 

  ijijkkij EE
W ττσττσ ++−= 1

2                                                                 

(10.2.19) 

Result 4: From (10.2.12), we note that in the value of W , we may interchange ie  and 

iτ . Consequently, interchanging ie and iτ in equation (10.2.4), we obtain 

   i
i

e
W =

∂
∂

τ
, for 6,5,4,3,2,1=i                                       (10.2.20) 

This result is due to Castigliano (1847-1884). 

It follows form the assumed linear stress-strain relations. 

Result 5: We know that the elastic moduli λ and µ are both positive for all physical 

elastic solids. The quadratic form on the right side of (10.2.17) takes only positive 

values for every set of values for every set of values of the strains. This shows that the 

strain energy function W is a positive definite form in the strain components ije , for an 

isotropic elastic solid. 

10.3 Application of Strain Energy Function 

Example 1: Show that the strain-energy function W for an isotropic solid is 

independent of the choice of coordinate axes. 

Solution: We know that the strain energy function W is given by 

  

)222()(
2

1

)2(
2

1
2

1

2
23

2
13

2
12

2
33

2
22

2
11

2
332211 eeeeeeeee

eee

eW

ijkkijij

ijij

++++++++=

+=

=

µλ

µλδ

τ

 (10.3.1) 

Let  

   )3322111 eeeeI ii ++==
                                                             

(10.3.2) 

   jiijjjii eeeeI −=2                                                                         
(10.3.3) 
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be the first and second invariants of the strain tensor ije . As the given medium is 

isotropic, the elastic moduli λ  andµ are also independent of the choice of coordinate 

axes. We write 

 

[ ]
[ ]

2
2
1

2
1

2
133311

2
232222

2
122211

2
1

2
1

2
23

2
13

2
12113333222211

2
332211

2
1

2
2

1

})()(){(2
2

1

222222)(
2

1

III

eeeeeeeeeII

eeeeeeeeeeeeIW

µµλ

µλ

µλ

−+=

−+−+−−+=

+++−−−+++=

 

 2
2
1 2

2
II µµλ −







 +=
                                                                                           

(10.3.4) 

Hence, equation (10.3.4) shows that the strain energy function W is invariant relative 

to all rotations of Cartesian axes. 

Example 2:Evaluate W for the stress field (for isotropic solid) 012332211 ==== ττττ  

123213 , xx µατµατ =−= , 0≠α is constant and µ is the Lame’s constant. 

Solution:We find 0332211 =++= ττττ kk  

Hence, the relation 








+
−= kkijijije τδ

µλ
λτ

µ 232

1
; 3,2,1, =ji  

gives   ijije τ
µ2

1=  

That is   012332211 ==== eeee                                                      (10.3.5) 

   213 2

1
xe α−= , 112 2

1
xe α=

                                                  
(10.3.6) 

The energy function W is given by  

   ijijeW τ
2

1=  

   )(
4
1

4
1 2

23
2
13 ττ

µ
ττ

µ
+== ijij  
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   )(
4

1 2
2

2
1

2 xx += µα (10.3.7) 

Example 3:Show that the strain energyW is given by  

21 WWW +=  

where iiiiiiii k
ekeW ττ

18

1

2

1
1 == , ulusbulkk mod= ,and 

[ ])(6)()()(
3

1 2
31

2
23

2
12

2
1133

2
3322

2
22112 eeeeeeeeeW +++−+−+−= µ  

[ ])(6)()()(
12

1 2
31

2
23

2
12

2
1133

2
3322

2
2211 τττττττττ

µ
+++−+−+−=

                    

(10.3.8) 

Example 4:If [ ]ijijkk eeeW µλ 2
2

1 2 += , Prove the following, 

(i) ij
ije

W τ=
∂
∂

, 

(ii)  ijijeW τ
2

1=  

(iii)  W is a scalar invariant. 

(iv) 0≥W and 0=W iff 0=ije  

(v) ij
ij

e
W =

∂
∂
τ

 

Solution: (i) We note that W is a function to ije . Partial differentiation of this function 

with respect toije gives 

  [ ] ijijijkkij
ij

kk
kk

ij

eee
e

e
e

e

W τµδλµλ =+=











+

∂
∂=

∂
∂

242
2

1

                       

(10.3.9) 

(ii)  [ ]ijijkkkk eeeeW µλ 2
2
1 +=  

  [ ]ijijijijkk eeee µδλ 2)(
2

1 +=  
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  [ ] ijijkkij eee µλδ 2
2

1 +=  

  ijijeW τ
2

1=
                                                                                                 

(10.3.10) 

(iii) Since ijτ and ije are components of tensors, each of order 2, respectively. So by 

contraction rule, ijij eW τ
2

1= is a scalar invariant. 

(iv) Since 0>λ , 0>µ , 02 ≥kke and 0. >ijij ee , if follows that 0>W Moreover 0=W

iff 0=kke . Since 0=ije automatically implies that 0=kke . Hence 0=W hold iff 

0=ije  

(v)Putting (10.3.11) 

ijkkijij EE
e δτστσ −+= 1

                                                             
(10.3.11) 

Into (10.3.10) we find  

  




 −+=




 −+= 21

2

11

2

1
kkijijijijkkijij EEEE

W τσττστδτσττσ
 

This implies   












∂
∂−+=

∂
∂

ij

kk
kkij

ij EE

W

τ
ττστσ

τ
1

 

⇒   ijijkkij
ij

e
EE

W =−+=
∂
∂ δτστσ
τ

1

                                        
(10.3.12) 

10.4 Theorem: Show that the total work done by the external forces in altering 

(changing) the configuration of the natural state to the state at time ‘t’ is equal to the 

sum of the kinetic energy and the strain energy. 

Proof: the natural/ unstrained state of an elastic body is one in which there is a 

uniform temperature and zero displacement with reference to which all strains will be 

specified.  
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Let the body be in the natural state when t=0. Let ),,( 321 xxx denote the coordinate of 

an arbitrary material point of the elastic body in the undeformed/unstrained state. 

    

 

If the elastic body is subjected to the action of external forces, then it may produce a 

deformation of the body and at any time ‘t’, the coordinate of the same material point 

will be ),,( 321 xxxux ii + . 

The displacement of the point P in the interval of time (t, t+dt) is given by 

    dtudt
t

u
i

i
&=

∂
∂

,                                                      (10.4.1) 

where     
t

u
u i

i ∂
∂=&  

The work done by the body force iF acting on the volume element τd , in time dt sec, 

located at the material point P is  

    dtduFdtudF iiii ττ && =))(( , 

and the work performed by the external surface forces i

v

T  in time interval (t, t+dt) is 

τddtuT ii

v

& , where σd is the element of surface. 

O 

P 

P ′  t=0 
t 

xi 

ui 

Figure 10.1 

t+dt ui 

P ′′  
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Let E denote the work done by the body and surface forces acting on the elastic body. 

Then the rate of doing work on the body originally occupying some region τ (by 

external forces) is  

∫∫
∑

+= στ
τ

duTduF
dt

dE
ii

v

ii &&                                     (10.4.2) 

Where ∑denote the original surface of the elastic body. 

Now     στσ duvduT ijijii

v

&& ∫∫
∑∑

= )(  

    στ dvu jiij )( &∫
∑

=  

    ττ
τ

du jiij ),( &∫=  

    τττ
τ

duu jiijijij ],[ && += ∫  

    ∫∫ ∫ ++=
ττ τ

ττττττ dwdedu ijijijijijij &&&,         (10.4.3) 

Where 

    2/),,( ijjiij uue &&& +=  and 2/),,( ijjiij uuw &&& −=        (10.4.4) 

Since     jiij ww && −= and jiij ττ = , 

So     0=ijijw&τ                                                               (10.4.5) 

Form dynamical equations of motion for an isotropic body, we write 

    iijij Fu −= &&ρτ ,  

Therefore,    iiiiijij Fuuuu &&&&& −= ρτ ,                                             (10.4.6) 

Using results (10.4.5) and (10.4.6); we write form equations (10.4.4) and (10.4.2)  

   

[ ]

τττρ

τττρτ

ττ

τττ

deduu

deduFuuduF
dt

dE

ijijii

ijijiiiiii

∫∫

∫∫∫

+=

+−+=

&&&&

&&&&&&

                   (10.4.7) 
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The kinetic energy K of the body in motion is given by  

   τρ
τ

duuK ii∫= &&
2

1
                                                                            (10.4.8) 

Then    τρ
τ

duu
dt

dK
ii∫= &&&

2

1
                                                                          (10.4.9) 

We define the engineering notation  

612513423333222111 ,,,,, ττττττττττττ ======  

612513423333222111 2,2,2,,, eeeeeeeeeeee ======                 (10.4.10) 

Then   ∫ ∫ ∂
∂=

τ τ

ττττ d
t

e
de i

iijij &                                                      (10.4.11) 

for 6......,,.........3,2,1=i  and under isothermal condition, there exists a energy 

function 

    ).........,,( 6321 eeeeWW =  

We the property that   i
ie

W τ=
∂
∂

                                                            (10.4.12) 

61 ≤≤ i . From equations (10.4.11) and (10.4.12), we write 

   ∫ ∫∫ ==








∂
∂

∂
∂=

τ ττ

ττττ
dt

dU
Wd

dt

d
d

t

e

e

W
de i

i
ijij &                               (10.4.13) 

where     ∫=
τ

τWdU                                                                      (10.4.14) 

from equations (10.4.7) , (10.4.9) and (10.4.14), we write 

    
dt

dU

dt

dK

dt

dE +=                                                              (10.4.15) 

Integrating equation (10.4.15) with respect to ‘t’ between the limits 0=t and tt = , we 

obtain 

    UKE +=                                                                                    (10.4.16) 

Since both E and K are zero at0=t . The equation (10.4.16) proves the required result. 



MAL-633 203 

Note 1: If the elastic body is in equilibrium instead of in motion, then 0=K and 

consequently UE = . 

Note 2: U is called the total strain energy of the deformation. 

10.5 CLAPEYRON’S THEOREM 

Statement:If an elastic body is in equilibrium under a given system of body forces iF

and surface forces i
v

T , then the strain energy of deformation is equal to one-half the 

work that would be done by the external forces (of the equilibrium state) acting 

through the displacements iu from the unstressed state to the state of equilibrium. 

Proof.  We are required to prove that 

  ∫∫∫ =+
∑ ττ

τστ WdduTduF ii

v

ii 2
                                                            

(10.5.1) 

where ∑denotes the original surface of the unstressed region τ of the body and W  is 

the energy density function representing the strain every per unit volume. Now 

  ∫∫ =
∑ σ

στσ dvuduT jiijii

v

  

  ∫=
σ

στ du jiij ),(  (using Gauss divergence theorem) 

  ∫ +=
τ

τττ duu jiijijij },,{  

  ∫






 −

+
+

+=
τ

τττ d
uuuu

u ijjiijji
ijijij }

2

,,

2

,,
,{  

   ∫∫ ++=
ττ

ττττ dwedu ijijijijij )(,  

   ∫∫ +=
ττ

τττ dduijij ,  

   τττ
τ

deu ijijijij ),(∫ +=
                                                      

(10.5.2) 

Since 
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   jiij ww −=  and jiij ττ =   

again from (10.5.2) 

   ∫∫ +−=
∑ τ

τσ dWuFduT iiii

v

)2( ,                                        (10.5.3) 

Since 0, =+ ijij Fτ   

Being the equilibrium equations and  

   ijijeW τ
2

1= , 

From (10.5.4), we can write 

   ∫∫∫ =+
∑ ττ

τστ WdduTduF ii

v

ii 2 ,                                     (10.5.4) 

proving the theorem. 
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