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CHAPTER-I
CARTESIAN TENSOR

1.1 Introduction

The concept of a tensor has its origin in the developments of differential geometry

by Gauss, Riemann and Christoffel. The emergence of Tensor calculus, as a systematic
branch of Mathematics is due to Ricci and his pupil Levi-Civita. In collaboration they
published the first memoir on this subject: - ‘Methods de calcul differential absolu et
leurs applications’ Mathematische Annalen, Vol. 54, (1901).  The investigation of
relations which remain valid when we change from one coordinate system to any other is
the chief aim of Tensor calculus. The laws of Physics cannot depend on the frame of
reference which the physicist chooses for the purpose of description. Accordingly it is
aesthetically desirable and often convenient to utilize the Tensor calculus as the
mathematical background in which such laws can be formulated. In particular, Einstein
found it an excellent tool for the presentation of his General Relativity theory. As a result,
the Tensor calculus came into great prominence and is now invaluable in its applications
to most branches of theoretical Physics; it is also indispensable in the differential
geometry of hyperspace.
A physical state or a physical phenomenon of the quantity which is invariant, i.e remain
unchanged, when the frame of reference within which the quantity is defined is changed
that quantity is called tensor. In this chapter, we have to confine ourselves to Cartesian
frames of reference.

As a Mathematical entity, a tensor has an existence independent of any coordinate
system. Yet it may be specified in a particular coordinate system by a certain set of
quantities, known as its components. Specifying the components of a tensor in one
coordinate system determines the components in any other system according to some
definite law of transformation.

Under a transformation of cartesian coordinate axes, a scalar quantity, such as the
density or the temperature, remain unchanged. This means that a scalar is an invariant

under a coordinate transformation. Scalars are called tensors of zero rank. All physical



quantities having magnitude only are tensors of zero order. It is assumed that the reader

has an elementary knowledge of determinants and matrices. Rank/Order of tensor

1)

2)

3)

4)

If the value of the quantity at a point in space can be described by a single
number, the quantity is a scalar or a tensor of rank/order zero. For example, ‘5’ is
a scalar or tensor of rank/order zero.

If three numbers are needed to describe the quantity at a point in the space, the
quantity is a tensor of rank one. For example vector is a tensor of rank/order one.
If nine numbers are needed to describe the quantity, the quantity is a tensor of
rank three. The3x3, 1 x9 and 9 x 1, nine numbers describe the quantity is an
example of tensor of rank/order 3.

In general, if 3" numbers are needed to describe the value of the quantity at a
point in space, the quantity is a tensor of rank/order n. A quantity described by 12

orl0or8............ numbers, then the quantity is not a tensor of any order/rank.

OR

Tensor: A set of members/numbers 3" represents the physical quantity in the reference

111
1)

2)

3)

coordinates, then the physical quantity is called a tensor of order n.

Characteristics of the tensors

Tensors are the quantities describing the same phenomenon regardless of the
coordinate system used; they provide an important guide in the formulation of the
correct form of physical law. Equations describing physical laws must be
tensorially homogenous, which means that every term of the equation must be a
tensor of the same rank.

The tensor concept provides convenient means of transformation of an equation
from one system of coordinates to another.

An advantage of the use of Cartesian tensors is that once the properties of a tensor
of a certain rank have been established, they hold for all such tensors regardless of
the physical phenomena they represent.

Note: For example, in the study of strain, stress, inertia properties of rigid bodies,

the common bond is that they are all symmetric tensors of rank two.

1.2 Notation and Summation Convention



Let us begin with the matter of notation. In tensor analysis one makes extensive

use of indices. A set of n variables x;,Xs,........ , X, Isusually denoted as x; ,i=1, 2, 3,...n

n
. Consider an equation describing a plane in a three-dimensional space
QX+ X, +A3X3 =P (1.2.1)

where a; and p are constants. This equation can be written as

i&&=p (1.2.2)
i=1

However, we shall introduce the summation convention and write the equation above in

the simple form axi=p (1.2.3)

The convention is as follow: The repetition of an index (whether superscript or subscript)
in a term will denote a summation with respect to that index over its range. The range of
an index 1 is the set of n integer values 1 to n. An index that is summed over is called a

dummy index, and one that is not summed out is called a free index.

1.3 Law of Transformation

Let P(X,,X,)be a physical quantity in ox,x,X;is the Cartesian coordinate systems before
deformation and P'(x;, X;)be corresponding to P(x,,X,)in the new coordinate system

0X; X, X; after rotating the x;-axis about itself at an angle &, i.e., after deformation.

From the figure given below (Figurel.1)

=0ON - MN
=0ON-MN'
=X, C0SO— X, sin@ (1.3.1)
X, = PM
=PN'+N'M
=PN'+MN
=X; C0SO+ X, Sin@ (1.3.2)
A
X2-axis
P'(x/, X)) =P(x, x
X5 X axis (% 2)‘ (s, X2)
A e\xg
1 -
NZJ AN : X| —axis
Y ’,’ M
0 ’)("’ }(2
P ;




Using the relation (1.3.1) and (1.3.2) we get
X{ = X, COSA+ X, SIN@ + 0%,
X5 =—X; SING+ X, C0SH + 0x,4
X3=0-% +0-X,+1-%g
Relation (1.3.3), (1.3.4) and (1.3.5) can be written as
Xg =X L1y +Xplyp + X305
Xa =Xyl g1 + %ol 55 + X3l o3
Xg =X lg1 +Xolgy + X355
where /;; =cos(anglebetweenx and x;); i, j =1,2,3that is
¢,, =cos(anglebetweenx; and x;) = cosé
¢,, =cos(anglebetweenx; and x,) = cos(90—0) =sing
¢,5 =cos(anglebetweenx; and x;) =cos90
¢,, = cos(anglebetweenx;, and x,) = cos(90+ ) = —sind
/,, =cos(anglebetweenx’, and x, ) = cosd
¢, =cos(anglebetweenx; and x;) = cos90
4, =cos(anglebetweenx; and x,) =c0s90

¢4, =cos(anglebetweenx; and x,) = cos90

(1.3.3)
(1.3.4)

(1.3.5)

(1.3.6)
(1.3.7)

(1.3.8)

(1.3.9)



/55 =cos(anglebetweenx; and x;) =cos0=1

Law of transformation can be written in a tensor form of order one as follow

Xp = L1yXq + l1pXp + l13Xg = £qjX; ;] =123

X =tix;s 1, ]=1,23 (1.3.10)
j OX]

Similarly, law of transformation for a tensor of order two

x’pq =il X5 1,j=1,2,3; p, q are dummy variables (1.3.11)
law of transformation for a tensor of order three

Xogr = L pil il Xij s 1, §,k =1,2,3; p, g, r are dummy variables (1.3.12)

and law of transformation of order n

X,pqr ............ 0 terms = (/ p qugrk """"""" nterms)xijk ............... nterms (1.3.13) where
Ky nterms=1,23,........... (0198 o s 5 VA n terms are dummy variables

Example.l. The x;-system is obtained by rotating the x;-system about the x;-axis
through an angle 6=30° in the sense of right handed screw. Find the transformation
matrix. If a point has coordinates (2, 4, 1) in the x; -system, find it’s coordinate in the x;-
system. If a point has coordinate (1, 3, 2) in the x{-system, find its coordinates in the x; -
system.

Solution. The figure (1.2) shows how the x; -system is related to the x;-system. The

direction cosines for the given transformation is represented in relation (1.3.14)

X3 = X3 Figure 1.2



Hence, the matrix of the transformation by using (1.9) is

cosd sind O \/_% %

| e _ 3
(£;)=|-sin@ cosd 0|= % \/_4 0 (1.3.14)
0 0o 1 0 0o 1

o

Using law of transformation for a tensor of order one, i.e, form (1.3.10), we get

X =¢ixi 3 1,j=1,2,3

ijri o

Xg = L1y X +LoXp +L13Xg
= xl’=200$¢9+4sin6’+1x0=2x‘/§4+4x%+1x0=(\/§+2)
= xg=25in¢9+4c039+1x0=—2x%+4x\/_%+1x0=(2\/5—1)
= X; =2x0+4x0+1x1=1 (1.3.15)

Hence, (X1, X5,X3) = (\/§+ 2, 2\/5—1,1) is in new coordinate system.

Further for the second, (1, 3, 2) are the coordinate of a point in new coordinate system,

ie. (x,=Lx",=3,x;=2) to finding the corresponding coordinate in to old coordinate

system i.e. (X, X,,X;) . Using law of transformation (1.3.10),

we have X =05X;:1,j=1,23 (1.3.16)
or Xg = C1aX1 + 01 X5 +031X5

X, =LpXg LXK + L Xs

X = LigXy + 05X, + L35

— X, =Costk! —sind x, X, =1x~/3/2-3x1/2+2x0=(+/3/2-3/2)

= X, =sinéx +cosé x, X, =1x1/2+3x~/3/2+2x0= (1/2-+/3/2)



= X; =€0s90° X +sin90° X}, +1, X, =1x0+3x0+2x1=2 (1.3.17)

Hence, ( Xy, X,,X3) = (\/5/2—3/2,]/2—\/5/2,2) in old coordinate system.

Practice 1.The x-system is obtained by rotating the x;-system about the X, -axis

through an angle 6=45° in the sense of right handed screw. Find the transformation

matrix. If a point has coordinates (2, 4, 1) in the x;-system, find its coordinate in the x; -
system. If a point has coordinate (1, 3, 2) in the x{-system, find its coordinates in the x;-
system.

Practice 2.The x-system is obtained by rotating the x;-system about the X, -axis

through an angle 6=60° in the sense of right handed screw. Find the transformation

matrix. If a point has coordinates (2, 4, 1) in the x;-system, find its coordinate in the x;-
system. If a point has coordinate (1, 3, 2) in the x{-system, find its coordinates in the x; -
system.

Practice 3.The x{-system is obtained by rotating the x;-system about the X;-axis
through an angle 6= 60° in the sense of right handed screw. Find the transformation
matrix. If a point has coordinates (2, 4, 1) in the x;-system, find its coordinate in the x;-
system. If a point has coordinate (1, 3, 2) in the x{-system, find its coordinates in the x; -
system.

Example2. The x{-system is obtained by rotating the x;-system about the x,-axis

through an angle 6= 60° in the sense of right handed screw. Find the transformation

1 0 -1
matrix. If a tensor of rank/order two has components [aij]: 0 2 2]inthe x-
-2 0 1

system, find its coordinate in the x;-system.

Solution. The figure (1.3) shows how the x{ -system is related to the x;-system. The

direction cosines for the given transformation are represented in the (1.3.18) when X, -

axis is rotated at an angle 60° about itself in right handed screw, where a;,q are the



components of the tensor of order two in new coordinate system corresponding to a; in

old coordinate system.

Xa =X Figure 1.3

Hence, the matrix of the transformation is by using (1.3.9)

cos® 0 sind 12 0 /3/2
()=| 0 1 o |=[ 0o 1 o0 (1.3.18)
—sind 0 cosd| |-~/3/2 0 12

Using law of transformation (1.3.11) for a tensor of order two, i.e
Xpq =1 pi g i
8pq =1 pil g
= ayy =L40q;8
=Ly (01184 + (1o +£1383)

=013(£14891 + 015855 +£13843)
+015(01989) + 0189 +{13853)
+013(¢ 11851 + 01585, + £ 13833)

using value of ¢, from (1.3.18), we have



a',, =1/2(1/2x1+0x0—+/3/2x1)

+0(1/2x0+0x2+~/3/2x2)
++/3/2(~1/2x2+0x0+~/3/2x1)
:l[ﬂ}m@[‘@‘z}(“‘s‘@] (1.3.19)
2| 2 2| 2 4
4+343

Similarly, a',,=2,a',,= 2

and aé?’ :€2i£3jaij

=05 ({31841 + 03525 +{ 3323)
= (031847 + £ 392y, + £ 3383)
+ 09 (£ 31891 + {3585, + £ 3383)
+33(0 31831 + {3083, + £ 33833)

=0x(1/2x1+0x0—+/3/2x1)
+1x(=/3/2x0+0x2+1/2x2)
+0x(~1/2x2+0x0++/3/2x1)

a'y;=0+1+0=1 (1.3.20)
o .1 _, 5 , .1
Similarly, a31:Z,am:Z,alzzo,an:\/iasz:E
Hence,
(4-33) , 5 |
1 0 -1 4 4
the tensor [aij]= 0 2 2 |istransformed into [a’pq]z J3 2 1
-2 0 1 1 1 4+343
4 2 4

Practice 4. The x{-system is obtained by rotating the x;-system about the X;-axis

through an angle 6= 45° in the sense of right handed screw. Find the transformation



3 -2 1
matrix. If a tensor of rank two has components [aij]z 1 3 2] inthe x;-system, find
2 -1 4

its coordinate in the x; -system.

Practice 5. The x{-system is obtained by rotating the x;-system about the X, -axis

through an angle 8= 30° in the sense of right handed screw. Find the transformation

1 -2 0
matrix. If a tensor of rank two has components [aij]: -1 3 -2]inthe x;-system,
2 -1 1

find its coordinate in the x;-system.

1.4 Some Properties of Tensor

Zero Tensors: A tensor whose all components in one Cartesian coordinates system are 0

is called a zero. A tensor may have any order n.

Property 1.4.1 If all component of a tensor are ‘0’ in one coordinate system then they are

‘0’ in all coordinate systems.

and u’ the component of a n™ order tensor in two

........... nterms par..........nterms

Proof. Let uy,

coordinates systems 0x;X,Xs and 0X;X;X; .

SUppOSE uijk n terms O,Vi, J)k ------- (141)

We know the law of transformation of tensor of order n as
u' =(l !

PO nterms

- nterms)u;, e (14.2)

Using (1.4.10) into (1.4.11) we get
u’ =0

PAr.eevee.ad nterms

"V p,q,r....... . Hence, zero tensor of any order in one coordinate

system remains always zero tensor of same order in all other coordinate systems.

Property 1.4.2 If the corresponding components of two tensors of the same order are

equal in one coordinate system, then they are equal in all coordinate systems.



Property 1.4.3 Equality of Tensors: Two tensors of the same order whose
corresponding components are equal in a coordinate system (and hence in all coordinates)

are called equal tensors.

Thus, in order to show that two tensors are equal, it is sufficient to show that their

corresponding components are equal in any one of the coordinate system.

Property 1.4.4 (Scalar multiplication of a tensor): If components of a tensor of order n
are multiplied by a scalar a, then the resulting components form a tensor of the same

order n.

Proof: Let U n terms D€ the

'v'! !

corresponding components in the dashed (0x;X;X3) system. The transformation rule for a

tensor of order n, (1.3.13) yields.

U’F)qr .............. nterms :gpigqjgrk ............. ntermS(Uuk ............... n terms) (143)
Now aUupq, nterms = £ pil gl -sseeessee oo nterms(a Uy . nterms) (1.4.4)
This shows that components a Uy, form a tensor of rank n.

Property 1.4.5 (Sum and Difference of tensors) If Uy nems@d Vi ngemsal®

tensors of the same rank n then their sum (Uy  nierms  Vij....nterms ) 1S @ tensor of the

same order n.

Proof: Let Wijk .......... nterms — uijk .......... nterms +Vijk ......... nterms (1-4-5)
and let Ujpo,  hiems @Nd Vg nerms D€ the components of the given tensors of order n

relative to the new system ox;x5x; . Then transformation rules for these tensors are

Ungr.... nterms = £ pil qj{ric+eeseeeens o nterms(U, ... nterms) (1.4.6) and
Voaro..... nterms = £ pif g€ ricreersesses o nterms(vi, nterms) (1.4.7)
where £ i =COS(Xp, % (1.4.8)
let qur ......... nterms — u'pqr ......... nterms +V’pqr .......... nterms (1.4.9)

using relations (1.4.6 and 1.4.7) in the relation (1.4.9), we get



qur ......... nterms — ¢ pigqjgrk """"" nterms(uijk .......... nterms Vijk .............. nterms (1'4'10)
qur ......... nterms — ¢ piqug e nterms ( Wijk ......... nterms ) (1-4-11)

Thus quantities Wy, ems Obey the transformation rule of a tensor of order n.
Therefore, they are components of a tensor of rank/order n.

Corollary: Similarly, their difference Uy nerms = Vi nterms 1S @IS0 a tensor of
rank n.

Property 1.4.6 (Tensor Multiplication)

The product of two tensors is also a tensor whose order is the sum of orders of the given

tensors.
Proof: Let Uy, ... merms  andVeg, nterms € two  tensors of order m and n
respectively in the coordinate system 0x,x,X; also U})qr ,,,,,,,,,,,,, mterms and V('.ﬂg ............. n terms are
corresponding components of tensors in 0x;x;X; System.
We shall show that the product

Wijk .......... mterms+apy......nterms — uijk .......... nterms X Vaﬂy .......... nterms (1-4-5)

Vm’g ............. nterms — fo_afz_ﬂfg/ """"" nterms (Vaﬂy ............... mterms) (1-4-6)

where, Kij is having its standard meaning as defined in relation (1.3.9).

Let w u XV

' ! '
(1o mterms+otg.......nterms — Ypgr.......... nterms OTG v nterms (1.4.7)

Using relation (1.4.6) in to (1.4.7), we get

w =
par.........! mterms+otg.......nterms

X U:

=5l gl wmterms x £ o 0 o0 o ..nterms(v k... mterms)

affy....mterms



={ pigqurk""mt('mnS X Emfrﬂﬂq...nterms(waﬂy mterms +ijk....mterms) (1-4-8)

This shows that components Wiy merms+agy.....nterms ODY the transformation rule of a

tensor of order (m+n). Hence Ui nterms X Vogy.......nterms @r€ components of a (m+n)th

order tensor.

Practice 6. If u;and V;are components of vectors, then show that U;V; are components of

a second-order tensor.
Practice 7. If U;and v, are components of tensors of second-order and first-order,

respectively, then prove that UV, are components of a third order tensor.

Practice 8. If Ujand v, are components of second-order tensors, then prove that UV

are components of a fourth order tensor.
Practice 9. If u;and Vjare components of two tensors. Let W; =U\V;+U;V; and

ajj = U;V; —U;V;. Show that each of Wjand «; is a second order tensor.

1.5 Contraction of a Tensor

The operation or process of setting two suffixes equal in a tensor and then
summing over the dummy suffix is called a contraction operation or simply a
contraction. The tensor resulting from a contraction operation is called a
contraction of the original tensor. Contraction operations are applicable to
tensor of all orders higher than 1 and each such operation reduces the order of a

tensor by 2.
Property 1.5 Prove that the result of applying a contraction of a tensor of order n is a

tensor of order (n-2).

Proof: Let Uy nterms € the components of the given tensor of order

n relative to two Cartesian coordinate systems o0x X,X;andox;X;X;. The rule of

transformation of tensor of order n (1.3.13) is

1o n terms — (0 piqufrk """"""" nterms)uijk ............... nterms (1.5.1)



without loss of generality, we contract the given tensor by setting i = j and summation

convention. Let

Vi = UWik1.. (1.5.2)
Now  Upgr o terms = (£ pil gi)Cicemmeennnes v ntermsxuy Hterms (1.5.3)
ol (% [ ntermsxv, (1-2)terms
1if p=q
u' =0 n—2)termsxyv - o=
o]o] SRR rk ( ) Klooooioeime (n-2)terms pq {0 if p#(
V; ................. (n-2)terms — T— (n - 2)terms I (n-2)terms (1.5.4)

Hence, the resulting tensor is tensor of order n-2. So contraction applying once on a
tensor of order greater then 1, the order of the tensor reduces by 2. Similarly contraction

applying twice on a tensor of order n the order of that tensor reduces by 4.
1.6 Quotient law of Tensors

(Quotient law is the partial converse of the contraction law)
Property 1.6 If there is an entity represents by the set of 9 quantities Uj; relative to any
given system of Cartesian axes, and if U;V;is a vector for an arbitrary vectorV;, then

show that Uj; is a second order tensor.

Proof: Wi = UV (1.6.1)

Suppose thatUj,,, UpandW, be the corresponding components in the dashed system

0X;X5X5 . Then by using law of transformation and inverse law of transformation (1.3.10

and 11)
Now UpgVp =W, (1.6.2)
=L Wi
=i (U5V;)
=L i £ g UV



= (Upg — £ il Ui Vg =0 (1.6.3)
for an arbitrary vector Vé| . Therefore, we must have

Ubq = £ pif gl (1.6.4)
This rule shows that components U; obey the tensor law of transformation of a second
order. Hence, Uj; is a tensor of order two.
Practice 10. Let ¢ be an ordered triplet and g, be a vector, referred to the x; —axis. If
o; B is a scalar, show that ¢; are component of a vector.
Example 3. If there is an entity representable by a set of 27 quantities Uy, relative to
0X; X, X System and if Uj; Vy is a tensor of order one for an arbitrary tensor Vy, if order 2,

show that Uy is tensor of order 3.
Solution. Let W; = Uy Vi, (1.6.5)

A . . . ! !
It is given that Vj is a tensor of order 2 and Ujy V' is a tensor of order one, and Vi, Upqy

are corresponding to Vj, Uy in new coordinate system ox;X;X;. Then by using

transformation law and inverse transformation law (1.3.10 and 11) we get.

UngrVgr = W) (1.6.6)
=L W,
= L itV ik (by using 1.6.5)

= £ pilli (£ 5% wcVgr)

= Epiﬁqurkuijkvé,
= (u]qu — 5l i Ui )v(']r =0 (1.6.7)
for an arbitrary vector Vér. Therefore, we must have

Ungr = £ pif i Uik (1.6.8)



This rule shows that components Ujy obey the tensor law of transformation of a second

order. Hence, Ujy is a tensor of order two.

Practice 11. If there is an entity representable by a set of 27 quantities Uy relative to
0% XX System and if Uj; Vi is a tensor of order two for an arbitrary tensor v, of order

one, show that Ujy is tensor of order 3.

Practice 12. If there is an entity representable by a set of 81 quantities Uy, relative to
0X; X, X3 System and if UjyyVjyq is a tensor of order one for an arbitrary tensor Vy, if order

3, show that Uy is tensor of order 4.

Practice 13. If there is an entity representable by a set of 81 quantities Uy relative to
0X; X, X3 System and if Uy, V) is a tensor of order three for an arbitrary tensor v, if order

one, show that Uy, is tensor of order 4.

Practice 14. If there is an entity representable by a set of 81 quantities Uy, relative to
0X; X, X3 System and if UV is a tensor of order two for an arbitrary tensor v, of order 2,
show that Uy is tensor of order 4.

1.7 Symmetric & Skew symmetric tensors

1.7.1  Asecond order tensor U is said to be symmetric if Uy = Uj Vi, . For example
unit matrix of order 3x3 is symmetric tensor of order two.

1.7.2 A second order tensor Uj is said to be skew-symmetric ifU; =—Uj; Vi, j. For
example skew-symmetric matrix of order 3x3 is skew-symmetric tensor of order two.

nterms 1S @ tensor of order n in 0x X, X, system, then

Definition: (Gradient) if Uy,

0
Vspar........ (n+l)terms = gupqr ........... nterms
= qur ........... nterms, s (1.7.1)



is defined as the gradient of the tensor Upg, nterms -

I _0 h di f
For example u,, _aTUP represents the gradient of vectorUu,, .
q

Property 1.7 Show that the gradient of a scalar point function is a tensor of order one.

Proof: Suppose that U =U (X, X,, X3) be a scalar point function and

oU
V. = =

i~ Ay U;
OX;

(1.7.2)

Let the components of the gradient of U in the dashed system ox;x;Xx; be V;, , SO that

,oU
p '
aXp

Vv (1.7.3)

Using the law of transformation (1.3.10) and inverse law of transformation we have
, ou
V —

P oxi,

_ U ax

= by chain rule
OX; OXp (by )

oU
pria—xizfpiu,i
Using (1.7.2), we get Vo =L5Y, (1.7.4)

Which is a transformation rule for a tensor of order one. Hence gradient of the scalar

point function U is a tensor of order one.

Property 1.8 Show that the gradient of a vector u; is a tensor of order two.

Proof: The gradient of the tensor u; is defined as

ou;
Wij :&:ui,j (1.7.5)
i



Let the vector u; be transformed to the vector Uy relative to the new system ox;x5Xj.

Then the transformation law for tensors of orders one (1.3.10) yields

u. =/

p piui (1-7-6)

Suppose the nine quantities W; relative to new system are transformed to W’IOq . Then

, ouy
Wog = <o
an
:ai,(gpiui) zfpi %
Xq Xq
. OX:
=£pi% L (by chain rule)
OX;j OXq
ou;
=L il 6_x; = L pil g Wi

This is a transformation rule for tensors of order two. Hence, W;; is a tensor of order

two. Consequently, the gradient of a vector u; is a tensor of order two.

Property 1.9 Show that the gradient of a tensor of order n, Uiy qems 1S @ tensor of

order (n+1).

Proof: Let Uiy . ntems 1S @ tensor of order n. The gradient of the tensor Uy nems 1S

defined as



nterms Felative to new system are transformed to

/SR nterms axa

(it
e x, o
=0 0 ./ t v uijk ............. nterms
= £ il il oo NTETMSE
OX,,
=L il glageereees o nterms? . X Uiy nterms.r (1.7.10)
= W,pqr .......... nterms,r — Epigqurk """""" ntermsfmuijk ............ T

This is a transformation rule for tensors of order (n+1). Hence, Wiy . m+terms IS @

tensor of order (n+1). Consequently, the gradient of a tensor of order n is a tensor of

order (n+1).

Books Recommended:

1. Y.C.Fung: Foundation of Solid Mechanics, Prentice Hall, Inc.,
New Jersey, 1965.
2. Saad, A.S. Elasticity-Theory and Applications, Pergamon

Press, Inc. NY, 1994,
3. Sokolnikoff, I.S. Mathematical Theory of Elasticity, Tata McGraw
Hill Publishing Company, Ltd., New Delhi, 1977



CHAPTER-II
ANALYSIS OF TENSOR

Consider an ordered set of N real variables X, X,, X ....... X; e Xy 5 these variables

will be called the coordinates of a point. (The suffixes 1, 2, 3,...... ,i,.....N, which we
shall call superscripts, merely serve as labels and do not possess any signification as

power indices. Later we shall introduce quantities of the a, and again thei, which we

shall call a subscript, will act only as a label.) Then all the point corresponding to all

values of the coordinates are said to form an N-dimensional space, denoted byv, .
Several or all of the coordinates may be restricted in range to ensure a one-one
correspondence between points of theV,,, and sets of coordinates.

A curve in the V, is defined as the assemblage of points which satisfy the N

equations
X =%X(u), (1=123,.... .N)
whereuis a parameter and x (u)are N functions of u, which obey certain continuity

conditions. In general, it will be sufficient that derivatives exist up to any order required.

A subspace V,, of V,, is defined for M < N as the collection of points which satisfy the
N equations

PAED o (VAR T A Uy), (1=123,......... .N)
where there are M parameters u,,u,,.......... Uy, - The x, (U, Uy, ... ,u,,) are N functions

of the u,,u,,.......... ,u,, satisfying certain conditions of continuity. In addition the M x N



: . - oX; . .
matrix formed from the partial derivatives ﬁls assumed to be of rank M . When
i

M = N —1, the subspace is called a hyper surface.
Let us consider a space V, with the coordinate system X;, X,, Xz, ...c.... Xy-The N

equations

X =@ (X, Xgyeeenen. Xy), (1=123...N) (2.1)
where the ¢, are single-valued continuous differentiable functions of the coordinates,
define a new coordinate system X, X,, X5......... , Xy - Equations (2.1) are said to define a

transformation of coordinates. It is essential that the N functions ¢, be independent. A

necessary and sufficient condition is that the Jacobian determinant formed from the

: 0K : : » :
partial derivatives 8—' does not vanish. Under this condition we can solve equations
X .
J

(2.1) for the x; as functions of the x; and obtain

X =@ (%, %, Xy Xy) (i =1, 2,3,N)

2.1 The Symbol 5

We will now introduce the following two conventions:

1) Latin indices, used either as subscripts or superscripts, will take all values from 1
to N unless the contrary is specified. Thus equations (2.1) are briefly written

Xi =@, (X, Xy peeeneene X, ), the convention informing us that there are N equations.

2) If a Latin index is repeated in a term, then it is understood that a summation with

respect to that index over the range 1, 2, 3, .... N is implied. Thus instead of the

N
expression Z a;x; , we merely write a;x; . Now differentiation of (2.1) yields
i=1

N

o Nog o Lo .
dx =Z£dx, > Bdx, (=123 N)
r=1 OX, r=1

r

which simplify, when the above conventions are used, to

dx, = —-dx, . (2.2)



The repeated index r is called a dummy index, as it can be repeated by any other Latin

index, except ‘i’ in this particular case. That is, equations (2.2) can equally well be

. OX _ OX : .
written dXx; :ax—dxm or for that matter dX; :ax—'dxr. In order to avoid confusion, the

m r

same index must not be used more than twice in any single term. For example;

i M GiN [ R I

N 2
(Z aixij will not be writtena,x.a,x., but rathera;x;a. x;. It will always be clear from
i=1

the context, usually powers will be indicated by the use of brackets; thus (x, )* mean the
square of X, . The reason for using superscripts and subscripts will be indicated in due
course. Let us introduce the Kronecker delta. It is defined as

Cdifiei

ij :%: .I I J (2.1.1)
OX; Oif i= ]

Thatis, 8, =0, =03 =1 O}, =0, = )3 = Oy = 0,3 = Oy, = 0.The symbol &, is known

as the Kronecker 6 symbol, named after the German Mathematician Leopold Kronecker

(1827-1891). The following property is inherent in the definition of 5, .

1) Kronecker & is symmetrici.e 5,=5 (2.1.2)
2) Summation convention &;, =6, +0,, + 95 =3 (2.1.3)
3) The unit matrix of order 3 is I, = (s, ) and det(s, )=1 (2.1.4)

4) The orthonormality of the base unit vectors €, can be written as
€ .65 =9 (2.1.5)
2.1.1 Tensor Equation:- An equation of type «;, —f;u, =0is called a tensor equation,

for checking the correctness of a tensor equation, we have the following rule

(i) In a correctly tensor equation no suffixes shall appear more than twice in any

term, otherwise the operation will not be define. For exampleu} = a;;u;v; is not a

tensor equation.
(ii) If a suffixes appears only once in a term then it must appear only once in the

remaining term also. For example, an equation uj—/;u; =0is not a tensor



equation. Hence j appears once in the first term while it appears twice in the

second term.

Property 2.1 Prove the following (Known as substitution properties of 5, )

(1) u; =o,U, (ii) OUj = Uy 5 OyUy =Uy (iii) O;U;; =Uy = Uy +Uy, +Ug,
Proof. (i) Now O;U; = 05Uy + 05U, + 535U
3
=U;j+ Y 5 =u, (2.1.6)

:Z}
- 3
(i) OjUy = Zé‘ijujk

=1

= Uy (for j=i,5; =0), here summation over i is not taken
= Uik (2.1.7)
(iii) 05U :Z{Zéijuil}
i i

=> (1w, ), in u;summation is not being taken
=D Ui S Uy + Uy +Ugg Uy (2.1.8)

Example 2.1 Given thata;, = a5,b,, + Ao, ,where B0, 3o+ =0, find b in terms of

a -

Solution. Setting i = j in the relation a; = ad;b, + Ao, and summing accordingly, we

obtain a,; =a.3b, + pb,
=(Ba + p)by (b =by)
1
b, = a
= kk 3a+ﬂ kk
Hence, by =%[aij —ad;by, :%{aij —ﬁ&ija,«} (2.1.9)
o

Property 2.2 Prove that (i) ¢ ¢, =0, (if) ¢ 0 =8 (i) || =1, (e, ) =(ey)



Proof. We know the transformation law of the coordinate system (1.3.10), we have

Xy =0 g% and x; = ¢ x! (2.1.10)
Now, (i) x, =7 ;%

=X, =45 Ly Xg) (2.1.11)
using the relation (2.1.6) on the L.H.S. of (2.1.11)

r ’
= 0 Xq = il 4iXq

= (0l —0)%g =0

ol =50 (21.12)
(ii) Similarly, X; =L X,
= =05l 5 X;
Also Xj = 0jjX; (2.1.13)
Hence, OyX; =L 5l i X
(05 — Ll ;)% =0
= Sy =00, (2.1.14)

(iii) Using (2.1.12) gives, in the expanded form,
O 0, 02 =005 0, e =1, 05 0, e =1
Lol + Ll + L1505 :0’521631 + ol + 5l 5 2015316114'53%12 + gl =0
The relations (2.1.12) and (2.1.14) are referred as the orthonormal relations for/ ;. In

matrix notation, the above said relations may be represented respectively, as follows

gll ElZ £l3 (11 £21 €3l

100
ly ly Cyl|lly, £, €,]=/0 1 0 (2.1.15)
fSl ESZ g33 EIS EZS €33 0 O 1

or  LL'=L'L=1

these expressions show that the matrix L



Property 2.3 Show that 5; and ¢ ; are tensors, each of order two.

Proof: Letu; be any tensor of order one,
i> by the substitution property of the Kroneceker delta tensor &, , we have

u, =96,u (2.1.16)

i = 054
Now u;and u; are each of tensor order one. Therefore, by quotient law, we conclude that

o.. 1s a tensor of rank two.

U]

ii> The transformation law for the first order tensor is
u, =0 ,u; (2.1.17)

whereu; is a vector and ¢ ;u;is a vector by contraction property. Therefore, by quotient

law, the quantities ¢ ; are components of a second order tensor.

Note 1: The tensor ¢ is called a unit tensor or an identity tensor of order two.
2. We may call the tensor /; as the transformation tensor of rank two.

2.2 The Symbol €,

Euclidean geometry investigates the properties of figures which are invariant with
respect to translations and rotations in space. It may be subdivided into Algebraic
methods the theory applicable to entire configurations such as the class or degree of a
curve. The latter discusses by means of the calculus those properties which depend on a
restricted portion of the figure. For example, the total curvature of a surface at that point.
Succinctly we may say that differential geometry is the study of geometry in small. This
chapter is not intended to be a complete course on the subject. However, sufficient theory

is developed to indicate the scope and power of the tensor method.

The symbol €;, is known as the Levi-civita €-symbol, named after the Italian

i
mathematician Tullio Levi-civita (1873-1941). The e-symbol is also referred to as the
Permutation symbol/alternating symbol or alternator. In terms of mutually orthogonal

unit vectors €, , €, , €, along the Cartesian axes, it defined as

6.(6,x6) =y Vi, j,k=123 (2.2.1)



Thus, the symbol €, gives

1 :ifi, j,ktakevaluesin the cyclic order
ex=1—1 rifi, jktakevaluesin the acyclic order (2.2.2)
0 :if anyor all of i, j,ktake the same value

These relations are 27 in number. The e-symbol is useful in expressing the vector

product of two vectors and scalar triple product.
0] We have € x¢€; =¢;, €, . (2.2.3)
(if)  For two vectors a; and b; ,we write

dxb =(a;6,)x(b,6;) =ab, (6 xé,) =<, ab,é (2.2.4)

(iiiy a=a6, b=bé c=c8

—
—

We have

a'l a‘2 a3
=€ b;c =|b, b, b, (2.2.5)
C, C, Cg

Property 2.4 Show that €, is a tensor of order 3.

Proof: Let &=4a, and b= b, be any two vectors. Let
C=c, =axbh.
Then, ¢; =¢;, a;b, (2.2.6)
Now a;b is a tensor of order 2 and €, a;b, (by 2.2.6) is a tensor of order one.

Therefore, by quotient law, €, is a tensor of order 3.

ij
Example 2.2 Show that w; =€;;, U, is a skew-symmetric tensor, where u, is a vector and

€;; IS an alternating tensor

Solution: Sincee;, is a tensor of order 3 and u,is a tensor of order one, so by

contraction, the product €;, u, is a tensor of order 2. Further



=-W. (2.2.7)
This shows that w;;is a tensor which is skew-symmetric.

Example 2.3 Show that uj;is symmetric iff €, u; =0

Solution: We find
€ijp Ujj =€231 Uzt €391 Ugy = Uy — Uy,
€ij2 Ujj =€31p Uz + €155 Uy = Uz —Uyg

€ijs Ujj =€1p3 Uyt Egq3 Uy = Uy, — Uy (2.2.8)

Thus, u;is symmetric iff
uij :ujior U, :u21,u13 =Ug,U,; = Uy, (2.2.9)

2.3. Isotropic Tensors

Definition: A tensor is said to be an isotropic tensor if its components remain

unchanged/invariant however the axes are rotated.

Note. 1. An isotropic tensor possesses no directional properties. Therefore a non-zero
vector (or a non-zero tensor of rank 1) can never be an isotropic tensor. Tensor of higher

orders, other than one, can be isotropic tensors.

2. Zero tensors of all orders are isotropic tensors.

3. By definition, a scalar (or a tensor of rank zero) is an isotropic tensor.

4. A scalar multiple of an isotropic tensor is an isotropic tensor.

5. The sum and the differences of two isotropic tensors is an isotropic tensor.

Property 2.5 Prove that substitution tensor &;and alternating tensor e, are isotropic
tensors

Proof: A>Let the components &; relative to x;-system are transformed to quantities &}

relative to x;-system. Then, the tensorial transformation rule is



Sly =1 ol 4, (2.3.1)

pi~ aj

Now R.H.S of (2.3.1)

:fpilgqj@jjzgpigq

=5pq:{f i'ff E: (2.3.2)
Relation (2.3.1) and (2.3.2) show that the components &;; are transformed into itself under
all co-ordinate transformations. Hence, by definition, o; is an isotropic tensor. B> We

know that e, is a system of 27 numbers. Let
cu=6 6,8, ]=6.(6,x6,) (2.3.3)

Be related to the x;-axis. Then, the third order tensorial law of transformation (1.3.9)

gives =L il il Ejj (2.3.4)

pi™ g™ rk

where ¢ ; is defined in (1.3.9). We have already check that

Lo Loy Lo
Coilglw €w=la Lo Lga (2.3.5)
Erl €r2 r3
Co Lo Lo
and e el=ltn ro fg (2.3.6)
grl Erz €r3
Using (2.3.4, 2.3.5 and 2.3.6), we get
1 :if p,q, rareincyclic order
[A;,A;, rJ e,.(6; x€é)=4-1:if p,q, rarein anticyclic order (2.3.7)

0:if any two or all suffices are same

This shows that components e;, are transformed into itself under all coordinate

transformations. Thus, the third order tensor €, is an isotropic.

Property 2.6 If u;is an isotropic tensor of second order, then show that u; = ao; for

some scalar ¢ .



Proof: As the given tensor is isotropic, we have

uj =u (2.3.8)
for all choices of the x| -system. In particular, we choose
X; =Xp, X5 = Xg, X3 =X, (2.3.9)
A
! ’
1 Xq
A
X2
Xl —————— X_é -
A Figure 2.1
ik
010
Then ;=10 0 1 (2.3.10)
100
and law of transformation (1.3.9), as
Upg =€ il U (2.3.11)
Now uil = éligljuij =1y (flluil + LU, +fle,uia)
=Ly (0uy + LU, +0U) = 040,45,
= 612 (£11u12 +£12u22 +€13U32) = u22
= U, =Uy, (2.3.12)
Similarly,
Upy =Ugg, Uy, =Uyg, Ujy =Uyg, Uy =Uy, Ujy =Uy Uy =Uy, (2.3.13)
Now, we consider the transformation: x| = X,, X, =—X;, X; = X, (2.3.14)
0
Then ;=1-10 (2.3.15)
0 01



Using law of transformation defined in (2.3.11), we get

Ujs = Uz = Uyg, Upy =Uyy = —Uy,

= Uj; =—U;, Uy =0and u,, =0 (2.3.16)
using (2.3.13) and (2.3.16), we obtain

t;=as, where g=0, =0, =0, (2.3.17)

Note 1: If 7, are components of an isotropic tensor of third order, then /;, =« € for
some scalar « .

Note 2: If 7., are components of a fourth-order isotropic tensor, then

ijkm
Cijn = 00,y + Oy Oy + 10,0 Tor some scalars a, 3, .

2.4 Contravariant tensors (vectors)

Asetof N functions f, of the N coordinates x;are said to be the components of
a contravariant vector if they transform according to the equation.

f =§% | (24.0)

on change of the coordinates x; to X;. This means that any N functions can be chosen as
the components of a contravariant vector in the coordinate system x,, and the equations

(2.4.1) define the N components in the new coordinate systemX;. On multiplying

. OX . i
equations (2.4.1) by 8__k and summing over the index ‘1’ from 1 to N , we obtain
e

?ﬂ:?zwfgwf%nﬂk (2.4.2)
i i j j

J
Hence the solution of equations (2.4.1) is

S
%

fi (2.4.3)



When we examine equations d X, =%dxr (where repeated index ris called dummy

r

index) we see that the differentials dx. from the components of a contravariant vector,
whose components in any other system are the differentials dx; of the system. It follow
immediately that dx; /du is also a contravariant vector, called the tangent vector to the
curve x; =X, (u) .

Consider now a further change of coordinates x{ = g; (X;, X, ,....... X,). Then the
new components

- " OX; !
=P SN 0K g (2.4.4)
OX; OX; OX, OX,

This equation is of the same form as (2.4.1), which shows that the transformations of

contravariant vectors form a group.
2.5 Covariant vectors

Asetof N functions f; of the N coordinates x; are said to be the components of
a covariant vector if they transform according to the equation.

- OX,

on change of the coordinates x, to X.. Any N functions can be chosen as the components
of a covariant vector in the coordinate system x;, and the equations (2.5.1) define the N
OX.

components in the new coordinate system X.. On multiplying equations (2.5.1) by —-
k

and summing over the index ‘i from 1 to N , we obtain

v X OX
2;9 f, = 2:1 ?;(k f, = aXJ fi=0,f =1 (2.5.2)
K k i K

OX.
Since, aTr = 8_1“T, , it follows immediately from (2.5.1) that the quantities S—F are the
X.

OX.  OX. OX;

i j i i

components of a covariant vector, whose components in any other system are the



corresponding partial derivativesj—r. Such a covariant vector is called the gradient of " .
X

We now show that there is no distinction between contravariant and covariant vectors

when we restrict ourselves to transformations of the type
X, =a,X, +b;, (2.5.3)
where b.are N constants which do not necessarily form the components of a

contravariant vector and a,, are constants ( not necessary forming a tensor) such that
airaim = 5rm (254)

We multiply equations (2.5.3) by a;, and sum over the index ifrom 1to N and obtain

Thus, —=—=a, (2.5.5)

This shows that the equations (2.4.1) and (2.5.1) define the same type of entity.

Books Recommended:

4. Y.C. Fung: Foundation of Solid Mechanics, Prentice Hall, Inc.,
New Jersey,1965.

5. Sokolnikoff, I. S. Mathematical Theory of Elasticity, Tata McGraw
Hill Publishing Company, Ltd., New Delhi, 1977

6. Barry Spain Tensor Calculus A Concise Course, Dover
Publication, INC. Mineola, New York.



CHAPTER-I1II

APPLICATONS OF TENSOR
3.1 EIGENVALUES AND EIGEN VACTORS
Definition: Let u;be a second order symmetric tensor. A scalarAis called an

eigenvalue of the tensor u;; if there exists a non-zero vector v; such that

u;v. = Av, Vi, j=12,3 (3.1.1)

U
The non-zero vector v; is then called an eigenvector of tensor u; corresponding to the

eigen value A4 . We observe that every (non-zero) scalar multiple of an eigenvector is also

an eigen vector.

Property 3.1 Show that it is always possible to find three mutually orthogonal

eigenvectors of a second order symmetric tensor.
Proof. Let u;; be a second order symmetric tensor and A be an eigen value ofu;. Let v,
be an eigenvector corresponding to A . Then

uyVv; = A, (3.1.2)
or (uy —Ad;)v; =0 (3.1.3)
This is a set of three homogeneous simultaneous linear equations in three unknown

v,,V,,V,. These three equations are

(ull - /1)V1 UV, tUV; = 0
U, v, + Uy —A)V, +U,v, =0 (3.1.4)
Uy V; U5V, + (uss - /1)V3 =0

This set of equations possesses a non-zero solution when



Uy U,—A4 Uy [=0 (3.1.5)
Uz Uz, Uss -4
or luy —A5,|=0 (3.1.6)

expanding the determinant in (3.1.6), we find

(uy - ﬂ)[(uzz —A)(Ug =) - U32U23]
—Upp [Ulz (Ug3—A) - U31U23]
+ U13[U12U32 —Usg(Up, — /1)] =0

or — (UpUpp + UjpUag + UggUyy — Upgligy — UgyUys —UgpUpy ) A (3.1.7)
+ [U11(U22U33 —UpaUzy) — Uyp (UpgUgg —UggUpg) +Uypa (UpgUgy — U31U22)] =0
we write (3.1.7) as

— B+ P - A, +1,=0 (3.1.8)

Where Il = Ull + U22 + U33 = Uii
| ]
I5 = Uy3Upp + UppUgg + Ugglyy — UppUyy —Upglizy —Uyglsy = 5 UjiU jj — U Uji

I :‘uij‘ =€ Uil joUys (3.1.9)

Equation (3.1.8) is a cubic equation in A .Therefore it has three roots, say A, 4,,A4;which

may not be distinct (real or imaginary). These roots (which are scalar) are the three

eigenvalues of the symmetric tensor u;; .

Further L+ +A=1 (3.1.10)
Ao + HAs+ A4 =1, (3.1.11)
MApds =13 (3.1.12)

Each root 4; , when substituted in equation (3.1.4), gives a set of three linear equations

(homogeneous) which are not all independent. By discarding one of equations and using

the condition



2 2 2
vy +Vv, +vs =1
for unit vectors, the eigenvector v; is determined.

Property 3.2 Eigen values of a real symmetric tensor u;; are real.
Proof. Let A be eigenvalue with corresponding eigenvectorv; .

Then u AV

v i

iV~

Taking the complex conjugate on both sides of (3.1.14), we find

It (by changing the role of i and j)

This shows that quantity u, v v, is real. Hence Av,v; is real. Since V,v;is always real, it

1]

follows that A is real.

Property 3.3 Eigen vector corresponding to two distinct eigen values of the sysmmetric

tensor uy; are orthogonal.

Proof. Let 4 #A,be two distinct eigenvalues ofu; . Let
corresponding non-zero eigenvectors. Then
Ui Ay =4 A U;B; =A4B;

We obtain

(3.1.13)

(3.1.14)

(3.1.15)

(3.1.16)

(3.1.17)

A and B; be the

(3.1.18)



u; AjB = LAB;, U;B;A = L,AB; (3.1.19)
Interchanging the role of i and j
u; AjB; =u; AB; =u;B; A (3.1.20)
From (3.1.19) and (3.1.20), we get
4LAB, =LAB,
(4 —4)AB; =0
= AB. =0 (v A #A) (3.1.21)
Hence, eigenvectors A and B, are mutually orthogonal. This completes the proof.

Note: Now we consider various possibilities about eigenvalues 4;, 4,, 4;.

Case 1: if 4, # 4, #4;, i.e., when all eigenvalues are different and real. Then, by property
3.3, three eigenvectors corresponding to 4; are mutually orthogonal. Hence the results
holds.

Case 2: if 4 =4, =4;. Let Vy; be the eigenvector of the tensor u;; corresponding to the

eigenvalue 4, and V,; be the eigenvector corresponding to 4,. Then

\71i '\72i :0 (3.1.22)

figure 3.1

Let p; be a vector orthogonal to both v;; and v,;. Then
P -Vy =P -Vy =0 (3.1.23)
and UV = AV, UV = AoV (3.1.24)

Let u; p; =q; = atensor of order 1 (3.1.25)



We shall show that p; and g; are parallel.
Now 0iVy; = Ujj PV,

=u;p;Vy; (By interchanging the role of iand j )

=2 pi¥y; =0 (3.1.26)
Similarly, QiVy =0 (3.1.27)
Thus, g;is orthogonal to both orthogonal eigenvectors V;; and V,;. Thus g; must be
parallel to p; . So, we write

Uy Py =0 =a (3.1.28) for

some scalar « .

Relation (3.1.28) shows that & must be an eigenvalue and p; must be the corresponding

eigenvector of u;;.
Vy, = —- (3.1.29)

Since u;; has only three eigenvalues 4, 4, =4, so o must be equal to 4, =4,. Thus V
is an eigenvector which is orthogonal to both v, and V,,, where v, L V,,. Thus, there
exists three mutually orthogonal eigenvectors.

Further, let W, be any vector which lies in the plane containing the two eigenvectors V.,

and V; corresponding to the repeated eigenvalues. Then

W, =k,V,;, +k,V, for some scalars k; and k, and

W, -V, =KV -V +K,V, -V, =0 (3.1.30)
and Uy W, = Uy (KyVy; + K,V )
= kyU;;Vy; + KyUj Vs,

= k1/12\72i + kzﬂfsvsi (/1’2 :ﬂe)
=4, (k1\72i + k2\73i) =AW, (3.1.31)



Thus w;is orthogonal to V;; and w; is an eigenvector corresponding to A,. Hence, any

two orthogonal vectors those lie on the plane normal to V;; can be chosen as the other

two eigenvectors of u;; .
Case 3:if 4, =4, =4,

In this case, the cubic equation in A becomes

(A-4)* =0
A-A 0 0
or 0 A4-4 0 [=0
0 0 A4-4

Comparing it with equation (3.1.6), we have

u; =0 fori=j
and Uyp = Uy =Ugz = A
Thus, Uy = 49

Let V; be any non-zero vector. Then

<

UiV = 40V;

=AY

ij

(3.1.32)

(3.1.33)

(3.1.34)

(3.1.35)

This shows that V; is an eigenvector corresponding to A1. Thus, every non-zero vector in

space is an eigenvector which corresponds to the same eigenvalue A1. Of these vectors,

we can certainly choose (at least) there vectorsv,, ,V,;, Vy that are mutually orthogonal.

Thus, in every case, there exists (at least) three mutually orthogonal eigenvectors of u;; .

Example 1.Consider a second order tensor u; whose matrix representation is

-1

N R
NN O

1
3



It is clear, the tensoru;; is not symmetric. We shall find eigenvalues and eigenvectors of

uij .
1-4 0 -1
Solution. The characteristic equationis| 1 2-4 1 |=0
2 3-4
or Q-D[2-1)(B-1)-2]-12-2(2-1)]=0
or @-1)2-4)E-1)=0
Hence, eigenvalues are 4, =1, 4, =2, A; =3, all are different. (3.1.36)
We find that an unit eigenvector corresponding to A =1isV;; —[i L Oj the unit
g p g - 1i \/El\/il )
. . 2 -1 -2 . .
vector corresponding to A=2isV,, =[§,?,?j, the unit vector corresponding to
. 1 -1-2 L N N .
A=3is Vg = NN We note that V-V, #0,V, -Vy =0,V -Vg 0. This

happens due to non-symmetry of the tensor u; .

Example 2. Let the matrix of the components of the second order tensor u;; whose matrix

representation is

O NN DN
O NN DN
= O O

Find eigenvalues and eigenvectors of u;; .

Solution. We note that the tensor is symmetric. The characteristic equation is

2—-4 2 0
2 2—-1 0 [=0
0 0 1-2
or AL=A)(4-1)=0

Hence, eigenvalues are 4, =0, 4, =1, A4; =4, all are different. (3.1.37)



Let V;; be the unit eigenvector corresponding to eigenvalue 4, = 0. Then, the system of

homogeneous equations is

2 2 0V
2 2 00y, |=0 (3.1.38)
0 0 1],

. 1 1 . .
Similarly, ¥, =(0,01) and Vs :(EEOJ are eigen vectors corresponding to A, =1

and A, =4, respectively, Moreover, these vector are mutually orthogonal.

Practice 1. Let the matrix of the components of the second order tensor u;; whose matrix

representation is

-2 31
1 21
3 0 2

Find eigenvalues and eigenvectors of u;; .

Practice 2. Let the matrix of the components of the second order tensor u;; whose matrix

representation is

3 -2 0
0 5 0
1 3 -2

Find eigenvalues and eigenvectors of u;; .

Practice 3. Let the matrix of the components of the second order tensor u;; whose matrix

representation is



1 -5 2
1 -3 1
-1 2 -3

Find eigenvalues and eigenvectors ofu;; .

Practice 4. Let the matrix of the components of the second order tensor u;; whose matrix

representation is

Find eigenvalues and eigenvectors ofu; .

Practice 4. Let the matrix of the components of the second order tensor u;; whose matrix

representation is

2 -1 2
1 0 -3
1 2 -5

Find eigenvalues and eigenvectors ofu;.

Practice 5. Let the matrix of the components of the second order tensor u;; whose matrix

representation is

3 5 0
1 -1 1
1 4 -3

Find eigenvalues and eigenvectors ofu;.

Practice 6. Let the matrix of the components of the second order tensor u;; whose matrix
representation is

2 5 0
1 -4 1
1 6 -3



Find eigenvalues and eigenvectors ofu;; .
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4.1 INTRODUCTION

Rigid Body: A rigid body is an ideal body such that the distance between every pair of its points
remains unchanged under the action of external forces. The possible displacementsin a rigid
bodyare translation and rotation. These displacements are called rigid displacements. In
translation, each point of the rigid body moves in a fixed direction. In rotation about a line,

every point of the body (rigid) moves in a circular path about the line in a plane perpendicular to

the line.

Foundation of Solid Mechanics, Prentice Hall, Inc.,
New Jersey,1965.

Mathematical Theory of Elasticity, Tata McGraw
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Tensor Calculus A Concise Course, Dover
Publication, INC. Mineola, New York.

Text Book of Cartesian Tensors, S. Chand & Co.,1950.

CHAPTER-IV

ANALYSIS OF STRAIN

Figure4.1 lline

In a rigid body motion, there is a uniform motion throughout the body.



Elastic Body: A body is called elastic if it possesses the property of recovering its original shape

and size when the forces causing deformation are removed.

Continuous Body: In a continuous body, the atomistic structure of matter can be disregarded
and the body is replaced a continuous mathematical region of the space whose geometrical

points are identified with material points of the body.

The mechanics of such continuous elastic bodies is called mechanics of continuous. This
branch covers a vast range of problem of elasticity, hydromechanics, aerodynamics, plasticity

and electrodynamics, seismology, etc.

Deformation of Elastic Bodies: The change in the relative position of points in a continuous is
called deformation, and the body itself is then called a strained body. The study of deformation
of an elastic body is known a s the analysis of strain. The deformation of the body is due to

relative movements or distortions within the body.

4.2 TRANSFORMATION OF AN ELASTIC BODY

We consider the undeformed and deformed both positions of an elastic body. Let 0% X,X;be
mutually orthogonal Cartesian coordinates fixed in space. Let a continuous body B, referred to
system 0X; X, X3, occupies the region R in the undeformed state. In the deformed state, the

points of the body B will occupy some region say R’ .

Figure 4.2

X3
Let P(X;,X,,X3) be the coordinate of a material point P of the elastic body in the initial or
unstained state. In the transformation or deformed state, let this material point occupies the
. . ! . . .
geometric point P'(&;,&,,&;) . We shall be concerned only with continuous deformation of the

body from region R into the region R’ and we assume that the deformation is given by the

equation



& =&1(X1, X0, %3)
& =8 (X Xp,%3) (4.2.1)
&3 = &(Xg, X0, X3)

The vector P_Is' is called the displacement vector of the point P and is denoted by uUj.
Thus,

U=¢&—-%:1=1273 (4.2.2)
or E=U+X:1=123 (4.2.3)

Equation (4.2.1) expresses the coordinates of the points of the body in the transformed state in
terms of their coordinates in the initial undeformed state. This type of description of
deformation is known as the Lagrangian method of describing the transformation of a

coordinate medium.

Another method, known as Euler’'s method expresses the coordinates in the undeformed state

in terms of the coordinates in the deformed state.
The transformation (4.2.1) is invertible when
J =0

Then, we may write
Xi = XI (51, 52, 53) | =1, 2, 3 (424)

In this case, the transformation from the region R into region R’is one to one. Each of the
above description of deformation of the body has its own advantages. It is however; more
convenient in the study of the mechanics of solids to use Lagrangian approach because the
undeformed state of the body often possesses certain symmetries which make it convenient to

use a simple system of coordinates.

A part of the transformation defined by equation (4.2.1) may represent rigid body motion.
(i.e.translations and rotations) of the body as a whole. This part of the deformation leaves
unchanged the length of every vector joining a pair of points within the body and is of no
interest in the analysis of strain. The remaining part of the transformation (4.2.1) will be called
pure deformation. Now, we shall learn how to distinguish between pure deformation and rigid

body motions when the latter are present in the transformation equation (4.2.1)



4.3. LINEAR TRANSFORMATION OR AFFINE TRANSFORAMTION

Definition: The transformation
Gi =G (X, X9, X3)
is called a linear transformation or affine transformation when the function & are linear
functionsof the coordinates X;, X,, X3. In order to distinguish between rigid motion and pure
deformation, we consider the simple case in which the transformation (4.2.1) is linear.
We assume that the general form of the linear transformation (4.2.1) is of the type
&1 =g + (o )X +appX, + ag3Xs,

&3 = Qg + Ay Xy + gy Xy + (L4 a133) X3,

or
gi = aio +(0£,J +§IJ)XJ ) i, J :1,2,3 (432)

where the coefficients «;; are constants and are well known.

ij

Equation (4.3.2) can written in the matrix form as

&1 — g I+, o A3 | %X

&3 — Qg a3z Qzp  ltag | X
or

U —agy o Oy Q3| X

U3 — Qg Oz Oz O33| X3

We can look upon the matrix (aij +5ij)as an operator acting on the vector X = X; to give the

vector @ .

If the matrix (@;; +J;) is non-singular, then we obtain

& — g X
(aij + 0jj fl S~y |=| Xy (4.3.5)

&3 — g X3



which is also linear as inverse of a linear transformation is linear. In fact, matrix algebra was

developed basically to express linear transformations in a concise and lucid manner.
Examplel.Sum of two linear transformations is a linear transformation.

Solution. Let

g gi:ai0+(aij+5ij)xj i 193 43.6)
an ; I1J: 1 & i
i =Bio +(ﬂij +5ij)xj

are two linear transformation and suppose §; =& +¢; .

Now,
gi =&+
= (a;y + (aij +5ij)xj) + (B + (,Bij +5ij)xj) (5ijxj =X;)
=(ajo + Bi) + 2{(aij +ﬂij)/2+5ij}xj

i = 8o + (& +95)X; (4.3.7)

where 3”- = O +,Bij; I, ] =1,2,3 relation (4.3.7) is a linear transformation by definition of

linear transformation as defined in relation (4.3.2). Hence sum or difference of linear

transformation is linear transformation.

Practicel. Show that product of two linear transformation is a linear transformation which is not

commutative
Example2.Under a linear transformation, a plane is transformed into a plane.
Solution. Let

IX+my+mz+c=0(4.3.8)

be an equation of plane which is not passes through (0,0,0) in the undeformed state and

(I,m,n) are direction ratios of the plane. Let

& L my ng %
& l; m; ng|Xx;

Be the linear transformation of points. Let its inverse be



Xy L M N[ &
X3 Ly, M3 N3 &

Then the equation of the plane is transformed to

(L& + M &, + Ny &) +m(LyE + My, +Ny&) +n(Leé + M3d, +Ng&y) +¢=0(4.3.11)

or(IL; +mL, +nLg)é&; +(IMy +mM, +nM;3)&, +(IN; +mN, +nN3)é; +¢=0

a& + P&, +ré3+¢c=0 (4.3.12)

Relation (4.3.12) is again an equation of a plane in terms of new coordinates (&;,&,,&;) . Hence
the result.

Practice2.A linear transformation carries line segments into line segments. Thus, it is the linear
transformation that allows us to assume that a line segment is transformed to a line segment

and not to a curve.

4.4. SMALL/ INFINITESIMAL LINEAR DEFORMATIONS
Definition: A linear transformation of the type & = a;g + (@ +5j;)X;; |, j =1,2,3 is said to be

a small linear transformation of the coefficients a;; are so small that their products can be

neglected in comparison with the linear terms.
Note 1: The product of two small linear transformations is small linear transformation which is
commutative and the product transformation is obtained by superposition of the original
transformations and the result is independent of the order in which the transformations are
performed.
Note 2: In the study of fine deformation (as compared to the infinitesimal affine deformation),
the principle of superposition of effects and the independent of the order of transformations
are no longer valid.

If a body is subjected to large linear transformation, a straight line element seldom
remains straight. A curved element is more likely to result. The linear transformation then
expresses the transformation of elements P,P, to the tangent PT, to the curve at P, for the

curve itself.
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Figure. 4.3

For this reason, a linear transformation is sometimes called linear tangent transformation. It is
obvious that the smaller the element PP, the better approximation of PP, by its tangent PT .
4.5 HOMOGENEOUS DEFORMATION

Suppose that a body B, occupying the region R in the undeformed state, is transformed to the

region R’ under the linear transformation.
referred to orthogonal Cartesian system 0X;X,Xs. Let €;,€,,€;be the unit base vectors directed

along the coordinate axes X1, X5, X3.

A

X2

X3
Figure. 4.4

Let P, (X1, X2, %13) and P, (X1, X5, X,3) be two points of the elastic body in the initial state.

Let the positions of these points in the deformed state, due to linear transformation (4.3.2), be



P/(&11: &0, &13) and Py (&5, &57,&)3) - Since transformation (4.3.2) is linear, so the line segment

P,P, is transformed into a line segment PP, .

_

Let the vector P,P, has component A and vector @ has components Ai’- Then
PP, = A&, A =Xy—X;(452)
and
PP =AS, A=&i—& (4.5.3)
Let A =A—A (4.5.4)

be change in vector A . The vectors A and A, in general, differ in direction and magnitude.

From equations (4.5.1), (4.5.2) and (4.5.3), we write
Ai' =& — G
= [aio + (05” + 5” )XZJ ]— [aio + (a” + 5” )le ]

= (X = Xqi) + @i (X — %)

(4.5.5)
A —A =aA;
Thus, the linear transformation (4.3.2) changes the vector A into vector A{ where
Al (1o o a3 | A
As a3 ayp  Ltog | Ag

or

oA ay o oz | A
OAg Qg O3 Qg3 | Ay

Thus, the linear transformation (4.3.2) or (4.5.6) or (4.5.7) are all equivalent. From equation

(4.5.6), it is clear that two vectors A and B, whose components are equal transform into two

! ! . .
vectors A and Bi whose components are again equal. Also two parallel vectors transform into

parallel vectors transformation into parallel vectors.



Hence, two equal and similarly oriented rectilinear polygons located in different part of the
region R will be transformed into equal and similarly oriented polygons in the transformed

region R’ under the linear transformation (4.5.1).

Thus, the different parts of the body B, when the latter is subjected to the linear transformation

(4.5.1), experience the same deformation independent of the position of the part of the body.
For this reason, the linear deformation (4.5.1) is called a homogeneous deformation.

Theorem: Prove that the necessary and sufficient condition for an infinitesimal affine
transformation

§i=io + oy + 5 X

to represent a rigid body motion is that the matrix Q;; is skew-symmetric

Proof: With reference to an orthogonal system ox; X, X,fixed in space, let the line segment

P,P, of the body in the undeformed state be transferred to the line segment Pl' le in the

deformed state due to infinitesimal affine transformation

&i=tig + (@ +6) X (4.5.8)

In which @;; are known as constants. Let A; be vector P,P, and A{ be the vector P, P,

A

X2

X3

Figure. 4.5

Then
A :Xi_xio'p{zfi_é:io (4.5.9)
Let A=A-A (4.5.10)



From (4.5.9) and (4.5.10), we find

A=¢6-¢,

=(ao + X + %) — (a4 + X, + X0)
= (% — %) + & (X; —Xjo)
=A +0{ijAj
This gives
oA = A —A =a A (4.5.11)

Let A denotes the length of the vector. Then

A=|Al=JAA =JA*+ A + A} (4.5.12)

Let oA denotes the change in length A due to deformation. Then
A =|A|-|A| (4.5.13)

It is obvious that OA # |5A

,but

A=/(A+A)A +RA)—/AA
This imply

(A+R)” = (A +A)(A +A)
Or

(GR)* +2AA= (A )(GA) + 2A(A) (4.5.14)

Since the linear transformation (4.5.8) or (4.5.11) is small,the term (JA)’and (0A )(0A )are to

be neglected in (4.5.14). Therefore,after neglecting these terms in(4.5.14), we write
2AA=2AMN,
or
ASA = AA = AA + AA, + AdA(4.5.15)
Using (4.5.11), equation (4.5.15) becomes

ASA= A(e;A,)



= AN,

= allAiz + 0‘22A22 + 0‘33A33 +(oy + ay) AR + (o + ag) AA + (g + ag) AA (4.5.16)

Case 1: suppose that the infinitesimal linear transformation (4.5.9) represent a rigid body
motion.Then, the length of the vector A before deformation and after deformation remains
unchanged.

That is

SA=0 (4.5.17)
For all vectors A

Using (4.5.16), we then get
2 2
a11A21 + 0 A+ U A+ (0, + ) AR + (s + g, ) A A + (g + g )AA (4.5.18)

For all vectors A .This is possible only when
Oy =0y =0y =0,
Oy + 0y = Q3+ 0y = Uy + 3 =0,

i.e., ajj = -« forall i&j (4.5.19)

ji’
i.e., the matrix a; is skew- symmetric.

Case 2:suppose ¢ is skew-symmetric. Then, equation (4.5.16) shows that
AcA=0 (4.5.20)
For all vectors A . This implies
oA=0 (4.5.21)
For all vectors A

This shows that the transformation (4.5.8) represents a rigid body linear small transformation.
This completes the proof of the theorem.
Remarks :when the quantities o;; are skew —symmetric , then the linear infinitesimal

transformation.



Equation (4.5.19) takes the form

OA =~y Ay + oA

0Py = o A — o, Ay

A, =—0g A + agpA (4.5.22)
Let W1 =05 = =0y

W, =3 ==y
W, =@y =—0y, (4.5.23)
Then, the transformation (4.5.22) can be written as the vectors product
SA=wx A, (4.5.24)

Where W =W, is the infinitesimal rotation vector. Further

A=A -A
=(&-&")-(x-x")

=% — X, (4.5.25)
This yield

X =6x"+5A,
o =%’ + oA,
or

& =’ +(W+ A) (4.5.26)

Here, the quantities

o’ =&"-x°

arethe components of the displacement vector representing the translation of the point P°and

the remaining terms of (4.5.26) represent rotation of the body about the point pP° .



4.6 PURE DEFORMATION AND COMPONENTS OF STRAIN TENSOR

We consider the infinitesimal linear transformation
A = ;A (4.6.1)
Let W, =1/2(e;; — ;) (4.6.2)
and
1
&; =E(aij +taj (4.6.3)

Then the matrix W;; is anti-symmetric while €; is symmetric.

Moreover,

o = € +W;; (4.6.4)
and this decomposition of ¢; as a sum of s symmetric and skew-symmetric matrices is unique.
From (4.6.1) and (4.6.4), we write

OA =€ A + WA (4.6.5)
This shows that the transformation of the components of a vector A given by

oA =Ww; A, (4.6.6)
represent rigid body motion with the component of rotation vector W, given by

W = Wy, Wy = Wig, Wy = Wy, (4.6.7)
and the transformation

A =e A (4.6.8) with

e =e. (4.6.9)

represents a pure deformation.

STRAIN COMPONENTS: The symmetric coefficients, €. in the pure deformation

oA = ;A

are called the strain components.



Note (1): These components of straincharacterizepure deformation of the elastic body. Since

Aj and 503 are vectors (each is a tensor of order 1),therefore,by quotient law, the strains
components €; form a tensor of order 2.
Note 2: For most materials / structures, the strains are of the order 10_3' such strains certainly
deserve to be called small.
Note 3: The strain components €,,€,,,€;,; are called normal strain components while
€,1€13,€53,€5,65,,€;, are called shear strain components,
Example: For the deformation defined by the linear transformation

G=XHX, 8 =X = 2%, G =X+ X — X,
Find the inverse transformation of rotation and strain tensor, and axis of rotation.

Solution:The given transformation is express as

111 1 0|x

& =1 -2 0 X, (4.6.10)
&, 1 1 -1 Xq
and its inverse transformation is
x1 1 1 0774
X, |=|1 -2 0] |S
X3 1 1 -1 &,
1 2 1 0
== -1 0 || (4.6.11)
3 0 -3 53

giving
X =52+ E),
1
% =3 (&-%)

X3 :651_53 (4.6.12)



comparing (4.6.10) with

&= (aij +5‘ij)xj (4.6.13)
We find
0 1 0
o = 1 -3 0 (4.6.14)
1 1 -2
Then
0 0 -1
1 1
Wij:E(aij—aji)=§ 0 0 -1 (4.6.15)
1 1 0
and
_1
€ E(aij+aji
0o 1 1
2
=1 -3 1 (4.6.16)
2
11 .,
12 2 |
and
o =W +€; (4.6.17)
The axis of rotation is
w=wé,
where
W, =W, 1
1 32 2'
W, = W3 = ,

W, =W, =0 (4.6.18)



4.7 GEOMETRICAL INTERPRETATION OF THE COMPONENTS OF STRAIN

Normal strain componente,; :
Let €; be the components of strains the pure infinitesimal linear deformation of a vector A is
given by

oA = eijAj (4.7.1)

with g =€

Let edenotes the extension (or change) in length per unit length of the vector A with magnitude

A.Then, by definition,

- 4.7.2
e A ( )

We note that e is positive or negative upon whether the material line element A experiences an
extension or a contraction. Also,e=0’ if and only if the vector A retains its length during a

deformation.This number e is referred to as the normal strain of the vector A .Since the

deformation is linear and infinitesimal, we have (proved earlier)

ASA =AM (4.7.3)
SA  ASA
Or A - A2
Now from (4.7.1) and (4.7.3), we write
oA  AA
e=—= .
A A?

This implies

1
€= ? [ellAz2 + ezzAz2 + essAsz + 2612A1A2 + 2e13A1A3 + zezaAzAs] (4.7.4)

Since €; =€,



In particular,we consider the case in which the vector A in the underformed state is parallel to

the X, -axis. Then

A=AA=A=0 (4.7.5)
Using (4.7.5), equation (4.7.4) gives
e=e,. (4.7.6)
Thus, the component e, of the strain tensor, to a good approximation to the extension or

change in length of a material line segment (or fiber of the material) originally placed parallel to

the X, -axis in the undeformed state.

Similarly, normal strainse,, and €;;are to be interpreted.

€1
0
0

lllustration: let & =

0
0
0

o O O

Then all unit vectors parallel to the X, -axis will be extended by an amounte,,. In this case, one
has a homogeneous deformation of material in the direction of the X, -axis. A cube of material
whose material whose edges before deformation are L unit along will become (after

deformation due to€; ) a rectangular parallelepiped whose dimension in the direction of the X,
-and X; - axes are unchanged.
Remark: The vector
A=A=(A00)
is changed to (due to deformation)
A =(A+ 688 + A8, + A,
in which
éA =€ Aj = eilAl
gives

Thus A'=(A+e,A €A e A)



this indicates that vector A =(A,0,0) upon deformation,in general, changes its orientation

also.This length of the vector due to deformation becomes (1+ ¢, )A.

X2

-, X1

v

Ai = Aél

Figure. 4.6
X3 &

Question: From the relation 0A = eijAj , find dAand éAfor a vector lying initially along x-axis
Y A — oA . .
(i.e., A= A€ ) and justify the fact thatK =g, .Does OA lie along the x-axis?
Answer: It is given that A = (A,0,0). The given relation
A =e;A (4.7.7)
Gives

oA =€, A A =e,A R =6,A (4.7.8)

Thus, in general, the vector (Sﬁ does not lie along the x-axis.

Further

(A+ ) = [AL+ e, ) + (e, AF + (oA ]

=AJ1+2e, e, +e,2+e.’ . (4.7.9)
Neglecting square terms as deformation is small, equation (4.7.9) gives

(A+OAY = A2(1+2e,,),



A2+ 2ASA = A*+2A%,,

2AA=2A%,
A
K =e;. (4.7.10)

This shows that e, gives the extension of a vector (A, 0, 0) per unit length due to deformation.
Remarks: the strain components €; refer to the chosen set of coordinate axes. If the axes
changed, the strain component €; will, in general, changes as per tensor transformation laws.
Geometrical interpretation of shearing Stress€,; :

The shearing strain component €, may be interpreted by considering intersecting vectors
initially parallel to two coordinate axes - X, -and X, -axis

Now, we consider in the undeformed state two vectors.

AL,

B,

>|
I

w|
I

(4.7.11)

w

directed along X, -and X;-axis, respectively.
The relations of small linear deformation are
A =€,
B, = & B;, (4.7.12)

Further, the vectors A and B, due to deformation become (figure 4.7)



A
X3
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€, / Pl
/ 583 ”’,
/'\6’ b7 5A3
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< 5
2 5 X2
Y éBl A4 A1
X1 Figure 4.7

R=ne+(A+or)e+ahe
B'=0B,6 +B, 6, +(B, + B, )6,

Let @ be the angle between A'and B'. Then

AB _ A, + (A, +3A B, + (B, +B,)
AB [(5A)? + (A, + B, F + () (B, ) +(6B,) +(B,B, )

Since , the deformation is small , we may neglect the product of the changes in the components

cosd =

(4.7.14)

of the vector A and B, .Neglecting these product , equation (4.7.11) gives
cosd = (Azaaz + 835A3)(A2 + oA, )71(83 + 9B, )71

_AB, TBA ) P )_1(1 L1+ B, jl
AB, A B,

(8 31-20-3)
B, A A B,

Neglecting other terms,this gives

c039:%+% (4.7.15)

3



Neglecting the product terms involving changes in the components of the vectors A and B| .

Since in formula (4.7.15), all increments in the components of initial vectors on assuming

(without loss of generality)
5A = 5A2 = O ’
And 581 = 583 =0,

! !
can be represented as shown in the figure below (it shows that vector A and B, lie in the X,X;

-plane). We call that equation (4.7.13) now may be taken as

A =Ag, +A8,,

B'=0B,¢, + B.&, (4.7.16)
A
X3 R’
Ql
Q< R
B,
€ P’
0
D &y 5A% P X2
O »
Figure 4.8

Form equation (4.7.11) and 4.7.12), we obtain
5% = eszAz ,
0B, =¢e,,B, (4.7.17)

This gives



=tan ZP'OP (4.7.18)

€y =

& >|%

2 =TANZQ'0Q (4.7.19) since strain

€y =

o
W

€,; =€5,are small, so
/P'OP =/Q0Qz=e¢,,
And here

2e,,=90° -0 = % -0 (4.7.20) Thus, a

positive value of 2€,; represents the decrease in the right angle between the vectors A and B,
due to small linear deformation which were initially directed along the positive X, and X, -axes.
The quantity / strain component €, is called the shearing strain.

A similar interpretation can be made for the shear strain components of material arcs.

Remarks 1: By rotating the parallelogram R'OP'Q’ throw an angle €,;about the origin (in the

X,X; -plane), we obtain the following configurations (figure 4.9)

v

Figure 4.9 P(P")

Thisfigure shows a slide or a shear of planar elements parallel to the X X, —plane.



Remarks 2: Figure shows that areas of rectangle OQRP and the parallelogram OQ'R'P’ are

equal as they have the same height and same base in the X,X;-plane.

0O 0 O
Remarks 3:For the straintensor| 0 0 e, |,
0 e, O

A cubical element is deformed into a parallelepiped and the volumes of the cube and

parallelepiped remain the same.Such a small linear deformation is called a pure shear.

4.8 NORMAL AND TANGENTIAL DISPLACEMENTS

Consider a point P (Xl, X5, X3) of the material. Let it be moved to Q under a small linear
transformation. Let the components of the displacement vector P_Q be U;,U,,U;. In the plane
OPQ, let PN =n be the projection of P_Q on the line OPN and let PT =t be the tangential of
% in the plane of OPQ or PQN.

Definition: vectors nand 'Eare, respectively, called the normal and the tangentialcomponents of

the displacement of P.

Note: The magnitude n of normal displacement nis given by the dot product of vectors
OP = (X, Xy, X;) and PQ =(uy,u,,us ).

the magnitude t of tangential vector tis given the vector product of vectors oP and% ( this

does not give the direction of f).



X3
/\n N
P i
=T
X2
Figure 4.10
X1
Thus
n=cosZNPQ = OP.PQ ,
OoP
- OP x PQ
t = PQsin2npQ — (OPXPQJSIn(NPQ) _ | | ,
oP op
And
n*+t* =u/ +us +u?.
Books Recommended:
1. Sokolnikoff, I. S. Mathematical Theory of Elasticity, Tata McGraw

Hill Publishing Company, Ltd., New Delhi, 1977
2. Shanti Narayan Text Book of Cartesian Tensors, S. Chand &

Co.,1950.



CHAPTER-V

STRAIN QUADRIC OF CAUCHY

5.1 Strain Quadric of Cauchy

0 . . . . . .
Let F’O(X1 ,Xg, x§) be any fixed point of a continuous medium with reference axis

0 X,X,X; fixed in space. We introduce a local system of axis with origin at point P° and with axes

parallel to the fixed axes (figure 5.1)

X3

X1 ¢

X2
Figure 5.1
X1
with reference to these axes, consider the equation
e;XX; =k’ (5.1.1)

where k is a real constant and is the strain tensor at P°. This equation represents a quadric of

Cauchy. The sign + or —in equation (5.1.1) be chosen so that the quadric surface (5.1.1) becomes

a real one. The nature of this quadratic surface depends on the value of the strain€; .
If ‘eij‘ # 0, the quadratic is either an ellipsoid or a hyperboloid.

If ‘eij‘ =0, the quadratic surface degenerates into a cylinder of the elliptic or hyperbolic type or

else into two parallel planes symmetrically situated with respect to the quadric surface.



This strain quadric is completely determined once the strain components €;at point P(O)are

known. Let P°P be the radius vector A of magnitude A to any point P(Xl, X5, XG), referred to

local axis, on the strain quadric surface (5.1.1). Let e be the extension of the vector A due to

some linear deformation characterized by
A =e,A, (5.1.2)

Then, by definition,

o A_AA_ A

A A? A?
This gives
e. AA.
e = ”::12 ) (5.1.3)
using (5.1.2)

Since ﬁ = A and the coordinate of point P, on the surface (5.1.1), relative to P%are (Xl, X5, X3)
, it follows that

A =X (5.1.4)
From equation (5.1.1), (5.1.2) and (5.1.4); we obtain

2 2
A" =&;AA; =X X; =K

k2
A2

Or e== (5.1.5)

Result (1): Relation (5.1.5) shows that the extension or elongation of any radius vector A of the

strain quadric of Cauchy, given by equation (5.1.1), is inversely proportional to the length ‘A’ of

any radius vector this deformation the elongation of any radius vector of the strain quadric at

the point P°(x?) .
Result (2): we know that the length ‘A’ of the radius vector A of strain quadric (5.1.1) at the

. 07,0 . . .
point P (Xi ) has maximum and minimum values along the axes of the quadric. In general, axes

of the strain quadric (5.1.1) differs from the coordinates axes through PO(XiO). Therefore, the



maximum and minimum extensions or elongation of the radius vectors of strain quadric (5.1.1)

will be along its axes.

Result (3): Another interesting property of the strain quadric (5.1.1) is that normal V;to this

surface at the end point P of the vector PP = A is parallel to the displacement vector A .
To prove this property, let us write equation (5.1.1) in the form

G=¢gX;%tk?=0 (5.1.6)

Then the direction of the normal vV to the strain quadric (5.1.6) is given by the gradient of the

scalar function G. The components of the gradient are

oG

=€y X; +€,X
=2€,X;
Or

oG

— =20 5.1.7
OXy A ( )

oG <~
This shows that vector ——and vector OA are parallel. Hence, the vector 0Ais directed along
Xk

the normal at P to the strain quadric of Cauchy.

5.2 STRAIN COMPONENTS AT A POINT IN A ROTATION OF COORDINATE AXES

! ror

Let new axes OX,; X, X, be obtained from the old reference system 0X X, X, by a rotation. Let the

!
directions of the new axes X be the specified relative to the old system X; by the following table

of direction cosines in which ¢ ;is the cosine of the angle between the X -and X; axis.



A
Yls
!
X5 ‘\
\
\
\
\
! !
‘\ _-=" X,
\ .-
\ -7
\ - -
\ _ - -
I »
/I 0 X2
/
7
X, ! .
) ’ Figure 5.2
¥ X
. _ !
That is ly= COS(Xp,Xi )
Thus
X X X
!
X | by Ll Lo
!
X2 EZl 622 23
!
X3 531 32 633
Then the transformation law for coordinates is
!
X =1 0i Xp (5.2.1)
Or X’p =/ e (5.2.2)
The well —known orthogonality relations are
fpiﬁqi :5pq (5.2.3)
14 pié o = é‘ij (5.2.4)
with reference to new X;) -system, a new set of strain components e;)q is determined at the
point O while €; are the components of strain at O relative to old axes 0X X,X;.
Let
2
e;%X; =tk

(5.2.5)



be the equation of the strain quadric surface relative to old axis. The equation of quadric surface
with reference to new prime system becomes
i 1! 2
€ XpXg = K (5.2.6)

As we know that quadric form is invariant w. r. t. an orthogonal transformation of coordinates.

Further, equation (5.2.2) to (5.2.6) together yield

eququ —e,jx,xj

U(fplx XEQJ Q)

= (e il XX

pi* qj
Or
' 1! o
(g = il €)X, X =0 (5.2.7)
Since equation (5.2.7) is satisfied for arbitrary vector X;J, we must have
4 —
€y =0 ol 4&; (5.2.8)
Equation (5.2.8) is the law of transformation for second order tensors. We, therefore, conclude

that the components of strain form a second order tensor.

Similarly, it can be verified that

Question: Assuming that €;is a tensor of order 2, show that quadratic form €;XX;is an
invariant.

Solution: We have

So, ;%X =1 5l €0 XiX;

( pi |X€CUX)

=€/ XX, (5.2.10)

Hence the result

5.3 PRINCIPAL STRAINS AND INVERIANTS



From a material point PO(XiO), there emerge infinitely many material arcs/ filaments, and each
of these arcs generally changes in length and orientation under a deformation. We seek now the
lines through PO(XiO) whose orientation is left unchanged by the small linear deformation given
by

oA = eijAJ. (5.3.1)

where the strain components €; are small and constant. In this situation, vectors A and oA are

parallel and, therefore,

oA =eA (5.3.2)

for some constant e.

Equation (5.3.2) shows that the constant e represents the extension.

( _|5A|_5AJ
e=—1="
Al A

of vector A . From equation (4.11.1) and (4.11.2), we write

e;A =eA
=ed, A (5.3.3)
This implies
(e, —es;)A =0 (5.3.4)

We know that & is a real symmetric tensor of order 2. The equation (5.3.3) shows that the

scalar e is an eigen value of the real symmetric tensor &; with corresponding eigenvector A .

Therefore, we conclude that there are precisely three mutually orthogonal direction are not

changed on account of deformation and these direction coincide with the three eigenvectors of
the strain tensor€; .These directions are known as principle direction of strain. Equation (5.3.4)
gives us a system of three homogeneous equations in the unknown A, A,, A,. This system

possesses a non-trivial solution if and only if the determination of the coefficients of the

AL A, A isequal to zero, i.e.,



€y, ©,—€ €, [=0 (5.3.5)
€y e, ep—e

which is cubic equationin e.
Let €,€,,6;be the three roots of equation (5.3.5), these are known as principal strains.

Evidently, the principal strains are the eigenvalues of the second order real symmetric strain

tensorg; . Consequently, these principal strains are real (not necessarily distinct). Physically, the
principal strains €,,€,, €;(all different) are the extensions of the vectors, say A, in the principal

Invariant ot strain. >0, vectors , y are collinear. e poin consider e
/ invariant of strain. S t A+ Il At the point P® consider th

strain quadric

2
€;%X; =1k (5.3.6)

For every principal direction of strainA, we know that 5Ais normal to the quadric surface

(5.3.6). Therefore, the principal directions of strain are also normal to the strain quadric of

Cauchy. Here, principal direction of strain must be the three principal axes of the strain quadric
of Cauchy. If some of the principal strains €, are equal, then the associated directions become
indeterminate but one can always select three directions that all mutually orthogonal If the

€, #€, =€;, then the quadric surface of Cauchy is a surface revolution and our principal
direction, say A, will be directed along the axis of revolution.

In this case, any two mutually perpendicular vectors lying in the plane normal to A may be
taken as the other two principal directions of strain.

If e =€, =¢,, then strain quadric of Cauchy becomes a sphere and any three orthogonal
directions may be chosen as the principal directions of strain.

Result: If the principal directions of strain are taken as the coordinate axes, then
€1 =66, =665 =65
And €, =€3=63=0,

As a vector initially along an axis remains in the same direction after deformation (so change in

right angles are zero). In this case, the strain quadric Cauchy has the equation.



X’ +6,X5 +erx> = +k? (5.3.7)
Result 2: Expanding the cubic equation (5.3.5), we write
3 2
—e’+ve —-v,e+v, =0
where V,=€,;+€,+€;

=g, =tr(E), (5.3.8)

[}
_ 2 2 2
Vy, =616, 16,833 16556, — €5 — €36

=tr(E2):%(eiiejj _eijeji)' (5.3.9)

Vs = &ij61i€, €3¢
=[e;|=tr(E?) (5.3.10)
Also €,,€,,€;are roots of a cubic equation (5.3.8), so
V=€ +€,+8,

V, =€6, +6,6; + 6, (5.3.11)

V3 =€6,6,
We know that eigenvalues of a second order real symmetric tensor are independent of the

choice of the coordinate system.
It follows that V,,V,,V; are given by (5.3.10) three invariants of the strain tensor €; with respect
to an orthogonal transformation of coordinates.

Geometric meaning of the first strain invariant $=¢;

The quantity 3=¢,; has a simple geometric meaning. Consider a volume element in the form of

rectangle parallelepiped whose edges of length |1,|2,|3are parallel to the direction of strain.
Due to small linear transformation /deformation, this volume element becomes again rectangle
parallelepiped with edges of lengthl,(1+€,),1,(1+€,), I,(1+e;), where €,€,,e, are principal

strains. Hence, the change 6V in the volume V of the element is
N =1, (1+e )1+e,)l+e,)-LLl,

= |1|2|3(1+ e +e, + es)— L, ignoring small strainse, .



= I1|2|3(el +€,+ es)

This implies
oV
— =€, +6, +e; =39
Y, 1 TS T3

Thus the first strain invariant 4 represents the change in volume per unit initial volume due to

strain produced in the medium. The quantity Jis called the cubical dilatation or simply the

dilatation.
Note: If € >¢€, >¢€, then €;is called the minor principal strain, €,is called the intermediate

principal strain, and €, is called the major principal strain.

Question: For small linear deformation, the strains g; are given by

X (Xlz I
(eij): a w X, X3 , o =constant
X3 X3 2(X1 + XZ)

Find the strain invariants, principal strain and principal direction of strain at the point P(1,1,0).

Solution: The strain matrix at the point P(1,1,0) becomes
0
0

whose characteristics equation becomes
ele—2a)e—4a)=0.
Hence, the principal strains are
e =06, =20,6,=4c.
The three scalar invariants are
V, =€ +¢e,+&,=6a,V,=8a’v,=0

The three principal unit directions are found to be



Exercise: The strain field at a point P(x, y, z) in an elastic body is given by

20 3 2
e, =| 3 -10 5 (x10°.
2 5 -8

Determine the strain invariant and the principal strains.

Question: Find the principal directions of strain by finding the extremal value of the extension 9

. OR, Find the direction in which the extension ¢ is stationary.

Solution: Let 3 be the extension of a vector A due to small linear deformation

A =e,A (5.3.12)
Then
9 :% (5.3.13)
A

We know that for an infinitesimal linear deformation (5.3.12), we have

ASA= AA (5.3.14)

oA e AA
Thus 9= AizA: Aif\ = ”22 J (5.3.15)

Let A a (5.3.16)
A
Then g =1 (5.3.17)
And equation (5.3.15) then gives
e(a,a,,3;) =€;3,; (5.3.18)

Thus the extension g;is a function of a,,a,,8; which are not independent because of relation

(5.3.17). The extreme/stationary (or max/min) values of the extension e are to be found by
making use of Lagrange’s method of multipliers. For this purpose, we consider the auxiliary

function

F(ai’aZ'aS)zeijaiaj _ﬂ’(aiai —1) (5.3.19)



where A is a constant.
In order to find the values of &,,a,,a, for which the function (5.3.18) may have a maximum or

minimum, we solve the equations.

E =0, k=1,2,3. (5.3.20)
oa,

Thus, the stationary values of e are given by

& (5ikaj + a,.5jk)— A2a.0, =0

Or €;a; +€,& —243, =0
Or 2e,8,—24a, =0
Or e =4a, . (5.3.21)

This shows that Ais an eigenvalue of the strain tensor eijand a, is the corresponding

eigenvector. Therefore, equation in (5.3.21) determines the principal strains and the

stationary/extreme values are precisely the principal strains.

Thus, the extension e assumes the stationary values along the principal direction of strain and

the stationary/extreme values are precisely the principal strains.
Remarks: Let M be the square matrix with eigenvectors of the strain tensor €; as columns. That
is

Ar A A
M=lA, A, Aza
Ay Ay Ay

Then €A =&A;
eijAZj =6,A,
eijA3j = 3A3i
The matrix M is called the modal matrix of strain tensor€; .

Let

E=(e,)D=diale,e,e,).



Then, we find
EM=MD
Or M™EM =D.
This shows that the matrices E and D are similar.
We know that two similar matrices have the same eigenvalues. Therefore, the characteristic

equation associated with M™EM is the same as the one associated with E. Consequently,

eigenvalues of E and D are identical.

Question: Show that, in general, at any point of the elastic body there exists (at least) three
mutually perpendicular principal directions of the strain due to an infinitesimal linear

deformation.
Solution: Let €,€,,€;be the three principal strains of the strain tensorg; . Then, they are the

roots of the cubic equation

(e-e)e-eNe—e)=0

And € +e +6,=€,+6, +€;,=¢;,
€6, +€,6;+68 = 1(eiiejj _eijeji)'
2

€,6,6; = ‘eij‘ =€ijk €1i€,;€5 -

We further assume that coordinate axes coincide with the principal directions of strain. Then,

the strain components are given by
€1 =6,6p=6,,65=6;,
€, =€53=6,=0,
and the strain quadric of Cauchy becomes
exX +6,X0 +6,X; =+k?. (5.3.22)
Now, we consider the following three possible cases for principal strains.
Case: 1 When €, # €, # €;. In this case, it is obvious that there exists three mutually orthogonal

eigenvectors of the second order real symmetric strain tensor€;. These eigenvectors are

precisely the three principal directions that are mutually orthogonal.



Case: 2 When € #¢€, =¢€;.
Let A,and A, be the corresponding principal orthogonal directions corresponding to strains

(distinct) €, and €, , respectively. Then
eiinj = elAii
&A= A, (5.3.23)

Let p, be a vector orthogonal to both A;and A,;. Then

pA =pA, =0 (5.3.24)
Let &P =0 (5.3.25)
Then a;A; :(eij pi)Alj :(eiinj)pi =eA;p, =0 (5.3.26a)
similarly q;A,; =0 (5.3.26b)

This shows that the vector (; is orthogonal to both A ;and A,;. Hence, the vectors  and P,
must be parallel. Let

g =ap, (5.3.27)
for some scalar & . From equation (5.3.25) and (5.3.27), we write

€P; =0 =ap (5.3.28)
which shows that the scalar « is an eigenvalue /principal strain tensor &; with corresponding
principal direction ;. Since €;has only three principal strains €;,€,, and two of these are
equal, so & must be equal to€, =€,. We denote the normalized form of p, by A . This shows
the existence of three mutually orthogonal principal directions in this case. Further, let V; be any

vector normal to A,;. Then V, lies in the plane containing principal directions A, and A,; . Let

Vv, =K A, +K,A; for some constant K and Kk, (5.3.29)
Now &V, :eij(klAzj +k2A3j)
ke, A )+ ooy A)
k(A0 )+ Ko(8:Ay )



= ez(klAZi + k2A3i) ( €, = es)
=6V
This shows that the direction V;is also a principal directions strain€, . Thus, in this case, any two

orthogonal (mutually) vectors lying on the plane normal to A can be chosen as the other two
principal directions. In this case, the strain quadric surface is a surface of revolution.
Case3: when €, =€, =¢€,, then the strain quadric of Cauchy is a sphere with equation
el(xf + X+ x§): +k?
2

k
or XX+ XS =+ —
€

and any three mutually orthogonal directions can be taken as the coordinate axes which are

coincident with principal directions of strain. Hence, the result.
5.4 GENERAL INFINITESIMAL DEFORMATION
Now we consider the general functional transformation and relation to the linear deformation.

Consider an arbitrary material point PO(Xio)in a continuous medium. let the same material point

assume after deformation the point Qo(éo). Then
£ = %0 +u,(x, %8, X0 (5.4.1)

where U, are the components of the displacement vector POQO. We assume that as well as
their partial derivatives is a continuous function. The nature of the deformation in the

neighborhood of the point P°can be determined by considering the change in the vector

EP = A ; in undeformed state.

Let Q(fl,fz, 53) be the deformed position of P. then the displacement U; at the point P is
U, (%, Xy, %) = & — X (5.4.2)

The vector A =x —x° (5.4.3)

Has now deformed to the vector

&&= A (say) (5.4.4)



Therefore, A=AN-A

ui(xf+AL,x§+A2,x§+%)—ui(x1°,xg,x§)

ou.
= & A 4.
[aN]J 4

plus the higher order terms of Taylor’s series. The subscript O indicates that the derivatives are

to be evaluated at the point P’ . If the region in the neighborhood of Pis chosen sufficiently

small, i.e. if the vector A is sufficiently small, then the product terms like A, AJ- may be ignored.
Ignoring the product terms and dropping the subscript O in (5.4.5), we write

A =U; A (5.4.6)

where the symbol U; ; has been used for%. Result (5.4.6) holds for small vectors A . If we
, -

j
further assume that the displacements U; as well as their partial derivatives are so small that
their products can be neglected, then the transformation (which is linear) given by (5.4.4)
becomes infinitesimal in the neighborhood of the point P° under consideration and

A =, A (5.4.7)

with o = U, (5.4.8)

Hence, all results discussed earlier are immediately applicable. The transformation (5.4.6) can be

spited into deformation and rigid body motion as

U . +u. U. —U.

=gy A + WA, (5.4.9)

Where e = %(ui’j + uj'i) (5.4.10)



1
Wy = E(ui,j _uj,i) (5.4.11)
The transformation
oA =€;A (5.4.12)

represents pure deformation and
oA = W AJ- (5.4.13)
represents rotation. In general, the transformation (5.4.9) is no longer homogeneous as both

strain components €; and components of rotation Wj; are function of the coordinates. We find

V=g, = Zu =u,, =diw (5.4.14)
X

That is, the cubic dilatation is the divergence of the displacement vector U and it differs, in

general, from point of the body. The rotation vector W, is given by

W, = Way, Wy = Wigy Wy =W, . (5.4.15)

Question: For the small linear deformation given by
U=aX X, (& +8&)+2a(X +X,)X&,, a =constant.
Find the strain tensor, the rotation and the rotation vector.

Solution: We have

U = 0% X;, U, = aX X, Uy = 2a(xl + X2)X3
Then strains are given by

ou, ou, ou,
_:ax,e = £ = 1e =—=2a + X
o%, 212 ox, Xy, €53 ox, (X1 2)

€=

1( oy u
1z=§ 8_ a_sz g(><1+Xz)

( 5U3] X3, €33 = 0Ky

13

1
2

We know that



-~ OuU.
w, zl[ﬂ_i] (5.4.16)

2{ ox; O
We find
Wiy =Wy =Wos = 0
o
W, = E[X1 - Xz]: Wy, Wiz =—0%; = _W31, W3 = —0Xg = —W,
Therefore
0 (Xi — X2) X
2 3
X —X
(vvij)=a —% 0 — X, (5.4.17)
Xg X3 0

The rotation vector W =W, is given by W, =€;, Uy . We find
[04
W =Wy = X5, W, = W5 = —aK3, Wy = W,y = E(Xz - Xl)

A

So w=ax,(6, —ez)+%(x2 —x )8, (5.4.18)
Exercise 1: For small deformation defined by the following displacement, find the strain tensor,
rotation tensor and rotation vector.

(i) Uy = —0X, X5, U, = 0% X,,U; =0

(i) U =a’(x =% ) U, =a?(X,+ %), Uy = —a%X,, & = constant (5.4.19)
Exercise 2: the displacement components are given by

U=-Yyz,Vv=XZ,W= ¢(X, y)calculate the strain components. (5.4.20)
Exercise 3: Given the displacements
u=3x%y,v=y*+6xz,w=62"+2yz

Calculate the strain components at the point (1, 0, 2). What is the extension of a line element

(parallel to the x- axis) at this point? (5.4.21)



Exercise 4: Find the strain components and rotation components for the small displacement

components given below

(a) Uniform dilation- u=ex, v=ey, w=ez

(b) Simple extension- u=ex, v=w=0

(c) Shearing strain- u=2sy, v=w=0

(d) Plane strain- u=u(x, y), v=v(x, y), w=0 (5.4.22)
5.5 SAINT-VENANT’S EQUATIONS OF COMPATIBILITY

By definition, the strain components €; in terms of displacement components U; are given by
1
€ =§[Ui,j +U;;] (5.5.1)

Equation (5.5.1) is used to find the components of strain if the components of displacement are

given. However, if the components of strain, €; are given then equation (5.4.1) is a set of six

partial differential equations in the three unknown Uu,,U,,U, .Therefore, the system (5.5.1) will
not have single valued solution for U, unless given strains & satisfy certain conditions which are
known as the conditions of compatibility or equations of compatibility.

Equations of compatibility

we have € = %(ui’j +uj,i) (5.5.2)

1
S0, Ciju = E(ui,jkl + uj,ikl) (5.5.3)
Interchanging i with k and J with | in equation (5.4.3), we write
1
€aij = E(uk,lij + ul,kij) (5.5.4)
adding (5.5.3) and (5.5.4), we get
| )
€ tCij = 5 Ui i Ui+ Ui + Uy j (5.5.5)
Interchanging iand lin (5.5.5), we get

1
€ Ty = _(ul,jki FUj i U+ ui,ljk) (5.5.6)
2



From (5.5.5) and (5.5.6), we obtain

€ijn TCaij =Cjx Ty
Or €in € —Cijt — €k =0 (5.5.7)
These equations are known as equations of compatibility.

These equations are necessary conditions for the existence of a single valued continuous

displacement field. These are 81 equations in number. Because of symmetry in indicesl, j and
K,l; some of these equations are identically satisfied and some are repetitions. Only 6 out of 81

equations are essential. These equations were first obtained by Saint-Venant’s in 1860.

A strain tensor €; that satisfies these conditions is referred to as a possible strain tensor.

Show that the conditions of compatibility are sufficient for the existence of a single valued

continuous displacement field.
Let PO(XiO) be some point of a simply connected region at which the displacements ui0 and
rotations Wi?are known. The displacements U; of an arbitrary point P'(Xi')can be obtained in

terms of the known functions €; by mean of a line integral along a continuous curve C joining

the point P%and P’.

! !

u; (X, X5, X3) = u x1 X0, x°) Idu (5.5.8)

If the process of deformation does not create cracks or holes, i.e., if the body remains

continuous, the displacements u} should be independent of the path of integration. That is, u'j

should have the same value regardless of whether the integration is along curve C or any other

curve. We write
ou.
du; =§‘ka =u;,dx = (ejk +ij)dxk (5.5.9)
k
Therefore
P' P
u} :u? + Iejkdxk + ijkdxk , P(Xk) being point the joining curve. (5.5.10)
0 pO

Integrating by parts the second integral, we write



P’ P’
Iijka = ijkd (x, — X', ) the point P'(x', )being fixed so dx', =0
0 PO

P
] 0 PI 1
={ox =% w1 - I(xk — X, Wy, 0% (5.5.11)
PO
From equations (5.5.10) and (5.5.11), we write

uj(&"leixsl):u?"'( Xk Jk Iejkdxk+j —X ijldxl

O W+ j le, +( W, Jdx (5.5.12)

where the dummy index k of €, has been changed tol.

10
but ij,l 2 a [u] k uk ]]
1
E[uj,kl _uk,jl]

1 1
:E[uj,kl +u|,jk]_§[ul,jk —U il
:ejl,k _elk,j (5513)

using (5.5.13), equation (5.5.12) becomes

P
Uj (Xili X2I1 X3') = U(j) + (Xk I_XE)‘N?k + I[ejl +{Xk I_Xk}{ejl,k _ekl,j}]dxi
PO

]

b
0 v 0,0
=U: +(xk —X )\Njk + J.U“dx, (5.5.14)
po
where for convenience we have set
U =6, + (%=X )(ej,]k —ek,,j) (5.5.15)

which is known function as€; are known. The first two terms in the side of equation (5.5.14) are

independent of the path of integration. From the theory of line integrals, the third term



becomes independent of the path of integration when the integrands Uj,Xm must be exact

differentials. Therefore, if the displacements ui(xl',xz', X3) are to be independent of the path

of integration, we must have

U, _ oV for i, j,1=1,2,3 (5.5.16)
OX; oX,
Now
U,i=¢eu, +(Xkl_xk)(ejl,ki —ekl,ji)_5ki (ejl,k _ekl,j)
=€j1i — i T +(Xk =X )(ejl,ki —€4.ii) (5.5.17)
and

Ujl,i = eji,l +(Xk '_Xk )(eji,kl _eki,jl)_é‘kl (eji,k _eki,j)
=it €5t T8 + (%%, )(eji,kl _eki,jl) (5.5.18)
Therefore, equations (5.5.16) and (5.5.17), (5.5.18) yields
(Xk I_XkIejl,ki —€,ji ~€jix +Eu]=0
Since this is true for an arbitrary choice of X, '=X, (as P'is arbitrary), it follows that
€jin T ji —Cij — € =0 (5.5.19)

This is true as these are the compatibility relations. Hence, the displacement (5.5.8)
independent of the path of integration. Thus, the compatibility conditions (5.5.7) are sufficient
also.

Remarks1: The compatibility conditions (5.4.7) are necessary and sufficient for the existence of

a single valued continuous displacement field when the strain components are prescribed.
In details form, these 6 conditions are

o, _ 0 (—aezg L0 aelzj
OX,0%; OX | OX ~ OX, OX

- X,  OX, 0%

& _ i _8931 + 5‘812 + 8623
OX0%,  OX,



82633 _i — 08, +8623 +ae31
OX0X,  OXq

OX;  OX 0%,

20%, _ %y + 0’y
oXOX, X, %

20%e,, 0y, . 08y,
MOXg 0% Xy

2 2 2
20 €y _ 0 ezg n 0 e121 ‘ (5.5.20)
X% 0% X

These are the necessary and sufficient conditions for the components g to give single valued
displacements U, for a simply connected region.

Definition: A region space is said to be simply connected if an arbitrary closed curve lying in the
region can be shrunk to a point, by continuous deformation, without passing outside of the

boundaries.
Remarks2: The specification of the strains & only does not determine the displacements U;
uniquely because the strains €;characterize only the pure deformation of an elastic

neighborhood of the point X; .
The displacements U; may involve rigid body motions which do not affect;; .

Examplel: (i) Find the compatibility condition for the strain tensor €;if €,€,,,€33are
independent of X;and €, =€;, =€, =0.
(ii) Find the condition under which the following are possible strain components.
€= k(x12 - Xzz) €, = kIX1X2’ezz = leXZ’
€, =65, =63, =0,k &K'are constants
(iii) When € given above are possible strain components, find the corresponding
displacements, given that U, =0

Solution: (i) We verify that all the compatibility conditions except one are obviously satisfied.

The only compatibility to be satisfied by & is



(ii) Five conditions are trivially satisfied. The remaining condition (5.5.20) is satisfied iff
k'=K as €20 = _2k’elz,12 = kliezz,n =0

(iii) We find

€=U, = k(X:LZ - Xz2 )’ Upp =KX X, Uy p +Upy = —=2KX X, (. K'=—k)

Ups =U3 = 0
This shows that the displacement components U, and U, are independent of X, .

We find (exercise)

h =2 @x 6% 1) 0%+,

1 2
u, = E kx X,” + CX, + C, where C;,C,and c constants.

Example: Show that the following are not possible strain components

e, = k(xl2 + xzz), e, = k(x22 + x32), €, =0

e, =K'XX,%;, €, =€, =0,k &K' being constants.
Solution: The given components €;are possible strain components if each of the six
compatibility conditions are satisfied. On substitution, we find

2k =2k'x,
This can’t be satisfied for X, #0. For X, =0, this gives k=0 and then all & vanish. Hence, the
given g; are not possible strain components.
Exercisel: Consider a linear strain field associated with a simply connected region R such that

2 2
e, = AX,", e, = AX,",€,BX,X,,e,; =€,; =€,,0 find the relationship between constant A and

B such that it is possible to obtain a single- valued continuous displacement field which

corresponds to the given strain field.

Exercise2: Show by differentiation of the strain displacement relation that the compatibility

conditions are necessary condition for the existence of continuous single-valued displacements.



Exercise3: Is the following state of strain possible? (c=constant)
_ ( 2 2) 2 _9 —e —e. =0
ell =C Xl + X2 X3’ e22 - CXZ X3’ e12 - CX1X2X3’ e31 - e32 - eB3 -

Exercised: Show that the equations of compatibility represent a set of necessary and sufficient
conditions for the existence single-valued displacements. Drive the equations of compatibility

for plane strain.
Exercise 5: If €, =¢,,=€,,=0,6,=¢,,and €,; =¢,; where @is a function of X and X,,

show that ¢ must satisfy the equation
V¢ =constant

Exercise 6: If €,and €,; are the only non-zero strain components and €,;,€,; are independent

of X;, show that the compatibility condition may be reduced to the following condition
€13, — €53, =constant.

Exercise 7: Find which of the following values of €; are possible linear strains
. 2 2 2
(i) &, = oc(x1 + X, )ezz =0X, 8, = 20X X,,65 =€, =€, =0, = constant.

X+ X X X,
(ii) e. = X X, + X5 X3
XZ X3 Xl + X3
Compute the displacements in the case (i).

5.6 FINITE DEFORMATIONS

All the results reported in the preceding sections of this chapter were that of the classical theory
of infinitesimal strains. Infinitesimal transformations permit the application of the derivatives of

superposition of effects. Finite deformations are those deformations in which the displacements
U; together with their derivatives are no longer small. Consider an aggregate of particles in a

continuous medium. We shell use the same reference frame for the location of particles in the

deformed and undeformed states.
Let the coordinates of a particle lying on a curve C, before deformation, be denoted by
(ai, a,, a3) and let the coordinates of the same particle after deformation (now lying same curve

C) be (Xl, X5, XS). Then the elements of arc of the curve C0 and C are given, respectively, by



ds,” =dada (5.6.1)
and ds® = dxdx (5.6.2)
we consider first the Eulerian description of the strain and write

8 =2(%, %, %) (56.3)
then da =g ;dx; =& ,dx, (5.6.4)
substituting from (5.6.3) into (5.6.1), we write

ds,” =ay ;a,dx,dx, (5.6.5)
using the substitution tensor, equation (5.6.2) can be rewritten as

ds” = 5,.dx;dx, (5.6.6)

We know that the measure of the strain is the difference ds’ — dSo2

from equations (5.6.5) and (5.6.6), we get
ds —ds,” = (0, — &, Jox e
=217, dx;dx, (5.6.7)
where
21y = Oy — 8 ;8 (5.6.8)

We now write the strain components 77;, in term of displacement components U; , where

U =%—g& (5.6.9)
this gives
3 =%~y
Hence
&,;=06;—U; (5.6.10)
&y = é‘ik — Ui (5.6.11)

Equations (5.6.8), (5.6.10) and (5.6.11) yield

277jk = 5jk _(5ij _ui,jxéik _ui,k)



=0 =[O = Uy j — Uy +U; U ]
=(u11k +uk,j)_ui,jui,k (5.6.12)

The quantities 77;, are called the Eulerian strain components.

If, on the other hand, Lagrangian coordinates are used, and equations of transformation are of

the form

x =x(a,a,,a,) (5.6.13)
then

dx =X ;da =X, da, (5.6.14)
and ds” = x, ;% dada, (5.6.15)
while

ds,’ = 5;da,da, (5.6.16)

The Lagrangian components of strain €, are defined by

ds’ —ds,” =2 ¢, da,da, (5.6.17)
Since

X =a +U (5.6.18)
Therefore,

X, =0 T Ui

Xix = O +Ujy
Now

ds? —ds,’ = (x % — 5, Ja,da,
=|.(5ij +ui,jx5ik +Ui,k)_5jkjdajdak
=(uj,k +Uy +ui,jui,k)dajdak (5.6.19)

Equation (5.6.17) and (5.6.19) give

2€3=U;, +Ug; U, U, (5.6.20)



It is mentioned here that the differentiation in (5.6.12) is carried out with respect to the variable

X, while in (5.6.19) the ‘&, are regarded as the independent as the independent variables. To

make the difference explicitly clear, we write out the typical expressions njkand ejkin

2 2 2
GG e
oX 2|\ ox OX OX

unabridged notation,

[au av] [8u8u oV oV awawj
=\t || ==+t ——= (5.6.22)
oy oX oX oy oxoy oXx oy
2 2 2
em:a_u{(a_u) {2 {a_w” 5623
oa 2|\ oa ob oa

2ew=(a“ a")+(8_“8—“+@@+@@) (5.6.24)

_+_
oa oOa oaocb ocaob oa odb

When the strain components are large, it is no longer possible to give simple geometrical

interpretations of the strain €; and 77;, .

Now we consider some particular cases.

Casel: Consider a line element with
ds, =da,,da, =0,da; =0 (5.6.25)

Define the extension E, of this element by

E - ds —ds,
ds,
then
ds=(1+E)ds, (5.6.26)

and consequently

ds’ —ds,” =2 ¢, da,da,

=2¢, da (5.6.27)

Equation (5.6.25) to (5.6.27) yield



1+Ef-1=2¢,
Or E, =yl+2¢, -1 (5.6.28)
When the strain €,,.is small,(5.6.28) reduced to

E =€,

As was shown in discussion of strain infinitesimal strains.

Case II: Consider next two line elements
ds, =da,,da, =0,da, =0 (5.6.29)
and
ds, =da, da, =da, =0 (5.6.30)
These two elements lie initially along the &,-and a, -axes.
Let @denote the angle between the corresponding deformed dx; and d;i, of length ds and
dgrespectively. Then
dsdscosd =dxdx =x X ,da,da, =x X dada,

=2edada, (5.6.31)

Let oy, =%—9 (5.6.32)

Denotes the change in the right angle between the line elements in the initial state. Then, we

have
. da, \ da,
sin =2 —= | = 5.6.33
(22%) e23(dS j{ds] ( )
= 2 € (5.6.34)
J1+26, 1426,

using relations (5.6.26) and (5.6.28).

Again, if the strains € are so small that their products can be neglected, then

=26, (5.6.35)



As proved earlier for infinitesimal strains.

Remarks: If the displacements and their derivatives are small, then it is immaterial whether the
derivatives are calculated at the position of a point before or after deformation. In this case, we
may neglect the nonlinear terms in the partial derivatives in (5.6.12) and (5.6.20) and reduce
both sets of formulas to

277;k =U; +U,; :ZEJk

Which were obtained for an infinitesimal transformation, It should be emphasized of finite
homogeneous strain are not in general commutative and that the simple superposition of

effects is no longer applicable to finite deformation.
Books Recommended:

4, Sokolnikoff, I. S. Mathematical Theory of Elasticity, Tata McGraw Hill
Publishing Company, Ltd., New Delhi, 1977

5. S.Timoshenko and N. Goodier, Theory of Elasticity, McGraw Hill, New
York, 1970.



CHAPTER-VI
ANALYSIS OF STRESS

6.1 INTRODUCTION

Deformation and motion of an elastic body are generally caused by external forces such
as surface loads or internal forces such as earthquakes, nuclear explosions etc. When an
elastic body is subjected to such force, its behaviour depends on magnitude of forces,
upon their direction and upon the inherent strength of the material of which the body is
made. Such forces give rise to interaction between neighbouring portions in the interior
parts of the elastic solid. The concept of stress vector on a surface and state of stress at a

point of the medium shall be discussed.

An approach to the solutions of problems in elastic solid mechanics is to examine
deformation initially and then consider stresses and applied loads. Another approach is to
establish relationship between applied loads and internal stresses first and then to
consider deformations. Regardless of the approach selected, it is necessary to derive the
components relations individually.

6.2 BODY FORCES AND SURFACE FORCES

Consider a continuous medium. We refer the points of this medium to a rectangular
Cartesian coordinate system. Let t represents the region occupied by the body in
deformed state. A deformable body may be acted upon by two different types of external
forces.

(i) Body forces: These forces are those forces which act on every volume element of the
body and hence on the entire volume of the body. Forexample, gravitational force and
magnetic forces are body forces. Let p denotes the density of a volume elementAt of the
bodyt. Let g be the gravitational force/acceleration. Then the force acting on mass pAt

contained in volume At is g pAt.

(i1) Surface forces: These forces act on every surface element of the body .Such forces
are also called contact forces. Loads applied over the external surface or bounding
surface are examples of surface forces. Hydrostatic pressure acting on the surface of a

body submerged in a liquid /water is a surface force.



(iii) Internal forces: Internal forces such as earthquakes, nuclear explosions arise from

the mutual interaction between various parts of the elastic body.

Now we consider an elastic body in its unreformed state with no forces acting on it. Let a
system of forces applied on it. Due to these forces, the body is deformed and a system of
internal forces is set up to oppose this deformation. These internal forces give rise to
stress within the body. It is therefore necessary to consider how external forces are

transmitted through the medium.
6.3 STRESS VECTOR ON A PLANE AT A POINT

Let us consider an elastic body in equilibrium under the action of a system of external
forces.

Let us pass a fictitious plane m through a point P(x1, X2, X3,) in the interior of this body.
The body can be considered as consisting of two parts, say, A and B and these parts are in
welded contacts at the interface.Part A of the body is in equilibrium under
forces(external) and the effect of part B on the plane ©. We assume that this effect is

continuously distributed over the surface of intersection around the point P, let us
consider a small surface 6S(on the place =) and letv be an outward unit normal unit
vector (for the part A of the body).The effect of part B on this small surface element can

be reduced to a force and a vector couple C. Now let usshrink in size towards zero in

amanner such that the point P always remains aside and remains the normal vector.
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Now T is a surface force per unit area. The force Tis called the stress vector or traction

on the plane nat P.

Note 1: Forces acting over the surface of a body are never idealized point forces; they
are, in reality, forces per unit area applied over some finite area. These external forces per
unit area are also called tractions.

Note 2:Cauchy’s stress postulate

If we consider another oriented plane containing same point P(x;), then the stress vector is
likely to have a different direction. For this purpose, Cauchy made the following

postulated known as Cauchy’s stress postulate

“The stress vector T depends on the orientation of the plane upon which it acts”.

Lety be the unit normal to the plane 7 through the point P.This normal characterizes the

orientation of the plane upon which the stress vector acts. For this reason, we write the
stress vector asT , indicating the dependence on the orientationy .
Cauchy’s Reciprocal Relation

When the plane © is in the interior of the elastic body, the normaly has two possible

directions that are opposite to each other and we choose one of these directions.

A

-V

Figure 6.2



For a chosenv ,the stress vector T is interpreted as the internal surface force per unit area

acting on plane & due to the action of part B of the material/body which is directed upon

the part A across the planer.
Consequently, T is the internal surface force per unit area acting on = due to the action of

part A for which v is the outward drawn unit normal. By Newton’s third law of motion,

vectorsT and -T balance each other as the body is in equilibrium.

which is known as Cauchy’s Reciprocal Relation.

Homogenous State of Stress

If © and 7'are any two parallel planes through any two points P and P’ of a continuous
elastic body, and if the stress vector on = at P is equal to the stress on z'at P’, then the

state of stress in the body is said to be a homogeneous state of stress.

6.4 NORMAL AND TANGENTIAL STRESSES

In general, the stress vector T is inclined to the plane on which it acts and need not be in
the direction of unit normal. The projection of T on the normal vis called the normal

stress. It is denoted by o or o, . The projection of T on the plane =, in the plane of T and

v, Is called the tangential or shearing stress. It is denoted byt or o, .
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Figure 6.3
Thus, U=Un=-l|:-.l/
r=0,=Tut (6.4.1)
T =07 +0? (6.4.2)

v N
where T unit vector normal to v and lies in the place =.

A stress in the direction of the outward normal is considered positive (i.e.0> 0) and is
called a tensile stress. A stress in the opposite direction is considered negative (o< 0)

and is called a compressible stress.

If6=0,Tis perpendiculartoﬁ .The stress vector T is called a pure shear stress or a

pure tangential stress.

If t =0, then T is parallel tov . The stress vector T is then called pure normal

stress.When T acts opposite to the normalv ,then the pure normal stress is called
pressure (c <0, = 0).

N n

From (6.4.1), we can write 1: =ov+rt (6.4.3)

T= |T

— O

(6.4.4)



Note: =0, = |"I/'|Sina (6.4.5)

14
n

n

|0'|=‘T><v
as v|=1

n

Thist in magnitude is given by the magnitude of vector product of Tandv

6.5 STRESS COMPONENTS

Let P(x;) be any point of the elastic medium whose coordinates are (X1, X2 , X3) relative to

rectangular Cartesian system oXiX2 X3,

:

Figure6.4

1
Let T denote the stress vector on theplane, with normal along x, —axis, at the point P.

1
Let the stress vector T has components T11,T12, T13, i.€.

A
1 n n n N

T22'1161+2'12 €2+7,3€3 =173;€] 6_5_1)

2
Let T denote the stress vector on the plane, with normal along X, —axis, at the point P.



2 n N n n

T=r,e1+7,€2+7,€3 =7,€;j (6.5.2)

3 N n n n

Similarly T=r1y€1+75€2+ 7565 =758 (6.5.3)

Equations (6.5.1) to (6.5.3) can be condensed in the following form

T= T €j (6.5.4)

i n N n

T.ek :(T”e])ek :Tijé‘jk =Tik (655)

Thus, for given i & j, the quantity tj; represent the jth components of the stress vector T

A

acting on a plane havingei as the unit normal. Here, the first suffix i indicates the
direction of the normal to the plane through P and the second suffix j indicates the
direction of the stress component. In all, we have 9 components Tjj at the point P(x;) in the

0X1X2 X3 System. These quantities are called stress — components. The matrix

Tn Tz T3
(Tij) =T T To
Tag Ty Ty (6.5.6)
whose rows are the components of the three stress vectors, is called the matrix of the state

of stress at P. The dimensions of stress components are force/(length)>=MLT2,

The stress componentsr,,,z,,,r;;are called normal stresses and other components

in 1 n
Tip1Ti3r To1r Togr 911 75 are called as shearing stresses( Tei =e;,, T.e2 =e, etc.). In

CGS system, the stress is measured in dyne per square centimetre.In English system, it

measured in pounds per square inch or tons per square inch.

DYADIC REPRESENTATION OF STRESS

It may be helpful to consider the stress tensor as a vector - like quantity having a
magnitude and associated direction (s), specified by unit vector. The dyadic is such a

representation. We write the stress tensor or stress dyadic as



AN AN AN AN N N n n

T=7;€i€j=1,€1€61+7,€1€2+73€1€3+7, €2€1+7,,€2€2
N N N N N N N N (6.5.7)
+7,3€2€3+ 473, €3€1+7,,€3€2+7,5;,€3€3

where the juxtaposed double vectors are called dyads.

i ] . no
The stress vector T acting on a plane having normal along e; is evaluated as follows:

n n n n n

TZE‘Ei :(rjkejek).ei :rjkejﬁki =T7;;€) =17;€j (6.5.8)

6.6 STATE OF STRESS AT A POINT-THE STRESS TENSOR

We shall show that the state of stress at any point of an elastic medium on an oblique

plane is completely characterized by the stress components at P.

ANALYSIS OF STRESS

Let T be the stress vector acting on an oblique plane at the material point P, the unit

normal to this plane being v = v, -

Through the point P, we draw three planar elements parallel to the coordinate planes. A
fourth plane ABC at a distance h from the point P and parallel to the given oblique plane

at P is also drawn. Now, the tetrahedron PABC contains the elastic material.

Figure6.5

Let tj be the components of stress at the point P regarding the signs (negative or

positive) of scalar quantities tij, we adopt the following convention.



If one draws an exterior normal (outside the medium) to a given face of the tetrahedron
PABC ,then the positive values of components 7tjj are associated with forces acting in the
positive directions of the coordinate axes. On the other hand, if the exterior normal to a
given face is pointing in a direction opposite to that of the coordinate axes, then the
positive values of 7jj are associated with forces directed oppositely to the positive
directions of the coordinate axes.

Let o be the area of the face ABC of the tetrahedron in figure. Let o1, 62, o3be the areas

of the plane faces PBC, PCA and PAB (having normal’s along X; —, X, —& X, —axes)

respectively.

n

Then o; = ocos(x;,v) =ov, (6.6.1)
The volume of the tetrahedron is
1
V= 3 ho (6.6.2)

Assuming the continuity of the stress vectorT =T, the xi component of the stress force

acting on the face ABC of the tetrahedron PABC (made of elastic material) is (IV' i+&)o

provided limeg, =0 (6.6.3)

h—0

Here &; are inserted because the stress force acts at points of the oblique plane ABC and
not on the given oblique plane through P. Under the assumption of continuing of stress
field, quantities ; are infinitesimals. We note that the plane element PBC is a part of the

boundary surface of the material contained in the tetrahedron. As such, the unit outward

A

normal to PBC is -ei . Therefore, the xi component of force due to stress acting on the

face PBC of area oj iS
(z4i + &) 0 (6.6.4a)

where limg; =0

h—0

Similarly forces on the face PCA and PAB are

(15 +€5)0,, (T4 +&5)0;



with lime, =lime; =0
h—0 h—0

(6.6.4b)
On combining (6.6.4a) and (6.6.4b) , we write

('Tji +gji)0j (6.6.5)
as the x; -- component of stress force acting on the face of area provided Linggji =0

In equation (6.6.5), the stress components are taken with the negative sign as the exterior
normal to a face of area oj is in the negative direction of the xj axis.Let Fi be the body
force per unit volume at the point P. Then the xicomponent of the body force acting on
the volume of tetrahedron PABC is

%ha(Fi +&) (6.6.6)
where &/'s are infinitesimal and

limeg =0
h—0

Since the tetrahedral element PABC of the elastic body is in equilibrium, therefore, the
resultant force acting on the material contained in PABC must be zero. Thus

d’i+gi)a+ (-7 +€;)0; +%ho-(Fi +&Yh=0
Using (6.6.1), above equation (after cancellation of 6) becomes
T+ &)+ (=1 +&,)v, +%ho(Fi +&Yh=0 (6.6.7)

As we take the limh —0in (6.6.7), the oblique face ABC tends to the given oblique

plane at P. Therefore, this limit gives

or i =Y (6.6.8)



This relation connecting the stress vectorT and the stress componentsz; is known as

Cauchy's law or formula.

It is convenient to express the equation (6.6.8) in the matrix notation. This has the form

14

T

L Ty Ty T3 || W1

T, T, T Ty ||V (6.6.8a)
14

T, Ti3 Ty Ta3 | V3

As T and vi are vectors. Equation (6.6.8) shows, by quotient law for tensors, that new

components form a second order tensor.
This stress tensor is called the CAUCHY'S STRESS TENSOR.

We note that, through a given point, there exist infinitely many surface plane elements.
On every one of these elements we can define a stress vector. The totality of all these
stress vectors is called the state of stress at the point. The relation (6.6.8) enables us to
find the stress vector on any surface element at a point by knowing the stress tensor at
that point. As such, the state of stress at a point is completely determined by the stress

tensor at the point.

Note: In the above, we have assumed that stress can be defined everywhere in a body and
secondly that the stress field is continuous. These are the basic assumptions of continuum
mechanics. Without these assumptions, we can do very little. However, in the further
development of the theory, certain mathematical discontinuities will be permitted /
allowed.

6.7 BASIC BALANCE LAWS
(A) Balance of Linear Momentum:

So far, we have discussed the state of stress at a point. If it is desired to move from one
point to another, the stress components will change. Therefore, it is necessary to

investigate the equations / conditions which control the way in which they change.



While the strain tensor ejj has to satisfy six compatibility conditions, the components of
stress tensor must satisfy three linear partial differential equations of the first order.
The principle of balance of linear momentum gives us these differential equations. This
law, consistent with the Newton's second law of motion, states that the time rate of

change of linear momentum is equal to the resultant force on the elastic body.

Consider a continuous medium in equilibrium with volume t and bounded by a closed

surface 6. Let Fj be the components of the body force per unit volume and T, be the

component of the surface force in the x; direction. For equilibrium of the medium, the

resultant force acting on the matter within t must vanish i.e.

[Fdr+ [T do=0 fori=12,3 (6.7.1)

We know the following Cauchy's formula

T =7r.v. fori=123 (6.7.2)

n

whererij is the stress tensor and vj is the unit normal to the surface. Using (6.7.2) into

equation (6.7.1), we obtain

1]

IFidr+Ir--V-dJ=O fori=12,3 (6.7.3)

We assume that stresses tij and their first order partial derivatives are also continuous and
single valued in the regionz . Under these assumptions, Gauss-divergence theorem can
be applied to the surface integral in (3) and we find

J-T- -dZ'Z.[T--V-dO'

Jij i (6.7.4)
From equations (6.7.3) and (6.7.4), we write
j(rji +F)dr=0 (6.7.5)

T

foreach i =1, 2, 3. Since the region 1 of integration is arbitrary (every part ofthe medium

is in equilibrium) and the integrand is continuous, so, we must have



for each i = 1,2,3 .and at every interior point of the continuous elastic body. These
equations are

oty N 07, N 07y
OX, OX,  OX,g

+F, =0,

o7y, N 07,, N 075y,
OX,  OX,  OXg

+F, =0, (6.7.7)

0743 N 07 ,, N 074 N
OX, oX, OX,

F, =0,

These equations are referred to as Cauchy's equations of equilibrium. These equations
are also called stress equilibrium equations. These equations are associated with

undeformed Cartesian coordinates. These equations were obtained by Cauchy in 1827.

Note 1: In the case of motion of an elastic body, these equations (due to balance of linear
momentum) take the form

7 +F = pl (6.7.8)

where U; is the acceleration vector and p is the density (mass per unit volume) of the

body.

Note 2: When body force Fi is absent (or negligible), equations of equilibrium reduce to
£y = 0 (6.7.9)

Example: Show that for zero body force, the state of stress for an elastic body given by

T, =X +Y+32% 1, =2X+ Y’ + 22, 14 =-2X+y+12°

Ty =Ty =—XY+2°, 1, =7y = Y> —XZ, T, =7, =X’ —yzis possible.

Example: Determine the body forces for which the following stress field describes a state

of equilibrium
7, =—2X* =3y? =57 ,1,, =2y +7, 745 =4X+y+32-5
Ty, =Ty =2+4XYy—6, 73 =74 =—3X+2Y+1, 7,=7,,=0

Example: Determine whether the following stress field is admissible in an elastic body

when body forces are negligible.



yz+4 7°4+2Xx 5y+z
[ti] =| . xz+3y 8x°
2Xyz
(B) Balance of Angular momentum

The principle of balance of angular momentum for an elastic solid is**The time rate of
change of angular momentum about the origin is equal to the resultant moment
about of origin of body and surface forces." This law assures the symmetry of the stress
tensor Tjj.

Let a continuous elastic body in equilibrium occupies the regiont bounded by surface o.

Let Fi be the body force acting at a point P(x;) of the body, Let the position vector of the

point P relative to the origin be F:xi eiThen , the moment of force F is
rxF = &y X F, where g, is the alternating tensor.

As the elastic body is in equilibrium, the resultant moment due to body and surface forces

must be zero. So

[ g Fdz+ [£4,x, T, do = Ofor each i =1,2,3 (6.7.9)

Since, the body is in equilibrium, so the Cauchy's equilibrium equationsgive

Fo=—7u, (6.7.10)

The stress vector T« in terms of stress components is givenby Tk =7, v, (6.7.11)
The Gauss divergence theorem gives us

Ieijkxjr,kvldo = j[gijkxjr,k ],l dr

o T

:_[gijk[xjrlk,l + 5jIT|k]dT

T

=Igijk[sz-lk,l +7,]dr (6.7.12)

T

From equations (6.7.9), (6.7.10) and (6.7.12); we write



.[gijkxj (_le,l )dT + J-gijk [XjT|k,| + Tjk ]dT = 0 (6713)

This gives

[egxrydr =0 (6.7.14)

T

fori=1, 2, 3. Since the integrand is continuous and the volume is arbitrary, so
EuTy =0 (6.7.15)
fori=1, 2, 3 and at each point of the elastic body. Expanding (6.7.5) , we write
E13Tos + E13p Ty =0
=Ty —Typ =0
EnaTia T ExTy =0
=Ty —T5 =0
EapTiy T EqnTpn =0
=7, — 75 =0
Ie. =71 =7T; for i = j at every point of the medium. (6.7.16)

This proves the symmetry of stress tensor. This law is also referred to as Cauchy's

second law. It is due to Cauchy in 1827.

Note 1: On account of this symmetry, the state of stress at every point is specified by six
instead of nine functions of position.

Note 2: In summary, the six components of the state of the stress must satisfy three

partial differential equations z;; + F =0 within the body and the three relations (

TVi =7;,;v;) on the bounding surface. The equations TVi =7;,;v; are called the boundary
conditions.
Note 3: Because of symmetry of the stress tensor, the equilibrium equations may be

writtenas 7; ; +F =0



Note 4: Since'l"j =, equations of equilibrium (using symmetry of 1) may also be

ji

i i
expressedas T, =-F or div'l: =-F
Note 5: Because of the symmetry of tij , the boundary conditions can be expressed as

Vv
Ti =T,V

Remark: It is obvious that the three equations of equilibrium do not suffice for the
determination of the six functions that specify the stress field. This may be expressed by
the statement that the stress field is statistically indeterminate. To determine the stress
field, the equations of equilibrium must be supplemented by other relations that can't be

obtained from static considerations.

6.8 TRANSFORMATION OF COORDINATES

We have defined earlier the components of stress with respect to Cartesian system
oxixax3. Let 0X;X;X;be any other Cartesian system with thesame origin but oriented
differently. Let these coordinates be connected by the linear relations

Xy =L 5% (6.8.1)

where ¢ are the direction cosines of the x; - axis with respect to the x, - axis.

i.e i =Cos(X}, %) (6.8.2)

prh

Let 7, be the components of stress in the new reference system (Figure 6.6)



T 22

Figure6.6& 6.7

Figure6.7, Transformation of stress components under rotation of co-ordinates system.

Theorem: let the surface elementAc and Ac', with unit normalvand v’ , pass through

14

the point P. Show that the component of the stress vector T acting on Ac in the

direction ofv'is equal to the component of the stress vector T acting on Ac' in the

direction of v

Proof: In this theorem, it is required to show that

N v N
Thus, v'=T.v

1_|<‘>

(6.8.3)

The Cauchy's formulagives us



s RS
Il
N
<

iV (6.8.4)

and

!

g (6.8.5)

1—|<‘>

due to symmetry of stress tensors as with

n
’

—_ '_
V—VJ- Vv _Vj

7’

N V’ N
v=T.v,

Now

1—|<\>

- (TijV} Vi

- (TjiV} Vi

=T, v (6.8.6)
This completes the proof of the theorem.

Article: Use the formula (6.8.3) to derive the formulas of transformation of the

components of the stress tensor Tij.
Solution: Since the stress components 7. is the projection on the x| — axis of the stress

vector acting on a surface element normal to the x|, — axis (by definition), we can write

n
P v’

=T, =T (6.8.7)
where
v'is parallel to the x'p-axis (6.8.8)
v is parallel to the x'q - axis
Equations (6.8.6) and (6.8.7) imply
Thg = ViV (6.8.9)

Since



Vi =cos(X},,X) =1 (6.8.10)

proh
v, =cos(x(;,xi) =L

Equation (6.8.9) becomes

! !

Tpg = TijViV (6.8.11)

Equation (6.8.11) and definition of a tensor of order 2, show that the stress components Tj
transform like a Cartesian tensor of order 2. Thus, the physical concept of stress which is
described by tijagrees with the mathematical definition of a tensor of order 2 in a

Euclidean space.

6.9 Theorem: Show that the quantity

O =1y, +7,, +743iS invariant relative to an orthogonal
transformation of Cartesian coordinates.
Proof: Let z; be the tensor relative to the Cartesian system0x,X,X,. Let these axes be
transformed to OX;X,X; under the orthogonal transformation

(6.9.1)

where

£ 5 =Cos(X,, %) (6.9.2)
Letz,; be the stress components relative to new axes, then these components are given by
the rule for second order tensors.

Ol 0T (6.9.3)

This implies rlo=a_a T

! ! [

This proves the theorem.



Remark: This theorem shows that whatever be the orientation of three mutually
orthogonal planes passing through a given point, the sum of the normal stresses is
independent of the orientation of these planes.

Exercise 1. Prove that the tangential traction parallel to a line | , across a plane at right
angles to a line I' , the two lines being at right angles to each other , is equal to the
tangential traction, parallel to the line I', across a plane at right angles to I.

Exercise 2: Show that the following two statements are equivalent.

(a) The components of the stress are symmetric.

n n

(b) Let the surface elements Ac and Ac' with respective normalv and v ' passes through
apointP. ThenT .v'=T.v

Hint: (b) = (a)

N N A A

Let v=1 and v'=j

Then T =T.j=T, =1,
v N i " j

and '[.v:'[ i=Ti=r;

by assumption 'IV' v’:'i' v,

therefore T =T,
This shows that z;; is symmetric.

Example I: The stress matrix at a point P in a material is given as

3 1 4
[F,]=l1 2 -s5]
4 -5 0

Find
(i) The stress vector on a plane element through P and parallel to the plane 2x| +x2 —x3 =
1,



(if) The magnitude of the stress vector, normal stress and the shear stress.
(iii) The angle that the stress vector makes with normal to the plane.
Solution: (i) The plane element on which the stress vector is required is parallel to the

plane 2x; +x2 —x3 = 1. Therefore, direction ratios of the normal to the required plane at P

are< 2, 1,-1>. So, the d.c.'s of the unit normal 1A/:vi to the required plane at P are

2 1 1
B TR

vV, =

letT . =T, be the required stress vector. Then, Cauchy's formula gives

2]
3 1 4 J1€
T,|=[1 2 -s| | =
y J6
T3 4 —5 O __1
V6 |
or T,=312,T,=3J312,T, =312

So, the required stress vector at P is
TV1 =+/3/2(e1+ez+ez)and|T|=~/33/2

(if) The normal stress is given by

‘7=-I_-V=\/§--i(2+3-1)=%x4=2 the shear stress is given

2 J6

by
T:,/njz_azzm:%

(Asz 0,50 the stress vector T.need not be along the normal to the plane element)

N

iii)letbbe the angle between the stress vector T. and normal v .



Then

Ty
= ~ —2 =
cosd — /33/2 \/8/33
IT).v]

This determines the required inclination.

Example 2: The stress matrix at a point P(x;) in a material is given by

X% X5 0
W o -
Til=| X3 Xp

Find the stress vector at the point Q (1, 0, -1) on the surface x; + xZ = x,
Solution: The stress vector T is required on the surface element

f(Xi , X2 , X3) =% —X5 —x5 =0, at the point Q(I , 0, -I). We find Vf =ei+ 2esand

V| = J/5 at the point Q.

Hence, the unit outward normal Vo v; to the surface f = 0 at the pointQ(1,0,-1) is

A \VZi 1 A
V:W:g(el+2e3)

o 1
giving M= =0,v, =

&l

The stress matrix at the point Q(1, 0, -1) is

-1 10
)= 1 0 o
1 00

letT =T, be the required stress vector at the point Q. Then, Cauchy's formula gives



_V_ _l_

Tl [-110 5

T,|=[1 0 0 0

, 2

T, Lo 00 =
or T, =—J1/5,T, =+/1/5,T, =0

So, the required stress vector at P is

v 1 n n
T,=——=(-ei1+e2)

J5

Example 3: The stress matrix at a certain point in a given material is given by

3
[Tij]: 1

N O -
o N P

Find the normal stress and the shear stress on the octahedral plane element through the
point.

Solution: An octahedral plane is a plant whose normal makes equal angles withpositive

directions of the coordinate axes.Hence, the components of the unit normal v =v, are

1
V=V, =V, =—

J3

letT =T, be the required stress vector. Then, Cauchy's formula gives

L3110 . 5
T,|={1 0 2| |1|]=—=]3
T,| L 20 V3 3
or T,=5/3,T,=43,T, =3

The magnitude of this stress vector is



IT| = 4373

let o be the normal stress and t be the shear stress. Then

oc=Tw= —(5 3+3)_—and /4—3—El \F 22

Since 6> 0, the normal stress on the octahedral plane is tensile.
Example 4: The state of stress at a point P in cartesian coordinates is given by
111=500, T12= 121=500, T13= 131=800, T22=1000,733= -300, T23= T32= -750

Compute the stress vector T and the normal and tangential components of stress on the
N N N 1 N

plane passing through P whose outward normal unit vector isv = 5 e+ Ee2+ f%

Solution: The stress vectoris given by T =TV,

We find T, = z,,v; + 751V, + 7315 = 250+ 250+ 400v2 =1064(approx.)

V2
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CHAPTER-I
CARTESIAN TENSOR

1.1 Introduction

The concept of a tensor has its origin in the bgraents of differential
geometry by Gauss, Riemann and Christoffel. Thergemee of Tensor calculus, as a
systematic branch of Mathematics is due to Rical &is pupil Levi-Civita. In
collaboration they published the first memoir ors thubject: - Methods de calcul
differential absolu et leurs applications' Mathematische Annalen, Vol. 54, (1901).

The investigation of relations which remain vaktien we change from one
coordinate system to any other is the chief aimlehsor calculus. The laws of
Physics cannot depend on the frame of referencehathie physicist chooses for the
purpose of description. Accordingly it is aesthatic desirable and often convenient
to utilize the Tensor calculus as the mathemabaakground in which such laws can
be formulated. In particular, Einstein found itexcellent tool for the presentation of
his General Relativity theory. As a result, the J@ncalculus came into great
prominence and is now invaluable in its applicatiom most branches of theoretical
Physics; it is also indispensable in the differ@ngeometry of hyperspace.

A physical state or a physical phenomenon of thentty which is invariant, i.e
remain unchanged, when the frame of reference niitiiich the quantity is defined
is changed that quantity is calleshsor. In this chapter, we have to confine ourselves
to Cartesian frames of reference.

As a Mathematical entity, a tensor has an existeindependent of any
coordinate system. Yet it may be specified in aigaar coordinate system by a
certain set of quantities, known as its componeBpecifying the components of a
tensor in one coordinate system determines the cpems in any other system

according to some definite law of transformation.
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Under a transformation of cartesian coordinatesaaescalar quantity, such as

the density or thetemperature, remain unchanged. This means that a scalar is an

invariant under a coordinate transformation. Scadae calledensors of zero rank.

All physical quantities having magnitude only aegagors of zero order. It is assumed

that the reader has an elementary knowledge ofrrdetants and matrices.

Rank/Order of tensor

1)

2)

3)

4)

If the value of the quantity at a point in space b& described by a single
number, the quantity is a scalar or a tensor ok/cader zero. For example,
‘5’ is a scalar or tensor of rank/order zero.

If three numbers are needed to describe the quattd point in the space, the
guantity is a tensor of rank one. For example veist@ tensor of rank/order
one.

If nine numbers are needed to describe the qualttiyquantity is a tensor of
rank three. Th8x3, 1x9 and 9% 1, nine nhumbers describe the quantity is an
example of tensor of rank/order 3.

In general, if 8 numbers are needed to describe the value of taetityiat a
point in space, the quantity is a tensor of rardéon. A quantity described by
12 or 10 or 8 ............ numbers, then the quantity i$ adensor of any

order/rank.

OR

Tensor: A set of members/numbers’ 3epresents the physical quantity in the

111
1

reference coordinates, then the physical quarttitalled a tensor of order n.

Characteristics of thetensors

Tensors are the quantities describing the sameopmemon regardless of the
coordinate system used; they provide an importaittegin the formulation of

the correct form of physical law. Equations desoglbphysical laws must be
tensorially homogenous, which means that every trthe equation must be

a tensor of the same rank.
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2) The tensor concept provides convenient means ofsfttemation of an
eguation from one system of coordinates to another.

3) An advantage of the use of Cartesian tensors tsotiee the properties of a
tensor of a certain rank have been establisheg, bkl for all such tensors
regardless of the physical phenomena they represent
Note: For example, in the study of strain, stress, ineptioperties of rigid

bodies, the common bond is that they are all symaeinsors of rank two.

1.2 Notation and Summation Convention
Let us begin with the matter of notation. In tensmalysis one makes
extensive use of indices. A set of n variablges,,........ X, is usually denoted as,
i =12 3...n. Consider an equation describing a plane in sathdimmensional space
X taX, tasXs = p (1.2.1)
where a; and p are constants. This equation can be written as
3
2.a% =p (1.2.2)
i=1
However, we shall introduce the summation convenéiod write the equation above

in the simple form  ax =p (1.2.3)

The convention is as follow: The repetition of amdex (vhether superscript or
subscript) in a term will denote a summation with respecthiat index over its range.
The range of an indek is the set of n integer values 1 to n. An indeat tB summed

over is called @ummy index, and one that is not summed out is called a freexind

1.3 Law of Transformation
Let P(x;,X,)bea physical quantity inox,x,x;is the Cartesian coordinate systems

before deformation an@'(x;, x,) be corresponding t&(x;, X,) in the new coordinate
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system ox;x,X; after rotating the x;-axis about itself at an andle i.e., after

deformation.

From the figure given below (Figurel.1)

X; =OM
=ON - MN
=ON-MN'
=X, COS8— X, Sind (1.3.2)
X, = PM
=PN'+N'M
=PN'+MN
=X, Co9+ X sind (1.3.2)
A
Xo-axis
P'(x,X,)=P(x, X
X, X axis (%) =P 3, X
M %,
0 - X2
=9 Y
’,/O e Xl)l\/l N xl-axis ”
aTXg = Xg —axis Figure1.1
Using the relation (1.3.1) and (1.3.2) we get
X1 = X, COSA+ X, Sind + 0% (1.3.3)
X5 = =X, SING+ X, c0sd + 0%, (1.3.4)
X3 =00¢ +00; +10¢ (1.3.5)
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Relation (1.3.3), (1.3.4) and (1.3.5) can be wmitis

X = Xaolqy + Xolyp + Xgl1g (1.3.6)

Xy = Xyl 51+ Xol 55 + Xgl 53 (1.3.7)

Xg = Xyl 31+ Xl gy + Xal 33 (1.3.8)
where (;; =cosénglebetweerx; andx;); i, j = 1,23that is (1.3.9)

/4, = cos@nglebetween x; and x,) = cosd

/,, = cos@nglebetweenx; and x,) = cos@0-6) =sind
/,5 = cos@nglebetween x; and x;) = cos90

/,, = cos@nglebetweenx, and x,) = cos@0+ 8) = —sind
/,, =cos@nglebetweenx; and x,) = cosd

? ,5 = cosfanglebetween x;, and x3) = cos90

/4, = cosfanglebetween x; and x;) = cos90

/4, = cosfanglebetween x3 and x,) = cos90

33 = cos@nglebetween x; and x;) =co0 =1

Law of transformation can be written in a tensenf@f order one as follow

X = LyaXg +LypXo + LygXg = LyjX; 1] =123

X =0x51,]=123 (1.3.10)
ox; 0X

———=/(; and —X',:Kji

0X; OX;

J

Similarly, law of transformation for a tensor otder two

x’qu =l ilg%i: i, i =1,23; p, g are dummy variables (1.3.11)
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law of transformation for a tensor of order three
X'qur :Kpiﬁqurkxijk; i,j,k=123;p, q, rare dummy variables (1.3.12)
and law of transformation of order n

qur n terms — (E pigqurk """"""" nter mS) Xijk ............ nterms (1-3-13)

wherd, | ,k,.......... nterms=1,23.......... N, p, g,  «oeeennnn n terms are dummy
variables

Example.l. Thex -system is obtained by rotating the-system about theg-axis
through an angl®=3 in the sense of right handed screw. Find the foamstion
matrix. If a point has coordinates (2, 4, 1) in thesystem, find it's coordinate in the
x; -system. If a point has coordinate (1, 3, 2) in #hesystem, find its coordinates in

the x; -system.

Solution. The figure (1.2) shows how tlg-system is related to theg -system. The

direction cosines for the given transformationeigresented in relation (1.3.14)

X3 = X'3 Figure 1.2

Hence, the matrix of the transformation by usin@)is
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e _
cosd sind O 4 % 0
(£;)=|-sin@ cosd 0= % \/_% 0 (1.3.14)
0 0o 1 0 0 1

Using law of transformation for a tensor of ordeepi.e, form (1.3.10), we get

Xi' =0 X ’ i' j=1, 2, 3

)

Xy = L11% 01X +L15Xg
= x;=2cose+4sine+1xo=2><\/%+4xy2+1xo=(\/§+2)
= x’2:23in<9+4cos€+1><0:—2><%+4x\/§/2+1><0:(2x/§—1)
= Xg =2x0+4x0+1x1=1 (1.3.15)

Hence, &, X5,x3) = (v3+22/3-11) is in new coordinate system.

Further for the second, (1, 3, 2) are the coordir@dt a point in new coordinate
system, i.e. X, =1x,=3x,= 2 to finding the corresponding coordinate in to old
coordinate system i.€x;, X,, X, . JJsing law of transformation (1.3.10),

we have X =0 ;i,j=1,2,3 (1.3.16)
or Xy = Lg% 01X + 031X

— 1 '
X2 - 612)(1 +€22X2 +€32X3

X3 = £13X1 + €23X2 + £33X3

= X =cos —sind x,, X, =1x+/3/2-3x1/2+2x0=(/3/2-3/2)
= X, =siné +cosd X, X, =1x1/2+3x~/3/2+2x0= (1/2-+/3/2)
= X, = €0s90° x; +sin90° x;, +1, X, =1x0+3x0+2x1=2 (1.3.17)
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Hence, (&, X,,X3) = (x/§/2—3/ 2,]/2—\/5/2,2)"1 old coordinate system.

Practice 1.The x;-system is obtained by rotating the-system about thex,-axis
through an angl®=45 in the sense of right handed screw. Find the foamstion
matrix. If a point has coordinates (2, 4, 1) in thesystem, find its coordinate in the
x; -system. If a point has coordinate (1, 3, 2) in #hesystem, find its coordinates in

the x; -system.

Practice 2.The x; -system is obtained by rotating the-system about thex; -axis
through an angl®=6C in the sense of right handed screw. Find the foamstion
matrix. If a point has coordinates (2, 4, 1) in thesystem, find its coordinate in the
x; -system. If a point has coordinate (1, 3, 2) in #hesystem, find its coordinates in

the x; -system.

Practice 3.The x; -system is obtained by rotating the-system about the;-axis
through an anglé= 60 in the sense of right handed screw. Find the foamsition
matrix. If a point has coordinates (2, 4, 1) in thesystem, find its coordinate in the
x; -system. If a point has coordinate (1, 3, 2) in #hesystem, find its coordinates in

the x; -system.

Example2. The x -system is obtained by rotating the-system about thex,-axis

through an anglé= 60 in the sense of right handed screw. Find the foamsition

1 0 -1
matrix. If a tensor of rank/order two has compoae{aiy] =0 2 2|inthex-
-2 0 1

system, find its coordinate in the-system.

Solution. The figure (1.3) shows how thkg-system is related to thg -system. The

direction cosines for the given transformation regresented in the (1.3.18) whep
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-axis is rotated at an angle%ébout itself in right handed screw, Whei'gq are the

components of the tensor of order two in new cowtdi system corresponding &

in old coordinate system.

Xp =X Figure 1.3

Hence, the matrix of the transformation is by ugih@.9)

cosd 0 sind Y2 0 +/3/2
)= 0 1 o= 0o 1 o
-sin@ 0 cosd| |-+/3/2 0 2

Using law of transformation (1.3.11) for a tensboaer two, i.e
Xoq = Lpil %
g = Lpil 4
= 3y = {5048
=Ly (01984 + 0158, +0138;3)
=015(£11201 + 10805 +01333)

+015(0 11891 + 015855 + 1 13853)
+013(0 11831 + 01,83, +{13833)

MAL-633 9
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using value of/ from (1.3.18), we have

a,, = ¥2@U/2x1+0x0-~/3/2x1)
+0(/2x0+0x2++/3/2x2)
++/3/2(-1Y2x2+0x0++/3/2x1)

zl(ﬂ}m@(*@‘z}(“_mj (1.3.19)
2\ 2 2 2 4
Similarly, a',,=2,a',,= 4+j\/§

and a’23:£2i£3jaij

=L (031841 + 03034, + 0 33343)
=L 1(£ 39841 + {393y, + £ 339y3)
+ 05531891 + 03585 + £ 33853)

+ 0 33(0 31831 + {3083, + £ 33933)
=0x (Y2x1+0x0-+/3/2x1)

+1x(~/3/2x0+0x2+1/2x2)
+0x(-12x2+0x0++/3/2x1)

a',,=0+1+0=1 (1.3.20)
- .1 5 . _ .1
Similarly, a3, == 125, = 0,a21—\/§,a32—§
Hence,
(4-3/3) , 5 |
1 0 -1 4 4
the tensor{a”]= 0 2 2 |istransformed intc{a'pq]= V3 2 1
-2 0 1 1 1 4+3/3
4 2 4
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Practice 4. The x/ -system is obtained by rotating the-system about the;-axis

through an anglé= 45’ in the sense of right handed screw. Find the foamsition

3 -2 1
matrix. If a tensor of rank two has compone[ai;s] =1 3 2] inthe x -system,
2 -1 4

find its coordinate in theq -system.

Practice 5. The x; -system is obtained by rotating the-system about thex; -axis

through an anglé= 3@ in the sense of right handed screw. Find the foamsition

1 -2 0
matrix. If a tensor of rank two has compone|[a§]: -1 3 -2|inthe x-
2 -1 1

system, find its coordinate in the-system.

1.4 Some Properties of Tensor

Zero Tensors: A tensor whose all components in one Cartesiandboates system

are 0 is called a zero. A tensor may have any arder

Property 1.4.1 If all component of a tensor are ‘0’ in one cooatsystem then they
are ‘0’ in all coordinate systems.

Proof. Let uy, s the component of &'forder tensor in two

A !

coordinates systens;X,X; and ox;X,Xs.

e = 0,00, Ko (1.4.1)

Uogron — pigqjgrk ........... nterms)uijk

............ nterms (1.4.2)

Using (1.4.10) into (1.4.11) we get
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par......iterms = X [ QT ..., Hence, zero tensor of any order in one

coordinate system remains always zero tensor ot sangter in all other coordinate

systems.

Property 1.4.2 If the corresponding components of two tensordiefdame order are

equal in one coordinate system, then they are eq@dil coordinate systems.

Property 1.4.3 Equality of Tensors. Two tensors of the same order whose
corresponding components are equal in a coordisggtem (and hence in all
coordinates) are called equal tensors.

Thus, in order to show that two tensors are equad, sufficient to show that their
corresponding components are equal in any oneeadbrdinate system.

Property 1.4.4 (Scalar multiplication of a tensor): If components of a tensor of
order n are multiplied by a scalay then the resulting components form a tensor of

the same order n.
Proof: Let Uy nermsb® @ tensor of order n amx,x; system. LetUpg, ntermsD€

the corresponding components in the dashedxfx;) system. The transformation

rule for a tensor of order n, (1.3.13) yields.

u'qur ............. nterms = £ pil gjCriceeeesenems! nterrns(uij|< .............. nterms) (1.4.3)
Now au'pqr ............. nterms :£pi£qj£rk """"""" nterrrs(a uijk .............. nterms) (1-4-4)
This shows that componentsuy, form a tensor of rank n.

Property 1.4.5 (Sum and Difference of tensors) If Uiji nterms &Nd Vijk........nterms @€

tensors of the same rank n then their sup (

nterms+vijk ......... mterms) is a tensor of

the same order n.

Proof: Let W|jk ......... nterms — uijk ......... nterms+VijI< ......... nterms (1-4-5)
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nerms P€ the components of the given tensors of

and letup,

order n relative to the new systemix,x; . Then transformation rules for these tensors

are Ungroo . nterms = £ pil gl rkeeeeesens nterms(Uy, nterms) (1.4.6)
and \/qur ........... nterms = £ pil g lriereeeenen nterms(vijk ............. nterms) (1.4.7)
where ly = cos@('p, X) (1.4.8)
let V\/pqr ......... nterms — u'pqr ......... nterr’rs+\/pqr ......... nterms (1.4.9)

V\/pqr ......... nterms — l pigqjgrk """" nterms( uijk ......... nterms +Vijk ............. nterms (1-4-10)

qur ......... nterms — l pigqjgrk """" nterms(vv”-k ......... nterms) (1-4-11)

Thus quantitiesw,  ,ems Obey the transformation rule of a tensor of order

Therefore, they are components of a tensor of caid&f n.

Corollary: Similarly, their differencel,  nerms =~ Vijk nterms 1S @lso a tensor of

rank n.

Property 1.4.6 (Tensor Multiplication)

The product of two tensors is also a tensor whaderas the sum of orders of the
given tensors.

Proof: Let Uy, mterms NNy, ntermsP€ two tensors of order m and n

respectively in the coordinate systemx,x; also u'qur .......... mterms @nd \/a'rc. .......... nterms
are corresponding components of tensorsxip,x; system.
We shall show that the product

ij ......... mtermstagy.......nterms = L%jk ......... ntermsx Va,By. ........ nterms (1-4-5)

is tensor of order m+n. Using the law of transfaiiora(1.3.13), we have
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u,pqr ........... mterms:£pi£qjgrk """" .mterms(qjk ............ mterms)

\/UTC. .......... n termszﬁaa/grﬁgcy """" 'nterndvaﬁy. ........... mterms) (1-4-6)

where,fij is having its standard meaning as defined in iatl.3.9).

Let qur ......... mterms+org.......nterms = u,pqr ........ ntermsx VZJTC ......... nterms (1-4-7)
Using relation (1.4.6) in to (1.4.7), we get
w

par........ Merms+oTc. ... nterms —

gpigqjgrk"'mermuijk...nnerms) X gacrgrﬂgcy"ntermvaﬂy...mterms)
= pigqjgrk"'mterms X gacrgrﬂgcy"ntermvaﬂy....mtermsxuijk...mterms)
= il gl p---terms x £ 0ol o NOrMSWs,  verms Fiikmterms) (1.4.8)

This shows that componentj  mermstagy......ntermsOPEY the transformation rule of

a tensor of order (m+n). Henddj,  nerms® Vogy.......nterms @€ COMponents of a

(m+n)" order tensor.

Practice 6. If u,and V;are components of vectors, then show thgy;are

components of a second-order tensor.
Practice 7. If U;and v, are components of tensors of second-order andofidsr,

respectively, then prove th&V, are components of a third order tensor.

Practice 8. If U;and v,,,are components of second-order tensors, then ptate

U;Vim are components of a fourth order tensor.

Practice 9. If u,and V;are components of two tensors. Lef =uVv; +u;v; and

a;; =UV; —U;V;. Show that each of¥; and &;;is a second order tensor.
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1.5 Contraction of a Tensor

The operation or process of setting two suffixes equal in a tensor and then
summing over the dummy suffix is called a contraction operation or simply
a contraction. The tensor resulting from a contraction operation is called a
contraction of the original tensor. Contraction operations are applicable to
tensor of all orders higher than 1 and each such operation reduces the order
of atensor by 2.

Property 1.5 Prove that the result of applying a contractioreénsor of order n is a
tensor of order (n-2).

Proof: LetUj  nerms 2nd u’pqr ........ nterms D€ the components of the given tensor of

order n relative to two Cartesian coordinate Systerjx,x;andox;x;x;. The rule of

transformation of tensor of order n (1.3.13) is

Upgr.......n terms = (€ pil il ric-evenenmee ntermouy, nterms (1.5.1)

without loss of generality, we contract the giveandor by settingi = j and

summation convention. Let

T Uik........ (1.5.2)
Now u'pqr .......... n terms:(f pigqi)frk """""" ntermS(Uiik ............ nterms (1.5.3)
= (5pq)£ feeeeeenen ntermsxy, (-2)terms
. B 1if p=q
Unor.ooovv =L ppenenns (.n—2)terms><vk| ............. -2terms  + Jpq :{0 if p#q
Vi t2terms = Lreereenes (n-2termsxvyy f-2)terms (1.5.4)
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Hence, the resulting tensor is tensor of order r$2. contraction applying once on a
tensor of order greater then 1, the order of thesde reduces by 2. Similarly

contraction applying twice on a tensor of ordeh@ order of that tensor reduces by 4.
1.6 Quotient law of Tensors

(Quotient law isthe partial converse of the contraction law)
Property 1.6 If there is an entity represents by the set of 8ngjties U; relative to
any given system of Cartesian axes, and;if; is a vector for an arbitrary vecter,

then show thatj;is a second order tensor.
Proof: W =WV, (1.6.1)

Suppose thaty,, U,andw, be the corresponding components in the dashedrsyst
0XX>X3 . Then by using law of transformation and inverae lof transformation

(1.3.10 and 11)

Now UpgVp =W, (1.6.2)
=L W
=05 (Wv))
=Loi LV
= (Upg =¥ il U Vg =0 (1.6.3)

for an arbitrary vectok/[q. Therefore, we must have
Upg =L pil gtk (1.6.4)
This rule shows that componenty obey the tensor law of transformation of a

second order. Hencé; is a tensor of order two.
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Practice 10. Let a; be an ordered triplet and be a vector, referred to the — axis.
If a5 is ascalar, show that; are component of a vector.

Example 3. If there is an entity representable by a set ofj@antitiesu;, relative to
OX;X,X3 System and il V. is a tensor of order one for an arbitrary tenggrif order
2, show thatl;, is tensor of order 3.

Solution. Let W = U,V (1.6.5)
It is given thatvj, is a tensor of order 2 andj;\V;, is a tensor of order one, ang,

! ! !

u’qur are corresponding tg;, W; in new coordinate systeix;x,X;. Then by using

transformation law and inverse transformation 1av3.(l0 and 11) we get.

UpgrVer =W, (1.6.6)
=l 5\
= LpilhiVik (bying 1.6.5)
= il (C g i)
=il i olUhjpVer
= (Upgr = i g el )Vgr =0 (Irp

for an arbitrary vectok/qr. Therefore, we must have
Ungr = pi i Ui (1.6.8)
This rule shows that componently, obey the tensor law of transformation of a

second order. Hencél, is a tensor of order two.
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Practice 11. If there is an entity representable by a set ofj@antitiesU;, relative to
OX;X X3 System and iy Vi is a tensor of order two for an arbitrary tensprof order

one, show thatk;, is tensor of order 3.

Practice 12. If there is an entity representable by a set ofj@antitiesU;, relative
to ox;x,X; system and ifly4Vq is a tensor of order one for an arbitrary tenggy if

order 3, show that is tensor of order 4.

Practice 13. If there is an entity representable by a set ofj@antitiesU;, relative
to ox;X,x3system and ifth;4V; is a tensor of order three for an arbitrary tengoif

order one, show that, is tensor of order 4.

Practice 14. If there is an entity representable by a set ofj@antitiesU;, relative
to oxx,%; system and ifly;Vyg is a tensor of order two for an arbitrary tensgr of
order 2, show thatl is tensor of order 4.

1.7 Symmetric & Skew symmetric tensors

171 A second order tensoy; is said to be symmetric Uf =u; Ui, ]. For
example unit matrix of order<d is symmetric tensor of order two.

1.7.2 A second order tensdy; is said to be skew-symmetridlf = —U;; i, j. For
example skew-symmetric matrix of ordet33is skew-symmetric tensor of order two.

Definition: (Gradient) if Uy niermsiS @ tensor of order n iox;x,x; system, then

0
Vqur .......... (n+)terms — Eupqr .......... nterms
= upqr ........ .ntermss (]ly
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is defined as the gradient of the tensigy. nerms-

0 :
For exampleu,, :a_up represents the gradient of vedigr

Property 1.7 Show that the gradient of a scalar point functea tensor of order one.

Proof: Suppose thal =U (x;,X,,X; b a scalar point function and

D

v = =U, (1.7.2)

X

Let the components of the gradient of U in the ddsdystenox;x,x;be V'p, so that
VvV, =— (1.7.3)

Using the law of transformation (1.3.10) and inedesv of transformation we have
, _ou
Vp =
X,

_ U o

= by chaire’
0%, 0, (by )

:fpia_uzfpiui
0%, ’

Using (1.7.2), we get Vo =L\ (1.7.4)

Which is a transformation rule for a tensor of eardee. Hence gradient of the scalar

point function U is a tensor of order one.

Property 1.8 Show that thgradient of a vector u; is a tensor of order two.

Proof: The gradient of the tensaoy is defined as
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ou;

Let the vectory; be transformed to the vectol, relative to the new systemrix,Xs.

Then the transformation law for tensors of orders (1.3.10) yields
U, =454 (1.7.6)

Suppose the nine quantiti®g relative to new system are transformeWEQ. Then

_0uy,
pg — axa
:i:(gpiui) zgpia_u.i
0x, ox,
- OX;
=l ﬂ—‘ (by chain rule)
6xj axq
ou,
pi ouaxj pit g Vi
= Wog = £ il V% (1.7.7)

This is a transformation rule for tensors of orhes. Hence,W; is a tensor of order

two. Consequently, the gradient of a veatpis a tensor of order two.

Property 1.9 Show that theradient of a tensor of order n, Uy nerms IS @ tensor

of order (n+1).

Proof: LetUy  nwerms IS @ tensor of order n. The gradient of the tenger  erms

= uijk .......... nterms,r (1-7-8)

MAL-633 20



I,/ !

new systenox;x,X;. Then the transformation law for tensors of omi¢t.3.13) yields
u n terms = (4 pil g lrkeereeeesmns nterms)uijk ____________ nterms (1.7.9)

Suppose 3" quantities Wy, nermsfelative to new system are transformed to

[/ Foveeen. nterms- 1 hen

pq
W _ au'pqr ......... nterms
par-....... nterms,7 aX'T
= (0 il gl rgeeeeen- nterme) Loike....tems 0%y
P o,  ox
ou
=0 il gl rgeeeneen ntermsy ,,, —o e
pitg*rk a aXa
:€pi€qj€rk """"" nterwarxuijk ....... ntermsz (1.7.10)
= Wogr.......atermsz = £ pililiiceseeseres nterms, Uy s

This is a transformation rule for tensors of or@fer1). Hence Wy m+pterms IS @

tensor of order (n+1). Consequently, the gradidrat tensor of order n is a tensor of

order (n+1).

Books Recommended:
1. Y.C.Fung: Foundation of Solid Mechanics, Prentice Hall, Inc.,
New Jersey, 1965.
2. Saad,A.S. Elasticity-Theory and Applications, Pergamon

Press, Inc. NY, 1994.
3. Sokolnikoff, |.S. Mathematical Theory of Elasticity, Tata McGraw
Hill Publishing Company, Ltd., New Delhi, 1977
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CHAPTER-II
ANALYSISOF TENSOR

Consider an ordered set ®f real variables,X,,X,,......X,.....Xy; these

variables will be called theoordinates of a point. (The suffixeg, 2, 3,...... JyeN,
which we shall call superscripts, merely serve asls and do not possess any

signification as power indices. Later we shalladiuce quantities of the, and again

thei, which we shall call a subscript, will act only aslabel.) Then all the point
corresponding to all values of the coordinates saiel to form anN-dimensional

space, denoted by, . Several or all of the coordinates may be resttlich range to

ensure a one-one correspondence between poirite\Qf tand sets of coordinates.

A curvein theV, is defined as the assemblage of points whichfgahe N

equations
X =x), (i=123...... N)

whereuis a parameter ang u (ajeN functions ofu, which obey certain continuity
conditions. In general, it will be sufficient thderivatives exist up to any order
required.A subspace V,, of V, is defined forM < N as the collection of points which

satisfy theN equations

X =X (Up, Uy yerennnnn Uy ), (1=123.......... N)

addition theM x N matrix formed from the partial derlvatlveasx'—ls assumed to be
u.
J

of rankM *. WhenM = N -1, the subspace is callechgper surface.
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Let us consider a spadg with the coordinate system,, X,, X, ....... Xy The
N equations
X =@ (K Xoyereeennn Xy), (i=2123....N) (2.2)
where theg, are single-valued continuous differentiable funtsi@f the coordinates,
define a new coordinate systex, X, , X;......... Xy - Equations (2.1) are said to define

a transformation of coordinates. It is essential that theN functions ¢, be

independent. A necessary and sufficient conditeothat theJacobian deter minant

. . O0X . . "
formed from the partial derlvatlveés—' does not vanish. Under this condition we can
X .
J

solve equations (2.1) for theas functions of the; and obtain
X =@ (X, X, Xgy e Xy) (=123...N)
2.1 The Symbol g,

We will now introduce the following two conventigin

1) Latin indices, used either as subscripts or supetsc will take all values
from 1 toN unless the contrary is specified. Thus equati@ng) (are briefly
writtenX, =@, (X;, X, yeeennnn Xy ), the convention informing us that there afe
equations.

2) If a Latin index is repeated in a term, then iurglerstood that a summation

with respect to that index over the range 1, 2,.3N is implied. Thus instead

N
of the expressioEa‘.xi , we merely writeyx . Now differentiation of (2.1)
i=1

yields

which simplify, when the above conventions are used
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0X;
;= —dx . 2.2
o & 22

The repeated index is called adummy index, as it can be repeated by any other
Latin index, except ‘I’ in this particular case.aths, equations (2.2) can equally well

be written dx, zgidxm or for that mattedx, :gidxr. In order to avoid
X X

m r

confusion, the same index must not be used moretthi@e in any single term. For

N 2
example;(Zaxij will not be writtena x g x;, but rathe x &, x; . It will always be

i=1
clear from the context, usually powers will be pated by the use of brackets; thus
(xN )2mean the square of, . The reason for using superscripts and subsasigitbe
indicated in due course. Let us introduceKhienecker delta. It is defined as

| 1ifi=i

i :%: .I I J (2.1.2)
0X; Oif i# ]

That is, &, =0, =053, =1 ), =0, = 0,3 =05 =0,; =9, =0.The symbol g is

known as the Kronecked symbol, named after the German Mathematician L&bpol

Kronecker (1827-1891). The following property igénent in the definition af, .

1) Kroneckerd is symmetric i.ed, =9, (2.1.2)
2) Summation conventiod; =0;; +0,, + 053 = 3 (2.1.3)
3) The unit matrix of order 3 i$, = (3, ) anddet(s; ) =1 (2.1.4)

4) The orthonormality of the base unit vect@an be written as

8.8 =4,

. =9, (2.1.5)

2.1.1 Tensor Equation:- An equation of typea; —/f;u, =0is called a tensor

equation, for checking the correctness of a teagaation, we have the following rule
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() In a correctly tensor equation no suffixes slagpear more than twice in
any term, otherwise the operation will not be defifor example| =a; u,v,

is not a tensor equation.

(i) If a suffixes appears only once in a term thiemust appear only once in
the remaining term also. For example, an equation/; u, =0is not a tensor

equation. Hence j appears once in the first terntewhappears twice in the

second term.

Property 2.1 Prove the followingKnown as substitution properties of §; )

(i) u, =9, u, (if) OjUj =Uy ; O;Uy =Uy (iif) O; U = Uy =Uy +U,, + Uy,
Proof. (i) Now O;U; = JyU, +J,,u, + 95U,
3
=u; + > U =u, (B).

2
- 3
(i) O; Uy :Za_ijujk

e

=g,u, (for j #i,0; =0), here summation oveiis not taken
= Uy (2.1.7)
(i) % Ui :Z{Zdjuu}
i j

=Z(1.u“), in u; summation is not being taken

:zuii =Uyy Uy, FUg=Uy (2.1.8)

Example 2.1 Given that, = ad b, + Bb, ,where B# 0,3a+[#0, find b, in

terms ofa, .
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Solution. Settingi = j in the relationa; = ad b, + Bb, and summing accordingly,

we obtain a, =a.3b, + b,
=(3a + B)by
_ 1
= By, = 30’—4-,3 A

Hence,b; = [aﬁ -ao, kk]‘ { a; 30+,B o; kk:|

(b =)

(2.1.9)

Property 2.2 Prove that ()¢ ¢y = 3, (i) £ ¢, =8y (i) |¢;]=1 (Eij ) =(c i )

Proof. We know the transformation law of the coonade system (1.3.10), we have

Xy =4 andx, =7 ,x;
Now, (i) x|, = ¢,
=X, =5 (0g Xg)
using the relation (2.1.6) on the L.H.S. of (2.].11

:>5pqxq—€ o x

= (L ly —0,))% =0
= Lyl 4 = Opq
(if) Similarly, X =1L, X,
= =05l i X
Also X =G X;
Hence, 05 X; =L il 5 X
(0 =Ll )%, =0
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(iii) Using (2.1.12) gives, in the expanded form,
Ol 0 =L 05 + 05, + 05 = 1,05 + 05, + 15, =1
511€21 +£12£22 +€13£23 = 0’52%31 +€22£32 +€23€33 = 0’53%11 +€32€12 +€33€13 = 0
The relations (2.1.12) and (2.1.14) are referrethasorthonormal relations foy . In
matrix notation, the above said relations may Ipeagented respectively, as follows

Cy fy l||fn o In 100
Cor Lo Log| |l Ly f5|=|0 1 0 (2.1.15)
Car Lo Llaz]| [l1s Loz fas 001

or LL'=L"L=1

these expressions show that the matrix

Property 2.3 Show thatg, and/, are tensors, each of order two.

Proof: Letu, be any tensor of order one,

i> by the substitution property of the Kronecekeralédnsop, , we have
u=ou (2.1.16)

Now u; and u; are each of tensor order one. Therefore, by quoiéen we conclude

that g, is a tensor of rank two.

i> The transformation law for the first order tensor i
u, =/, (2.1.17)

whereu; is a vector and/ u;is a vector by contraction property. Therefore, by

quotient law, the quantities ; are components of a second order tensor.
Note 1: The tensord; is called a unit tensor or an identity tensor afesrtwo.

2. We may call the tensdr; as the transformation tensor of rank two.
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2.2 The Symbol [,

Euclidean geometry investigates the propertiedguirés which are invariant
with respect to translations and rotations in spiceay be subdivided into Algebraic
methods the theory applicable to entire configoratisuch as the class or degree of a
curve. The latter discusses by means of the caldhlse properties which depend on
a restricted portion of the figure. For example tbtal curvature of a surface at that
point. Succinctly we may say that differential gedry is the study of geometry in
small. This chapter is not intended to be a corepteurse on the subject. However,

sufficient theory is developed to indicate the scapd power of the tensor method.
The symboll, is known as the Levi-civitd]-symbol, named after the

Italian mathematician Tullio Levi-civita (1873-194The [l-symbol is also referred
to as thePermutation symbol/alternating symbol or alternator. In terms of

mutually orthogonal unit vectogs, €, ,€,along the Cartesian axes, it defined as
8.6 x8) =0, Oi,j,k=123 (2.2.1)
Thus, the symball;,, gives
1 if i, j,ktakevaluesin thecyclic order

Ox=4-1 :if i, j,ktakevaluesin theacyclicorder (2.2.2)
0 :if anyor all of i, j,ktakethe samevalue

These relations are 27 in number. THesymbol is useful in expressing the vector
product of two vectors and scalar triple product.
(i) We haveg x€, =[J, €. (2.2.3)
(i) For two vectorsa, and b, ,we write
axb=(38)x(b8&)=3b, (& x&)=0, abe (2.2.4)
(i) a=aé,b=Dbe ,C=cg

We have
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[abe|=(axb)c = (0, a b, &).(, &)

a1 aZ a3
=0y & b;c,=b, b, b, (2.2.5)
Cl CZ CS

Property 2.4 Show that );, is a tensor of order 3.
Proof: Leta = a, and b= b, be any two vectors. Let
¢=c =axb.
Then,c, =00, a;b, (2.2.6)
Now a;b is a tensor of order 2 and, ab (by 2.2.6) is a tensor of order one.
Therefore, by quotient law];, is a tensor of order 3.

Example 2.2 Show thatw;, =Ll u,is a skew-symmetric tensor, wheugis a vector
andl, is an alternating tensor
Solution: Sincély, is a tensor of order 3 and,is a tensor of order one, so by
contraction, the produci;, u,is a tensor of order 2. Further

w; =0, u,

= =D Uy

=-w; (2.2.7)
This shows thatv, is a tensor which is skew-symmetric.
Example 2.3 Show thatu; is symmetric iffl,; u; =0
Solution: We find

Dij1 U; =01 Upgt Ugyy Ugy = Uy —Ug,
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Ujz Uy =030 Ugy +Ligp Uyg = Ugy —Uyg
Ly Uy =0ipg Upp+ Ly Uy = U, — Uy, (2.2.8)

Thus, u, is symmetric iff

i
Uj =UjOF Upp =Uyy, Ugg = Ugy, Upy = Ug, (2.2.9)
2.3. Isotropic Tensors

Definition: A tensor is said to be an isotropic tensor if itBnponentsremain

unchanged/invariant however the axes are rotated.

Note. 1. An isotropic tensor possesses no directional gntags. Therefore a non-zero
vector (or a non-zero tensor of rank 1) can neweab isotropic tensor. Tensor of

higher orders, other than one, can be isotropsaen
2. Zerotensors of all orders are isotropic tensors.
3. By definition, a scalar (or a tensor of rank zasogn isotropic tensor.
4. A scalar multiple of an isotropic tensor is artigpic tensor.
5. The sum and the differences of two isotropic temg®an isotropic tensor.
Property 2.5 Prove that substitution tensay and alternating tensar;, are isotropic
tensors
Proof: A>Let the component®); relative to x;-system are transformed to quantities
dpq relative tox; -system. Then, the tensorial transformation rule is

Opq =1 il Oy (2.3.1)
Now R.H.S of (2.3.1)

:£pil€qiéii] :€pi€qi

(2B.

0 if p#qg
=0 = .
1l if p=g
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Relation (2.3.1) and (2.3.2) show that the comptsépare transformed into itself
under all co-ordinate transformations. Hence, yndin, J; is an isotropic tensor.

B> We know that];, is a system of 27 numbers. Let
i :léu éj ékJ:éi'(éj X&) (BB.
Be related to thex -axis. Then, the third order tensorial law of tfansation (1.3.9)

gives Ooqr =€ il ¥ e Oy (2.3.4)

where Z ; is defined in (1.3.9). We have already check that

pl EPZ €P3

0ol il o Ui =10

g™ rk

(2.3.5)

ql q2 a3

grl €r2 €r3

pl EPZ €D3

and [” €l ”]:f

P’Q'f

(2.3.6)

ql ng qu

grl grz £r3
Using (2.3.4, 2.3.5 and 2.3.6), we get

1 :if p,q, rarein cyclic order
[ep, €,.€ J:é'p.(é('IXé;)= -1 :if p,q, rarein anticyclicorder (2.3.7)
0:if anytwo or all sufficesare same

This shows that components;, are transformed into itself under all coordinate

transformations. Thus, the third order tensigr is an isotropic.

Property 2.6 If u;is an isotropic tensor of second order, then shawvu; =ad, for
some scalaw .
Proof: As the given tensor is isotropic, we have

u: =u. (2.3.8)
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for all choices of thex' -system. In particular, we choose

X; = Xy, Xy = X, Xg = X (2.3.9)

A

X

X2

X &
A% Figure 2.1
%
01
Then 4,=0 01 (2.3.10)

10

Uy = ol Y; (2.3.11)
Now Upy = 0y 0y Uy =Ly (0o + 00U, +£,4U5)
=0, Ou, +2,u,+0uz)="0,0,U,
=0, U, + 0 Uy, + £,5Us) = Uy,
= Uy = Uy, (2.3.12)
Similarly,
Uy = Ugs,Upy = Uy, Uy = Uy, Ups =Ug;,Ujs = Uy, Uy = U, (2.3.13)

Now, we consider the transformationx; = X,, X, ==X, X; = X, (2.3.14)
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Then (. =1-1 0 (2.3.15)

Using law of transformation defined in (2.3.11), get

Uiz = Upg = Uy, Upy = Uy = —Uyy

= U;; = Uy, Uy=0andu,, = 0 (2.3.16)
using (2.3.13) and (2.3.16), we obtain

0y =aog; wherea =0, =/0,, =, (2.3.17)
Note 1: If £, are components of an isotropic tensor of thirceorthen/;, =a L,
for some scalar .

Note 2: If /;,,, are components of a fourth-order isotropic tentham

Cikm = @00y, + B0 Oy + 10,0, for some scalarg, S, y .
2.4 Contravariant tensors (vectors)
A set of N functions f, of the N coordinates x, are said to be the
components of aontravariant vector if they transform according to the equation.

_d%
f=otf (2.4.1)
0x; )

on change of the coordinates to X. . This means that ani functions can be chosen

as the components of a contravariant vector indberdinate systernq, and the

equations (2.4.1) define th&l components in the new coordinate syskemOn
multiplying equations (2.4.1) by(?aé and summing over the index’‘from 1 toN,
)(i

we obtain
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0X, F _ 00X, 0X ¢ _axkf

. =0 f =f 2.4.2
ox | ox ox, | oox, (2.42)

Hence the solution of equations (2.4.1) is
f :% . (2.4.3)

When we examine equatiorbx, = gidx, (where repeated indexis calleddummy
X

r

index) we see that the differentiatbk from the components of a contravariant vector,
whose components in any other system are the effieds dx, of the system. It
follow immediately thatdx /du is also a contravariant vector, called taegent

vector to the curvex. =x. )

Consider now a further change of coordinates g, (X, X, ,....... X,) . Then the

new components

- ' OX. !
=00 F SO 0K (2.4.4)

ax, 1% ax " ox,

This equation is of the same form as (2.4.1), wisicbws that the transformations of

contravariant vectors form a group.
2.5 Covariant vectors

A set of N functions f, of the N coordinates;are said to be the
components of aovariant vector if they transform according to the equation.

- 0x

on change of the coordinates to X,. Any N functions can be chosen as the

components of a covariant vector in the coordirgtstenx,, and the equations
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(2.5.1) define theN components in the new coordinate syskenOn multiplying

. 0%, . o .
equations (2.5.1) b%—' and summing over the index’‘from 1 toN , we obtain
Xk

oX 7 _ 0% axkf _0x,

=— 1 f =5 f =f 25.2
an [ 6Xk a)—(i i an i jk k ( )
ox.
Since,aTr :a_rT’, it follows immediately from (2.5.1) that the quities a—rare
ox,  0x; OX 0x,

J ! i

the components of a covariant vector, whose commerie any other system are the

corresponding patrtial derivativgg—. Such a covariant vector is called the gradient of
X

. We now show that there is no distinction betweentravariant and covariant
vectors when we restrict ourselves to transformatif the type

X =a,X,+thb, (2.5.3)
where b are N constants which do not necessarily form the coraptm of a
contravariant vector and,, are constants ( not necessary forming a tensoh) that

3,8, =J, (2.5.4)

We multiply equations (2.5.3) by, and sum over the indeXrom 1 to N and obtain

Xr :a'ir_i _a'irbi .
X~ OX.
Thus, % _ —=a (2.5.5)
ox. OX :

] 1

This shows that the equations (2.4.1) and (2.%efipd the same type of entity.
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CHAPTER-III

APPLICATONSOF TENSOR
3.1 EIGENVALUESAND EIGEN VACTORS

Definition: Let u,be asecond order symmetric tensor. A scaldris called an

eigenvalue of the tensow; if there exists a non-zero vectgrsuch that

u.Vv. :/]vi Di,j:l,2,3 (3.1.1)

|
The non-zero vectoy, is then called an eigenvector of tensprcorresponding to the

eigen valuel . We observe that everpgn-zero) scalar multiple of an eigenvector is

also an eigen vector.

Property 3.1 Show that it is always possible to find three mlyuarthogonal

eigenvectors of a second order symmetric tensor.

Proof. Letu; be a second order symmetric tensor dntéle an eigen value of . Let
Vv, be an eigenvector correspondingitoThen

u,v, =Av, (3.1.2)
or (uy —Ad;)v, =0 3.1.3)

This is a set of three homogeneous simultaneoesiiequations in three unknown

v,,V,,V,. These three equations are

(U = AV +up,v, +Uv, =0
UpyVy + (Uyy = AV, Uy, =0 (3.1.4)
UgVy +Ug,V, + (Ugs —A)V; =0

This set of equations possesses a hon-zero soluhen

Uy A U, Ugs
U, Uy,—A U, [=0 (3.1.5)
Usy Us, Uss -/
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or lu; =A5;[=0 (3.1.6)
expanding the determinant in (3.1.6), we find

(U - /1)[(“22 = A)(Ugz = A1) - U32U23]
- U12[U12(U33 -A)- U31U23]
+ Uy Uy Uz, = Ugy (Up, = A)] = 0

3 2
=A%+ (upy + Uy, +Uzs)A
or = (UygUpp + UppUgg + Uzl = UpglUsy = Uggly 3 = UpoUapg )A (3.1.7)

+ [U11(U22U33 = UpaUg,) = Ugp(UpgUsgs = UggUpg) + Uy (UpgUg, = U31U22)] =0

we write (3.1.7) as

—R+ AP -, +1,=0 (3.1.8)
where L =Upj +Uy HUs3 = Uy
= =] |
I3 = UpqUpy + Uppligg + Ugglyy = Upplpy = Upglgy —Uyglgy = 5 UjiUj; = U Uj;
I, :‘uij‘ = UjgU U (3.1.9)

Equation (3.1.8) is a cubic equation inTherefore it has three roots, sdy,A,, 1,

which may not be distinct (real or imaginary). Téesots (which are scalar) are the

three eigenvalues of the symmetric tengar

Further M+tA,+A;=1, 3.1.10)
AAs + A5+ A4, =1, (3.1.11)

Each roo#), , when substituted in equation (3.1.4), gives a B#tree linear equations

(homogeneous) which are not all independent. Bgadding one of equations and

using the condition
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2 2 2 _
v; +v; +v; =1

for unit vectors, the eigenvectr is determined.

Property 3.2 Eigen values of a real symmetric tensgrare real.

Proof. LetA be eigenvalue with corresponding eigenvegtor

Then

(by changing the role ofandj)

(3.1.13)

(3.1.14)

(3.1.15)

(3.1.16)

(3.1.17)

This shows that quantity,v,v; is real. Hencelv,y, is real. Sincev,v; is always real, it

follows that A is real.

Property 3.3 Eigen vector corresponding to two distinct eigedusa of the

sysmmetric tensou; are orthogonal.

Proof. Let A, # A,be two distinct eigenvalues wf. Let

corresponding non-zero eigenvector
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u; A =AA ;B = AB 38)

We obtain
u; A;B; = 4AB,, u;B;A =1,AB, (3.1)19
Interchanging the role af and |
u;A;B, =u; AB; =u; B, A (3.1.20)
From (3.1.19) and (3.1.20), we get
MAB =4AB
(h-1)AB =0
= AB =0 (- A 2 A,) (3.1.21)
Hence, eigenvectord, and B, are mutually orthogonal. This completes the proof.

Note: Now we consider various possibilities about eiggduest, , A,, A;.

Case 1: if A ZA, #A;, i.e., when all eigenvalues are different and.ré&aken, by
property 3.3, three eigenvectors corresponding;t@re mutually orthogonal. Hence
the results holds.

Case 2: if 4 #4,=4;. Let V;; be the eigenvector of the tensgy corresponding to

the eigenvaluel; and V,; be the eigenvector correspondingljo Then

vy [V, =0 (3.1.22)

Vi

figure 3.1
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Let p, be a vector orthogonal to both andV,;. Then

B vy =B [V =0 (3.1.23)
and UV = Ay, UV, = AUy, (3.1.24)
Let u; p; =q; = atensor of order 1 (3.1.25)

We shall show that p, and ¢; areparallel.
Now 0iVy = Uy P Vy

=u; pVy; (Byinterchanging the role ofandj)

= APy =0 (3.1.26)
Similarly, gV, =0 (3.1.27)
Thus, g, is orthogonal to both orthogonal eigenvectuys and V,; . Thus g; must be
parallel top, . So, we write

Ui B =q =anp (3.1.28)

for some scalarr .

Relation (3.1.28) shows thatr must be an eigenvalue angy must be the

corresponding eigenvector wf.
Vy =— (3.1.29)

Sinceu; has only three eigenvalue, A, =A,, soa must be equal tal, =4;,. Thus
V5 is an eigenvector which is orthogonal to bathand v,,, wherev;, IV, . Thus,
there exists three mutually orthogonal eigenvectors

Further, letw be any vector which lies in the plane containing tivo eigenvectors
V, andVy corresponding to the repeated eigenvalues. Then
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W, = kv, +Kk,V, for some scalarg, and k, and
W[V, =KV, [V, +K,V, [V, =0 (3.1.30)
and Uy W, = Uy (KVy + Koy )
= kluij Vo + kzuij Vs
= kAN, + KAV, A =A3)
= A, (KN, +KVy) = AW, (3.1.31)
Thus w is orthogonal tov;; andw is an eigenvector correspondingifo Hence, any

two orthogonal vectors those lie on the plane nbtm&,;; can be chosen as the other

two eigenvectors af; .
Case3:if A, =4, =4,
In this case, the cubic equationNilbecomes

(A-1)%=0 (3.1.32)

or 0 A-4 0 |=0 (3.1.33)

Comparing it with equation (3.1.6), we have
u; =0 fori#]j
and U, =Uy,, =Ugy = A
Thus, u; = A9, (3.1.34)
Let v, be any non-zero vector. Then
UV = 4105V
= AV (3.1.35)
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This shows that/; is an eigenvector corresponding\to Thus, every non-zero vector

in space is an eigenvector which corresponds tos#ime eigenvalug;. Of these
vectors, we can certainly choose (at least) thewtovs/; ,V,; , V5 that are mutually
orthogonal. Thus, in every case, there exists gast) three mutually orthogonal

eigenvectors af; .

Example 1.Consider a second order tenggrwhose matrix representation is

1 0 -1
1 2 1
2 2 3

It is clear, the tensar; is not symmetric. We shall find eigenvalues argeevectors

of uj .

1-A 0 -1
Solution. The characteristic equationid 2-A4 11(=0
2 2 3-/

or L-N[(2-1)3E- 1) -2]-1[2-2(2-1)] =0
or 1-1)2-1)(3-1)=0

Hence, eigenvalues ate=1 1, = 2, A; =3, all are different. (RB)

We find that an unit eigenvector correspondingite 1isV; :[%%OJ the unit

vector corresponding td =2isv,, :(%%1;;] the unit vector corresponding to

1 -1-2
V6 V6 6

happens due to non-symmetry of the tengor

A =3is Vy :( j We note thatvy; [V, #0,V, [Vg #0,V; [V5 #0. This
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Example 2. Let the matrix of the components of the secorieotensou; whose

matrix representation is

O N DN
O N DN
= O O

Find eigenvalues and eigenvectorsupf.

Solution. We note that the tensor is symmetric. @linracteristic equation is

2-1 2 0
2 2-4 0 |=0
0 0 1-4
or AQ-A1)@4-1)=0
Hence, eigenvalues ate=0,4, =1, A; =4, all are different. (3.1)3

Let V;; be the unit eigenvector corresponding to eige4le 0. Then, the system

of homogeneous equations is

2 2 0]V
2 2 0|¥,|=0 (38)3
00 1|9

This givesy; +Vy =0,V +V, =0,V5 =0

- 1 -1
We findv; =| —,—= 0],
! (\/E J2 j
Similarly, 9, =(001) and ¥ :(i,i,oj are eigen vectors corresponding to
V2’2

A, =1and A; =4, respectively, Moreover, these vector are mutuadiijogonal.
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Practice 1. Let the matrix of the components of the secordkotenson; whose

matrix representation is

-2 31
1 21
3 0 2

Find eigenvalues and eigenvectorsupf.

Practice 2. Let the matrix of the components of the secordkotenson; whose

matrix representation is

3 -2 0
0O 5 O
1 3 -2

Find eigenvalues and eigenvectorsupf.

Practice 3. Let the matrix of the components of the secordkotenson; whose

matrix representation is

1 -5 2
1 -3 1
-1 2 -3

Find eigenvalues and eigenvectors,of

Practice 4. Let the matrix of the components of the secordkotenson; whose

matrix representation is

N
oo
w R o

Find eigenvalues and eigenvectors,af
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Practice 4. Let the matrix of the components of the secordkotenson; whose

matrix representation is

2 -1 2
1 0 -3
1 2 -5

Find eigenvalues and eigenvectors,af

Practice 5. Let the matrix of the components of the secordkotenson; whose

matrix representation is

3 5 0
1 -1 1
1 4 -3

Find eigenvalues and eigenvectors,af

Practice 6. Let the matrix of the components of the secordkotenson; whose

matrix representation is

2 5 0
1 -4 1
1 6 -3

Find eigenvalues and eigenvectors,of

Books Recommended:
1. Y.C.Fung: Foundation of Solid Mechanics, Prentice Hall, Inc.,
New Jersey,1965.
2. Sokolnikoff, 1. S. Mathematical Theory of Elasticity, Tata McGraw
Hill Publishing Company, Ltd., New Delhi, 1977
3. Barry Spain Tensor Calculus A Concise Course, Dover
Publication, INC. Mineola, New York.
4. Shanti Narayan Text Book of Cartesian Tensors, S. Chand &18&0.
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CHAPTER-IV
ANALYSISOF STRAIN

4.1 INTRODUCTION
Rigid Body: A rigid body is an ideal body such that tietance between every pair

of its points remains unchanged under the action of external forces. The possible
displacementsin aigid bodyare translation and rotation. These displacemergs a
called rigid displacements. In translation, eacimpof the rigid body moves in a
fixed direction. In rotation about a line, everyingoof the body (rigid) moves in a

circular path about the line in a plane perpendictd the line.

Figure 4.1 |line

In a rigid body motion, there is a uniform motidmdughout the body.

Elastic Body: A body is called elastic if it possesses the priypef recovering its
original shape and size when the forces causingrohaftion are removed.
Continuous Body: In a continuous body, the atomistic structure oftteracan be
disregarded and the body is replaced a continuatbamatical region of the space
whose geometrical points are identified with matigopints of the body.

The mechanics of such continuous elastic bodiesalled mechanics of
continuous. This branch covers a vast range oflpnolof elasticity, hydromechanics,

aerodynamics, plasticity and electrodynamics, selisgy, etc.
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Deformation of Elastic Bodies: The change in the relative position of points in a
continuous is called deformation, and the bodyfiisethen called a strained body.
The study of deformation of an elastic body is knaavs the analysis of strain. The

deformation of the body is due to relative moversa@ntdistortions within the body.
4.2 TRANSFORMATION OF AN ELASTIC BODY

We consider the undeformed and deformed both paositof an elastic body. Let
0X;X,Xsbe mutually orthogonal Cartesian coordinates fixespace. Let a continuous
body B, referred to systemx;X,X;, occupies the regioR in the undeformed state. In

the deformed state, the points of the body B witlupy some region s&y .

Figure 4.2

X3

Let P(X,X,,X%3) be the coordinate of a material point P of thet&asody in the

initial or unstained state. In the transformatiandeformed state, let this material
point occupies the geometric poRi{<;,&,,&5). We shall be concerned only with
continuous deformation of the body from regiBninto the regionR' and we assume

that the deformation is given by the equation

$1 = $1(X1, Xp, %3)
2 = 5 (X1, Xz, X3) (4.2.1)
&3 = &3(X15 Xp,X3)

The vectorPP' is called the displacement vector of the pdidnd is denoted hy .
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Thus,
U=&-%:i=123 (4.2.2
or &=U+X%:i=123 (423

Equation (4.2.1) expresses the coordinates of airegof the body in the transformed
state in terms of their coordinates in the initialdeformed state. This type of
description of deformation is known as the Lagrangmethod of describing the

transformation of a coordinate medium.

Another method, known as Eulers method expresses doordinates in the

undeformed state in terms of the coordinates irdéfermed state.
The transformation (4.2.1) is invertible when
JZ0

Then, we may write
X% =% (61, 62, 63)1=123 (4.2.4)

In this case, the transformation from the regi®rinto regionR'is one to one. Each
of the above description of deformation of the bdds its own advantages. It is
however; more convenient in the study of the meidsaof solids to use Lagrangian
approach because the undeformed state of the bdidy @ossesses certain

symmetries which make it convenient to use a sirapdtem of coordinates.

A part of the transformation defined by equatior2(#) may represent rigid body
motion. (i.e.translations and rotations) of the ya$s a whole. This part of the
deformation leaves unchanged the length of evertovgoining a pair of points
within the body and is of no interest in the analys strain. The remaining part of
the transformation (4.2.1) will be call@dire defor mation. Now, we shall learn how
to distinguish between pure deformation and rigadijomotions when the latter are

present in the transformation equation (4.2.1)
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4.3. LINEAR TRANSFORMATION OR AFFINE TRANSFORAMTION
Definition: The transformation

§i =G (X0, %3, %3)
is called a linear transformation or affine tramsfation when the functioré are

linear functionsof the coordinatesx;, X,, X;. In order to distinguish between rigid

motion and pure deformation, we consider the simpbse in which the

transformation (4.2.1) is linear.

We assume that the general form of the linear toamstion (4.2.1) is of the type

& = Ay +(ap D)X +apX, +ap3Xs,
&y = Qop+ Ao Xy + (L 0pp) Xy + Ap3X3, (4.3.1)
$3 = 30+ A3 + 03X, + (L+053)Xs,

or
§i =i t(ay +oy)x; ;i,j=123 (4.3.2)
where the coefficientsy; are constants and are well known.

Equation (4.3.2) can written in the matrix form as

$1~ o 1+a,;, o Qi3 | %
=0y |=| G 1+ay  0xp ||X (4.3.3)
é3 =0 Qa3 A3 1+0g; | X3

or

U —dy ap G Q3| X%
U, =0y |=| Qo1 Ay U3 | X (4.3.4)
Us — a3 a3 03 Q33| X3

We can look upon the matri¢a; +J; ap an operator acting on the vector X to

give the vecton;,.
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If the matrix (a;; +4;) is non-singular, then we obtain

$1— 0y X
—1 _
(au +5u-) $2 ~ g |=| X (4.3.5)
é3— O3 X3
which is also linear as inverse of a linear tranmgftion is linear. In fact, matrix
algebra was developed basically to express lineastormations in a concise and

lucid manner.

Examplel.Sum of two linear transformations is a linear tfanmsation.

Solution. Let
and AR ] PETPOS (4.3.6)
v L= , 3.
G =B + (B +9;)X,
are two linear transformation and suppdse & +¢; .
Now,
Zi :Ei +C|
=(a,o +(a; +90,)X;) +(Bo +(B; +9;)X;)
=(a, + Bo) +2{(aij +18ij )/2+6ij}xj
(9% = %)
$i =80 +(F + )X, (4.3.7)

Wherez9ij =ay +,8ij ; i,j=123 relation (4.3.7) is a linear transformation by

definition of linear transformation as defined ialation (4.3.2). Hence sum or

difference of linear transformation is linear triommation.

Practicel. Show that product of two linear transformatioraiinear transformation

which is not commutative

Example2.Under a linear transformation, a plane is transéaimto a plane.

MAL-633 51



Solution. Let
IXx+my +mz+c=0(4.3.8)
be an equation of plane which is not passes thrg0ghO) in the undeformed state

and (I,m,n) are direction ratios of the plane. Let

$ Mm%
&Sl=llL, my ny |l X, (4.3.9)
é l3 My ng X3

Be the linear transformation of points. Let itsense be

X L My N
X3 Ls M3 N3 | &

Then the equation of the plane is transformed to
I(Lydy +M1d5 + Nyd3) +m(Loéy +Mpds + Nods) +n(Lgéy + Ml +Ngds) +¢=0(4.3.11)
or(IL +mL, +nLy)é; +(IM; +mM, +nM3)é, +(IN; +mN, +nNg)é;+¢=0

aé +pé +yé;+c=0 (4.3.12)
Relation (4.3.12) is again an equation of a plameterms of new coordinates

(&,,€,,&3) . Hence the result.

Practice2.A linear transformation carries line segments iifte segments. Thus, it is
the linear transformation that allows us to asstima¢ a line segment is transformed

to a line segment and not to a curve.

4.4. SMALL/INFINITESIMAL LINEAR DEFORMATIONS

Definition: A linear transformation of the tyge=a;, +(a; +J;)%;; i,j =123 is
said to be a small linear transformation of theffidents a;; are so small that their

products can be neglected in comparison with treali terms.
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Note 1: The product of two small linear transformatiossmall linear transformation
which iscommutative and the product transformation is obtained by gugstion of
the original transformations and the result is pefedent of the order in which the
transformations are performed.
Note 2: In the study of fine deformation (as comparedhe infinitesimal affine
deformation), the principle of superposition ofeefls and the independent of the
order of transformations are no longer valid.

If a body is subjected to large linear transfoiorgta straight line element
seldom remains straight. A curved element is mdkelyl to result. The linear

transformation then expresses the transformaticgleshentsP,P, to the tanger®T/

to the curve aP/ for the curve itself.

A
/
X R '
2 T
R
X1

Figure. 4.3

X3

For this reason, a linear transformation is somedincalled linear tangent
transformation. It is obvious that the smaller tkeéement PP, the better

approximation of PP, by its tangen®;T; .
45 HOMOGENEOUS DEFORMATION

Suppose that a bodd, occupying the regionRin the undeformed state, is
transformed to the regioR’ under the linear transformation.
MAL-633 53



§ =i t(ay +9y)X (4.5.1)
referred to orthogonal Cartesian systerx,x;. Let &,&,,&;be the unit base vectors

directed along the coordinate axgsX,, X;.

A

v

OSD)

X3

Fiaqure. 4..

Let P, (X1, X120, %3) @and P, (X541, X550, X,3) be two points of the elastic body in the initial
state. Let the positions of these points in theoweéd state, due to linear

transformation (4.3.2), bé (&4, &5,¢13) andPy (€54, &5,,&53) . Since transformation

(4.3.2) is linear, so the line segmd®P, is transformed into a line segm&; .

—_—

Let the vectorP,P, has componen#\ and vector@ has componen®. Then

PP, =A&, A=Xy~—%(452)
and

PP, =A&, A={—4 (8p.
Let A=A-A (4.5.4)

be change in vecto#. The vectorsAandA, in general, differ in direction and

magnitude. From equations (4.5.1), (4.5.2) and 84,.5ve write
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A =%
=l + (@ +8))%0; |- [0 + (a + 8, ]

=Xy = %g) + @ (Xp; —Xz)

A +a A (4.5.5)
A-A=ayA
A =a; A

Thus, the linear transformation (4.3.2) changes/éutorA into vectorA' where

A 1+a,;, ap, a3 | A
A=l ay 1ray, axn | A (4.5.6)
As Q31 s, l+as| A

or
A ap ap, 0| A
Ay (=1 Uy Oy | A (4.5.7)
Ay Q3 O3 O3] A
Thus, the linear transformation (4.3.2) or (4.506)(4.5.7) are all equivalent. From
equation (4.5.6), it is clear that two vectofsand B whose components are equal
transform into two vectorsy and B whose components are again equal. Also two
parallel vectors transform into parallel vectoengformation into parallel vectors.

Hence, two equal and similarly oriented rectilinpatygons located in different part
of the region R will be transformed into equal anailarly oriented polygons in the
transformed regiorR’ under the linear transformation (4.5.1).

Thus, the different parts of the body B, when tagel is subjected to the linear
transformation (4.5.1), experience the same defoomandependent of the position
of the part of the body.

For this reason, the linear deformation (4.5.Xp@ilted a homogeneous deformation.
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Theorem: Prove that the necessary and sufficient condition for an infinitesimal

affinetransformation
=00 Ha; +9)) X

to represent a rigid body motion is that the matrjxs skew-symmetric

Proof: With reference to an orthogonal systemx,x,fixed in space, let the line

segmentP,P, of the body in the undeformed state be transfeiwdtie line segment
P, P, in the deformed state due to infinitesimal affirensformation
é=a,+ (a;+3)) X (4.5.8)

In which a; are known as constants. L& be vectoP,P, and A; be the vector

F)lpz AXZ
&
0
w /&
Fiaure. 45
Then
A:)g—)ﬁo’ﬁngi-{io (459)
Let A=A-A (4.5.10)

From (4.5.9) and (4.5.10), we find
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A=&-e,

:(ai0+aijxj +X) = (aj, + a;x

ij Mo

=(X% = Xo) + @, (X; = X;0)
=A+a; A

This gives

oA =A.-A =a;A .
Let A denotes the length of the vector. Then

A=|A|=AA = A’ + A+ A’

LetdAdenotes the change in length A due to deformaiiben

A=|A|-[A|

It is obvious thadA# || ,but

A=/(A+A)A+A)-JAA
This imply

(At = (A + ) (A +R)
Or

(GA) +2A0A= (34 )(A) +2A (A)

+%0)

(4.5.11)

(4.5.12)

(4.5.13)

(4.5.14)

Since the linear transformation (4.5.8) or (4.5.14) small,the term(J)?and

(AA)(A)are to be neglected in (4.5.14). Therefore,afteglenting these terms

in(4.5.14), we write
2AA=2ANA,

or
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AA= AN = AN + AN, + AdA(4.5.15)
Using (4.5.11), equation (4.5.15) becomes
AA=A(a,;A)

U]

=a;AA

ZAA" + A +AA + (0 + ) AR + (0 + A AA + (05, + 0) AA (4.5.16)
Case 1. suppose that the infinitesimal linear transformat{d.5.9) represent a rigid
body motion.Then, the length of the vectdhbefore deformation and after
deformation remains unchanged.
That is

MA=0 (4.5.17)
For all vectorsA

Using (4.5.16), we then get
QA+ QA + AP+ (A, + ) AR + (05 + O AA +(0s T 0) AA  (4.5.18)
For all vectordj.This is possible only when
a,=0a,,=0a,=0,
A, +a, =0,+0, =0+0,=0
forall i&] (4.5.19)

i.e., a =-ay,

i.e. , the matrixa; is skew- symmetric.
Case 2:supposen; is skew-symmetric. Then, equation (4.5.16) shows th

ASA =0 (4.5.20)
For all vectordy. This implies

A=0 (4.5.21)
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For all vectorsA

This shows that the transformation (4.5.8) repriesen rigid body linear small

transformation.
This completes the proof of the theorem.
Remarks :when the quantities; are skew —symmetric , then the linear infinitedima

transformation.

A =a; A
Equation (4.5.19) takes the form

A ==, A + 0 A

A =0, A —a,A

A =-a,,A +a,A (4.5.22)
Let W =0a5, =0,

W, = Q3 =y,

W =0, ==y, (4.5.23)

Then, the transformation (4.5.22) can be writtethasvectors product

A=wxA,
(4.5.24) Where\]/:vvI is the infinitesimal rotation vector. Further
A=A -A
2&-&)-(x-%)
== — & (4.5.25)
This yield
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& =Ox°+IA,

& =3+,
or
& =" +(w+A) (4.5.26)
Here, the quantities
& =50 X

arethe components of the displacement vector reptieg the translation of the point
P°and the remaining terms of (4.5.26) representimtaif the body about the point
PO

4.6 PURE DEFORMATION AND COMPONENTSOF STRAIN TENSOR

We consider the infinitesimal linear transformation

A =a;A (4.6.1)
Let w, =¥2(a; -a;) (@p
and

& =%(au +a;) (4.6.3)

Then the matrixw, is anti-symmetric whileg; is symmetric.
Moreover,
a; =€; +Ww;(4.6.4)

and this decomposition af; as a sum of s symmetric and skew-symmetric matrice
IS unique.

From (4.6.1) and (4.6.4), we write
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A =g A WA (4.6.5)
This shows that the transformation of the compaeht vectorA given by
A =W A (4.6.6)

represent rigid body motion with the componentatéation vectorw given by

W = W, W, = W5, W = W, (4.6.7)
and the transformation

A=A, (4.6.8)
with & =€, (4.6.9)

represents a pure deformation.

STRAIN COMPONENTS: The symmetric coefficients, , in the pure deformation
oA = & A

are called the strain components.

Note (1): These components of straincharacterizepure defomatf the elastic

body. SinceA and &\ are vectors (each is a tensor of order 1),theedfgrquotient
law, the strains componengs form a tensor of order 2.
Note 2: For most materials / structures, the strains atheoorderl0~° such strains
certainly deserve to be called small.
Note 3: The strain component§,,€,,,6,, are called normal strain components while
€,.6364,6,,6,,6, are called shear strain components,
Example: For the deformation defined by the linear transi@tion

Elle"'xzifz :)(1_2)(2153 =X XX,
Find the inverse transformation of rotation andisttensor, and axis of rotation.
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Solution: The given transformation is express as

') 1 1 O0|x

&=L -2 0%

&1L 1 -1 x
and its inverse transformation is

-1

x| |1 1 0]
(=1 -2 0] |4
x| 1 1 -1 [§
2 1 07§
:%1 -1 0 |¢
3 0 -3|¢&
giving
1
25(251'*'52)’
1
Xzz:_g(é_fz)
X3:E:L_ES
comparing (4.6.10) with
Ei:(a'ij+5ij)xj
We find
0O 1 O
a;=|1 -3 O
1 1 -2
Then
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0 0 -1

le:%(a”—aﬁ):% 00 -1 (4.6.15)
11 0
and
€ = (aij +aji)
0 1 =
2
1
=1 -3 > (4.6.16)
11 5,
12 2 i
and
a; =W, +g, (4.6.17)
The axis of rotation is
w=Ww§
where
_ 1
V\ﬁ_Wsz E’
WZ_W13: ’
W, =W, =0 4.€.18)
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4.7 GEOMETRICAL INTERPRETATION OF THE COMPONENTS OF
STRAIN

Normal strain componente,:
Let g be the components of strains the pure infinitekiimaar deformation of a
vector A is given by

A =g A (4.7.1)

with g =¢; .

Let edenotes the extension (or change) in lengthupi¢ length of the vecto# with

magnitude A.Then, by definition,
== (4.7.2)

We note that e is positive or negative upon whethermaterial line elemen#y

experiences an extension or a contraction. Alsa if and only if the vectorA
retains its length during a deformation.This numbeis referred to as the normal
strain of the vectof .Since the deformation is linear and infinitesimake have

(proved earlier)

AdA= A (4.7.3)
SA _ AJA
Or A - A 2

Now from (4.7.1) and (4.7.3), we write

_A_AR

e__
A A

This implies
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1
e=lRAT He AT+ AT+ 20,0 + 20,4 + 20,44 (4.7.4
Sinceg; =g

In particular,we consider the case in which thetaed in the underformed state is

parallel to thex, -axis. Then

A=AA=A=0 @y.
Using (4.7.5), equation (4.7.4) gives

e=e;,. (4.7.6)
Thus, the componerg, of the strain tensor, to a good approximatiorn®extension

or change in length of a material line segmentfifer of the material) originally

placed parallel to the, -axis in the undeformed state.

Similarly, normal strains,,and €;;are to be interpreted.

g, 00
lllustration: letg;=| 0 0 O
0O 00

Then all unit vectors parallel to the-axis will be extended by an amoent In this
case, one has a homogeneous deformation of matetia¢ direction of thex -axis.
A cube of material whose material whose edges baleformation are L unit along

will become (after deformation due €0 a rectangular parallelepiped whose
dimension in the direction of the, - and X, - axes are unchanged.
Remark: The vector

A=A=(A00)

is changed to (due to deformation)
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A =(A+ g+ + RS,

in which
A =g A =a,A
gives
Thus A=(A+e A eLA eA)

this indicates that vectorA:(A,0,0) upon deformation,in general, changes its

orientation also.This length of the vector dueééodmation becomds+ e, )A.

X2

A =Ag

Figure. 4.6
X3 9

Question: From the relatiod? =g A, find dAand dAfor a vector lying initially
along x-axis (i.e.A= A¢) and justify the fact th% =¢,. Does A lie along the x-
axis?

Answer: It is given thath = (A,0,0). The given relation

A =gA 4.7.7)
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Gives
A =g,AN =6A A=A (4.7.8)
Thus, in general, the vect@A does not lie along the x-axis.

Further

(A+ ) = | AL+ e, ) +(e,AF +(eA)]

=A\/1+ 2¢,te, +te, +e. . (4.7.9)
Neglecting square terms as deformation is smaliagon (4.7.9) gives
(A+ @A) = A¥(1+2g,),
A*+2AA= A’ +2A%,
2AA=2/Ng,

A
S=e, (4.7.10)

This shows thak, gives the extension of a vector (A, 0, 0) per Uenigth due to
deformation.
Remarks: the strain components; refer to the chosen set of coordinate axes. If the

axes changed, the strain componemtill, in general, changes as per tensor

transformation laws.

Geometrical interpretation of shearing Stresse,;:

The shearing strain componegf;may be interpreted by considering intersecting
vectors initially parallel to two coordinate axeg-and X;-axis

Now, we consider in the undeformed state two vector

A= AL,
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B=B§ (4.7.11)
directed alongx, -and X;-axis, respectively.
The relations of small linear deformation are

A =gA,

B =gB;, (4.7.12)

Further, the vector#$\ and B due to deformation become (figure 4.7)

A
X3
AQ
QA ,
I/ ’,‘7 P
&By T
=
o .- R
X 6A, Ay P\ R
/ L
B o,
2 %Bl \/5\A.L X2
X1 Figure 4.7

g:d31é1+582é2 +(Ba +5Ba)?%
Let 6 be the angle betweeN andB'. Then

AB IAB, + (A, + A )B, + 3y(B, + dB,)
— = 2 (4.7.14)
AB () + (A, + AP +( )y (3B) +(aB) + (BB,Y

cosd =
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Since , the deformation is small , we may negleetgroduct of the changes in the

components of the vectoA and B .Neglecting these product , equation (4.7.11)

gives
cof = (A, +BA)A +A) (B, +&B,)"

AR B 5&\2)-1(“ L+ assj'
AB; A B,

{2:2-2-2)

Neglecting other terms,this gives

0030:@+ﬁ (4.7.15)
B, A

Neglecting the product terms involving changeshie components of the vectof
andB.

Since in formula (4.7.15), all increments in theanpomnents of initial vectors on

assuming (without loss of generality)
A=A, =0,
And B =38B,=0,
can be represented as shown in the figure belogh@ivs that vectdr,' and 3' lie in

the X,X;-plane). We call that equation (4.7.13) now mayaben as
A= Ag + g,

B =Bg+B§ (4.6)
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g A
A %2 P X2

v

Figure 4.8
Form equation (4.7.11) and 4.7.12), we obtain
A=A,
B, =e B, (4.7.17)

This gives

e, = - tanoPOP (4.7.18)

=TANDJQ'OQ T4.9)

A,
eﬁﬁ
> B

since straine,; = €,,are small, so

OPOP=0QO0QCe,,,

And here
2e,, 090 —e:g—e (4.7.20)
Thus, a positive value a2e,, represents the decrease in the right angle betéeen
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vectors Aand B due to small linear deformation which were initjatlirected along

the positivex,and x;-axes. The quantity / strain componepiis called the shearing

strain.

A similar interpretation can be made for the stst@in components of material arcs.
Remarks 1: By rotating the parallelogranROP'Q" throw an anglee,about the

origin (in the X,X, -plane), we obtain the following configurationgy(ire 4.9)

v

Figure 4.9

Thisfigure shows a slide or a shear of planar efésmparallel to thex x, — plane.

Remarks 2: Figure shows that areas of rectangle OQRP and #nallglogram

OQ'RP' are equal as they have the same height and sasaerbnex,x;-plane.

O 0 O
Remarks 3:For the straintenspp 0 e,
0Oe¢g, O

A cubical element is deformed into a parallelepiped the volumes of the cube and
parallelepiped remain the same.Such a small lideformation is called a pure shear.
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48 NORMAL AND TANGENTIAL DISPLACEMENTS

Consider a point B, X,,X%;) of the material. Let it be moved to Q under a $mal
linear transformation. Let the components of trepldicement vectoPQ be u,,U,,u,

. In the plane OPQ, lePN =n be the projection ofPQ on the line OPN and let
PT =t be the tangential oPQ in the plane of OPQ or PQN.

Definition: vectors nand tare, respectively, called the normal and the

tangentialcomponents of the displacement of P.

Note: The magnitude n of normal displacemenis given by the dot product of
vectorsOP = (X, %, %) and PQ= (ul,uz,u3).
the magnitude t of tangential vectois given the vector product of vecto@ and

PQ ( this does not give the direction Of

X3

X2

Figure 4.10
X1

Thus
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OPFQ

n=cosLINPQ =
OP

| OPxPQ
t = PQsin[INPQ = (OP)(PQ)S'”(NPQ):‘ - Q‘,

OP OP
And
n*+t* =u’ +uj +uZ.
Books Recommended:
1. Sokolnikoff, I. S. Mathematical Theory of Elasticity, Tata McGraw
Hill Publishing Company, Ltd., New Delhi, 1977
2. Shanti Narayan Text Book of Cartesian Tensors, S. Chand & C6019

MAL-633 73



CHAPTER-V

STRAIN QUADRIC OF CAUCHY
5.1 Strain Quadric of Cauchy

Let Po(xlo,xg,xg) be any fixed point of a continuous medium witterehce axis

0xX,%, fixed in space. We introduce a local system of aith origin at pointP°

and with axes parallel to the fixed axes (figurk) 5.

X3 1 X3

P(
X1
X2
Figure 5.1
X1 g
with reference to these axes, consider the equation
g %X = £k* (5.1.1)

where k is a real constant and is the strain teas®. This equation represents a
guadric of Cauchy. The sign + or — in equation.(®.be chosen so that the quadric
surface (5.1.1) becomes a real one. The naturki®fquadratic surface depends on

the value of the stra'ﬂq] .
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If ‘e”. ‘ # 0, the quadratic is either an ellipsoid or a hypégiab

If ‘qj‘:o, the quadratic surface degenerates into a cylirafethe elliptic or

hyperbolic type or else into two parallel planemsyetrically situated with respect to

the quadric surface.

This strain quadric is completely determined ortee strain components; at point

P9are known. LetP°P be the radius vectorAof magnitude A to any point
P(x1,><2,x3), referred to local axis, on the strain quadridesee (5.1.1). Lete be the

extension of the vectoA due to some linear deformation characterized by

A =gA, (5.1.2)

Then, by definition,

_A_ARA_AA
e T T a2
A A A
This gives
ez qi?ﬁ (5.1.3)
using (5.1.2)

Since%:Aand the coordinate of point P, on the surface I5.telative td*°are
(x,%,,%,), it follows that
A=x (5.1.4)
From equation (5.1.1), (5.1.2) and (5.1.4); we bbta
A’ =g AA =6 Xx; =2k’

k2
Or e=t (5.1.5)
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Result (1): Relation (5.1.5) shows that the extension or elbagaof any radius

vector Aof the strain quadric of Cauchy, given by equat{érl.1), is inversely
proportional to the length ‘A’ of any radius vectbis deformation the elongation of

any radius vector of the strain quadric at the @@ix°) .
Result (2): we know that the length ‘A’ of the radius vectéy of strain quadric

(5.1.1) at the poinP°(>§°) has maximum and minimum values along the axeseof th
quadric. In general, axes of the strain quadrit.{§.differs from the coordinates axes
throughP°(>g°). Therefore, the maximum and minimum extensionglongation of
the radius vectors of strain quadric (5.1.1) wdlddong its axes.
Result (3): Another interesting property of the strain quadsid.1) is that normav,
to this surface at the end point P of the vetEfTP: A is parallel to the displacement
vectordA .
To prove this property, let us write equation (5)in the form
— 2
G=gXx X%tk =0 %)

Then the direction of the normal to the strain quadric (5.1.6) is given by the

gradient of the scalar function G. The componehti@gradient are

0G

a_xk =60 X; +8;%9y

L X; T e X
=26 X;

Or

= -om, (5.1.7)
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This shows that vectorg—Gand vector oA are parallel. Hence, the vectiis
Xk

directed along the normal at P to the strain qeaafriCauchy.

5.2 STRAIN COMPONENTS AT A POINT IN A ROTATION OF
COORDINATE AXES

Let new aXGSOX1,X2'X3' be obtained from the old reference systéxx,x,by a

rotation. Let the directions of the new axgde the specified relative to the old
systemx; by the following table of direction cosines in whi¢ , is the cosine of the

angle between the -and X axis.

el

¥X,

v

% Figure 5.2

That is ly = cos(x’p,x ).

Thus

11 4 12 4 13

14
Xo| b Lo Lo
by Ly lg
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Then the transformation law for coordinates is

X =0, X, (5.2.1)
Or X, =4 5% (5.2.2)
The well —known orthogonality relations are

04l =0, (5.2.3)

Y ) (5.2.4)
with reference to new, -system, a new set of strain componeg)isis determined at
the pointo while g; are the components of strainatelative to old axe®x;x,x; .
Let

g XX =k’ (5.2.5)

be the equation of the strain quadric surface ivglatio old axis. The equation of

guadric surface with reference to new prime sydtecomes
& XX, =k (5.2.6)

As we know that quadric form is invariant w. r.an orthogonal transformation of
coordinates. Further, equation (5.2.2) to (5.26gther yield

€, XX = 6% X,
=g (X N0 %)
=ley alq X,
Or
(€ =1 il 48 )X, X =0 (5.2.7)
Since equation (5.2.7) is satisfied for arbitraegtorX,, we must have

€ =L ul € (5.2.8)
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Equation (5.2.8) is the law of transformation fecend order tensors. We, therefore,

conclude that the components of strain form a sttcoder tensor.

Similarly, it can be verified that
g = (! 4€ (5.2.9)
Question: Assuming thate; is a tensor of order 2, show that quadratic famx; is

an invariant.

Solution: We have

So, &% X; =1 il €% X,

€ (g pi X4 )(gqj X )

:e’pq>(px{1 . (5.2.10)
Hence the result
5.3 PRINCIPAL STRAINS AND INVERIANTS

From a material poinP°(>g°), there emerge infinitely many material arcs/ fieats,
and each of these arcs generally changes in leagth orientation under a
deformation. We seek now the lines througﬁ(xo) whose orientation is left

unchanged by the small linear deformation given by

A =g A (5.3.)
where the strain componengs are small and constant. In this situation, vectdrs
andoA are parallel and, therefore,

A =eA (5.3.2)

for some constant e.

Equation (5.3.2) shows that the constant e repteslea extension.
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of vectorA. From equation (4.11.1) and (4.11.2), we write

QA =eA
29, A (5.3.3)
This implies
(6 -ed)A =0 (5.3.4)

We know thate; is a real symmetric tensor of order 2. The equato8.3) shows that
the scalare is an eigen value of the real symmetric tengpwith corresponding

eigenvecto”A. Therefore, we conclude that there are precisbhget mutually

orthogonal direction are not changed on accourdeddrmation and these direction

coincide with the three eigenvectors of the sttairsog; . These directions are known

as principle direction of strain. Equation (5.3.4lves us a system of three

homogeneous equations in the unkndwm,, A,. This system possesses a non-

trivial solution if and only if the determinatiorf the coefficients of theA ,A,, A, is

equal to zero, i.e.,

€."¢€ € €3
€1 €,-¢€ €3 |~ 0 (2B
€ €, €3~

which is cubic equation in e.

Let e,e,,e,be the three roots of equation (5.3.5), these mo&vk as principal strains.

Evidently, the principal strains are the eigenvalakethe second order real symmetric

strain tensog,. Consequently, these principal strains are reait (mecessarily
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distinct). Physically, the principal straires,e,, e;(all different) are the extensions of
the vectors, sa@, in the principal / invariant of strain. So, vestd,, oA, A+ A are
collinear. At the poinP° consider the strain quadric

€ %X, = +k? (5.3.6)

For every principal direction of straf, we know thatdAis normal to the quadric

surface (5.3.6). Therefore, the principal direasiof strain are also normal to the
strain quadric of Cauchy. Here, principal directioh strain must be the three
principal axes of the strain quadric of Cauchysdfme of the principal straingare

equal, then the associated directions become imdetate but one can always select

three directions that all mutually orthogonal lIfetl® # e, =€,, then the quadric

surface of Cauchy is a surface revolution and euncgpal direction, sayA, will be
directed along the axis of revolution.

In this case, any two mutually perpendicular veciging in the plane normal téi
may be taken as the other two principal directioinstrain.

If §=e =g, then strain quadric of Cauchy becomes a sphece ay three
orthogonal directions may be chosen as the prihdipections of strain.

Result: If the principal directions of strain are takentlas coordinate axes, then
€176.,6,=6,6;=6

And €,=€;=6,=0,

As a vector initially along an axis remains in 8@ne direction after deformation (so

change in right angles are zero). In this case,sth@n quadric Cauchy has the

equation.
ex +ex +ex; = £k’ (5.3.7)

Result 2: Expanding the cubic equation (5.3.5), we write
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-’ +ve —v,e+v, =0
where Vi=€,16,+6;
=e, =tr(E), (5.3.8)

V, =€ £, 6L +ease11_%23 _elz3_e122

:tr(EZ):%(Qi i _Qieji)’ (2B.
Vs = &858,y
:1@1‘ =tr (E3) (5.3.10)

Also g,€,, e are roots of a cubic equation (5.3.8), so

Vi=6t+e +6
V, =66, TEL 1 EL (5.3.11)
V3 = €68,

We know that eigenvalues of a second order reahsgtmc tensor are independent of

the choice of the coordinate system.
It follows that v;,v,,v;are given by (5.3.10) three invariants of the strt@nsore,
with respect to an orthogonal transformation ofrdotates.

Geometric meaning of the first strain invariant J = e,

The quantityd =e, has a simple geometric meaning. Consider a volele@ent in

the form of rectangle parallelepiped whose edgelerdth |,,1,,l,are parallel to the

direction of strain. Due to small linear transfotioa /deformation, this volume
element becomes again rectangle parallelepiped watiges of length
I1(1+q),lz(1+e2), I3(1+%), where g,€,,e, are principal strains. Hence, the change

oV in the volumeV of the element is
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d‘/:|1|2|3(1+el)(1+%)(1+%)_|1|2|3
:I1I2I3(1+el+g +%)—I1I2I3, ignoring small straigs
=lJJa+e,+e)
This implies
N
- = =9
Vv € t6 +6&

Thus the first strain invarianf represents the change in volume per unit initial
volume due to strain produced in the medium. Thantity Jis called the cubical

dilatation or simply the dilatation.
Note: If g >e,>¢g, then e,is called the minor principal straingis called the

intermediate principal strain, arglis called the major principal strain.

Question: For small linear deformation, the straigsare given by

W ; %) ]
(Qj ) =a (Xl ;XZ) X X, , a =constant
X, X 2x+x,)

Find the strain invariants, principal strain anthpipal direction of strain at the point
P(1,1,0).

Solution: The strain matrix at the point P(1,1,0) becomes

a a 0
(qj): a a 0],
0 O 4a

whose characteristics equation becomes

ele-2a)(e-4a)=0.
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Hence, the principal strains are
g=0e =20a,e,=4q.
The three scalar invariants are
v, =g +e +e,=6a,v,=8a%V,=0

The three principal unit directions are found to be

vl o) xee

Exercise: The strain field at a point P(X, y, z) in an elagtody is given by

20 3 2
§=|3 -10 5 |x10°.
2 5 -8

Determine the strain invariant and the principedist.

Question: Find the principal directions of strain by finditige extremal value of the

extensio® . OR, Find the direction in which the extensidris stationary.

Solution: Let & be the extension of a vectéydue to small linear deformation

A =g A (5.3.12)
Then
_O0A
= (5.3.13)

We know that for an infinitesimal linear deformati¢s.3.12), we have

AA= AA (5.3.14)
AA
Thus 9= ':CZA = AAdﬁ =5 22 : (5.3.15)
Let % =a (5.3.16)
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Then aa =1 (5.3.17)
And equation (5.3.15) then gives
&(a,a,,a;) = a3, (5.3.18)

Thus the extensiom is a function ofa;,a,,a, which are not independent because of

relation (5.3.17). The extreme/stationary (or marjmaalues of the extension e are to
be found by making use of Lagrange’s method of ipligts. For this purpose, we

consider the auxiliary function

Fla.a,.2,)=¢aa -A(aa -1 (5.3.19)
where A is a constant.
In order to find the values o#,a,,a, for which the function (5.3.18) may have a
maximum or minimum, we solve the equations.

F _0, k=1,2,3. (5.3.20)

0a,
Thus, the stationary values of e are given by

G (éikaj +a1'6jk)_/12aid|k =0

Or §a t§a —24a, =0
Or 2g,a —24a, =0
Or 6,4 =/, (5.3.21)

This shows that is an eigenvalue of the strain tensgpand & is the corresponding

eigenvector. Therefore, equation in (5.3.21) deiteesithe principal strains and the

stationary/extreme values are precisely the prai@pains.

Thus, the extensioe assumes the stationary values along the prindipattion of

strain and the stationary/extreme values are mlydise principal strains.
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Remarks: Let M be the square matrix with eigenvectors of str@in tensore; as

columns. That is

Al A A
M=lA, A, A
Al A A

Then &A; =eA,
&§A =&A
& A =&hy
The matrix M is called the modal matrix of stragmso; .
Let
E=(g)D=diale.e.e).
Then, we find
EM=MD
Or M™EM=D.
This shows that the matrices E and D are similar.

We know that two similar matrices have the sameereiglues. Therefore, the

characteristic equation associated Wih'EM is the same as the one associated with

E. Consequently, eigenvalues of E and D are idaintic

Question: Show that, in general, at any point of the eldstidy there exists (at least)
three mutually perpendicular principal directiorigtee strain due to an infinitesimal

linear deformation.
Solution: Let g,€&,,€;be the three principal strains of the strain tegsofrhen, they

are the roots of the cubic equation

(e-e)e-e)le-e)=0
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And g+e+e=g,+6,+e,=6,
1
ee +ee teg = (ae; —qg).

ees =|g| =0, g6,8y .
We further assume that coordinate axes coincidé tie principal directions of

strain. Then, the strain components are given by

€176,6,76,6;=6;,

€, =€3=6,3=0,
and the strain quadric of Cauchy becomes

ex’ +ext +ex; =+k°. (5.3.22)
Now, we consider the following three possible cdeegrincipal strains.
Case: 1When g, # e, # &,. In this case, it is obvious that there existeehmutually
orthogonal eigenvectors of the second order reainsgtric strain tens@;. These
eigenvectors are precisely the three principaldtimes that are mutually orthogonal.
Case: 2Wheneg #¢e, =¢,.
Let A, and A, be the corresponding principal orthogonal direcionrresponding to
strains (distinct)g ande,, respectively. Then

&A; =eA,

& A =eA (5.3.23)

Let pbe a vector orthogonal to boty, andA,, . Then

PA =PA; =0 5.3.24)

Let &P =0 (5.3.25)
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Then a,A; =g P )A =(gA )n =aA P =0 (5.3.26a)
similarly q;A; =0 (5.3.26b)
This shows that the vectay is orthogonal to bothd; andA,; . Hence, the vectors,
and p must be parallel. Let

g =anp (5.3.27)
for some scalar . From equation (5.3.25) and (5.3.27), we write

&P, =q =ap .328)
which shows that the scalawis an eigenvalue /principal strain tensgywith
corresponding principal directign. Sinceg; has only three principal straire, e, @
and two of these are equal, gamust be equal t® =e,. We denote the normalized
form of pbyA, . This shows the existence of three mutually ortimad principal

directions in this case. Further, fetbe any vector normal té\,. ThenV lies in the

plane containing principal direction, and A, . Let
v, =k A, +k,A;, for some constark andk, (5.3.29)

Now gV, =6 (kA +iA,)

H(g A )k (gA,)

(A )+ ki (esAy)

= (kA thA) (16 =e)

=V
This shows that the directionis also a principal directions stran Thus, in this

case, any two orthogonal (mutually) vectors lyingtbe plane normal td\, can be
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chosen as the other two principal directions. Ia tlase, the strain quadric surface is a

surface of revolution.

Case3:wheneg =g, =¢,, then the strain quadric of Cauchy is a spherk aguation
&<+ +x¢)=#k”

2

Or ><f+><§+x§:ikE

and any three mutually orthogonal directions cantdden as the coordinate axes

which are coincident with principal directions @fesn. Hence, the result.
5.4 GENERAL INFINITESIMAL DEFORMATION
Now we consider the general functional transfororatand relation to the linear

deformation. Consider an arbitrary material pom‘?(xo)in a continuous medium. let

the same material point assume after deformatierpﬂinth(gﬁO). Then
& =x+u,(x,x,x) (5.4.1)

where u, are the components of the displacement véiQf . We assume that as
well as their partial derivatives is a continuousndtion. The nature of the

deformation in the neighborhood of the poiAtcan be determined by considering
the change in the vectBPP = A ; in undeformed state.
Let Q(&,&,,&,) be the deformed position of P. then the displacgragat the point P
IS

U (%%, %) = & =% (2%
The vector A=x-X% (5.4.3)

Has now deformed to the vector

MAL-633 89



&§-&=A (say)
(5.4.4)
Therefore, A=A-A

{6 -¢°)-(x - %)
{6 -%)-(&-x)
=0 (%, %, %) ~u (¢, 6, %)

2 (0 + A+ A+ A)-u (3,3, %0)

ou
{&jA (5.4.5)

plus the higher order terms of Taylor's seriese Hubscripto indicates that the
derivatives are to be evaluated at the pBftlf the region in the neighborhood of
P%is chosen sufficiently small, i.e. if the vectdyis sufficiently small, then the
product terms likeA, A may be ignored. Ignoring the product terms and pirgpthe

subscripto in (5.4.5), we write
A=u A (5.4.6)

where the symbol, ; has been used f%&. Result (5.4.6) holds for small vecta@s
X,

J

If we further assume that the displacementas well as their partial derivatives are
so small that their products can be neglected, theransformation (which is linear)

given by (5.4.4) becomes infinitesimal in the néigthood of the pointP°under

consideration and
A =a; A (5.4.7)
with a; =Uu (5.1.8
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Hence, all results discussed earlier are immedgiapplicable. The transformation

(5.4.6) can be spited into deformation and rigidyomotion as

P =u,A {u” e j/%

=g, A +W, A (5.4.9)
Where &; :%(ui,j +uj,i) (5.4.10)
W; :%(Ui,j —u“) (5.4.11)
The transformation
A =gA (5.4.12)
represents pure deformation and
A =W A (5.4.13)

represents rotation. In general, the transformaof.9) is no longer homogeneous as

both strain components; and components of rotatiow; are function of the

coordinates. We find

V=g =" =u. =diw 5.4.14)

That is, the cubic dilatation is the divergencetlod displacement vecton and it

differs, in general, from point of the body. Theatmon vectorwis given by
W = Wy, Wy = Wg, Wy = W, . (28)
Question: For the small linear deformation given by
u=axx, (& +8)+2a(x +x,)x.8, a=constant.
Find the strain tensor, the rotation and the rotatiector.
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Solution: We have
Uy = aXXp, U, = X%, Uy = 20(X + %)%,

Then strains are given by

ou du ou
eu=a—>;=axz,%2=6—Xj=m<1,esg=a—x:=2a(x1+xz)
_1{ouy  0u,|_a
== 22 | =2 (x o+
e, 2[6)(1 GXJ 5 (ar%)
1(dy, , du,
= | —=+—2|= =
3 2(6x3 lej ax;, 6,5 = ax,
We know that
w =19 9 (5.4.16)
bo2(ox, 0x
We find
\Nll:W22:W33:O
a _ _ _ _
W12:E[X1_X2]:_W21' W13__aX3__W31' W, = —O%; = —Wj,
Therefore
0 ()(1;)(2) — %,
(V\/u)=a—(xl;x2) 0 -x (5.4.17)
X X 0

The rotation vectonTv:w is given byw =L}, u,. We find
o o _._a
W = Wo, =0%3, W, = W3 = 0%, W3 = W, _E(Xz _X1)
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So w=ax (& -8)+ 7 (x, - x )8, (5.4.18)

Exercise 1:For small deformation defined by the following mlecement, find the

strain tensor, rotation tensor and rotation vector.

(1) U = —a%,%;, U, = axX,,u, =0

()  u=a*(x—-x).u=a*(x +x),u = —axx,a =constant (5.4.19)
Exercise 2:the displacement components are given by

U=-YyzZV=XZ,W= ¢(x, y) calculate the strain components. .
Exercise 3:Given the displacements
u=3x%y,v=y’+6xz,W=62"+2yz

Calculate the strain components at the point (2)0What is the extension of a line

element (parallel to the x- axis) at this point? (5.4.21)

Exercise 4: Find the strain components and rotation componénmtsthe small

displacement components given below

(a) Uniform dilation- u=ex, v=ey, w=ez

(b) Simple extension-  u=ex, v=w=0

(c) Shearing strain- u=2sy, v=w=0

(d) Plane strain- u=u(x, y), v=v(x, y), w=0 (5.4.22)
5.5 SAINT-VENANT'S EQUATIONS OF COMPATIBILITY

By definition, the strain component; in terms of displacement componentsare

given by
1
& :E[ui,j +u;] (5.5.1)

Equation (5.5.1) is used to find the componentsstoéin if the components of

displacement are given. However, if the componeiftstrain, g ,are given then
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equation (5.4.1) is a set of six partial differahtequations in the three unknown

u,U,,U;. Therefore, the system (5.5.1) will not have singéued solution foru,
unless given straing; satisfy certain conditions which are known as theditions of
compatibility or equations of compatibility.

Equations of compatibility

1
we have &; zf(ui‘j +uj,i) (5.5.2)

1
SO, &« :E(ui,jkl +uj,ik|) (5.5.3)

Interchanging with k andj with | in equation (5.4.3), we write

1
€. ZE(uk,lij +ul,kij) (5.5.4)
adding (5.5.3) and (5.5.4), we get
1
€ n t 6 _E(ui,jkl Ut Uy +u|,kij) (5.5.5)
Interchanging and|in (5.5.5), we get
1
i t G _E(ul,jki T U g U +ui,|jk) (5.5.6)
From (5.5.5) and (5.5.6), we obtain
8w TE =8k Ty
Or 8w TEi ~8i T €k =0 1)

These equations are known as equations of compatiby.

These equations are necessary conditions for theteexe of a single valued
continuous displacement field. These are 81 equstim number. Because of

symmetry in indicek ] andk,| ; some of these equations are identically satisdied
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some are repetitions. Only 6 out of 81 equatiorsessential. These equations were
first obtained byGaint-Venant's in 1860.

A strain tensog, that satisfies these conditions is referred to gsossible strain
tensor.

Show that the conditions of compatibility are suffcient for the existence of a

single valued continuous displacement field.

Let P°(>g°) be some point of a simply connected region at wttie displacements’
and rotationSV\ﬁ are known. The displacementisof an arbitrary pointP’(xi')can be

obtained in terms of the known functiorggby mean of a line integral along a

continuous curve C joining the poif®and P'.
o
0;(4,%,6) = U3, 8,6 )+ [ (5.5.8)
PO

If the process of deformation does not create crackoles, i.e., if the body remains

continuous, the displacements should be independent of the path of integration.
That is, u; should have the same value regardless of whdikeantegration is along

curve C or any other curve. We write
au;
du, = adxk =u;,dx, = (ejk + ij)dxk (5.5.9)
Therefore

P P
u) =ud + Iejkdxk + ijkdxk, P(x.) being point the joining curve. (5.5.10)
PO (]

p

Integrating by parts the second integral, we write
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P’ P’
[wax, = [w,d(x -x,) the point'(x, )being fixed so
pO PO

dx, =0

{(Xk - Xk')W?k }E; - J‘(Xk - Xkl)ij,Idxl (5.5.11)

From equations (5.5.10) and (5.5.11), we write

P’ P’
U, (X1" le’ Xel) = u? + (Xk'_xt?)\’v?k + J‘ejkdxk + J‘(Xkl_xk)wjk,ldxl
= p°

N
a? + (=X 8, + [Tey + (%% w, Jax (5.5.12)
PO

where the dummy indexof e, has been changedito

10
but Wi _Ea[uj,k _uk,j]
1
=§[uj,kl _uk,jl]

1 1
=[u; g U ] =2 Iu U]
2 2

=€, ~ 6] (5.5.13)

using (5.5.13), equation (5.5.12) becomes

U 06 %," %) = U2 + (6 Wb+ [l +{x X} &, — & J ox

o
g? + (Xkl_xl?)V\fj)k + J‘Ujldxl 5581
PO

where for convenience we have set
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U, =g +(Xkl_xk)(ejl,k _Qd,j) (5.5.15)
which is known function &g are known. The first two terms in the side of etmt

(5.5.14) are independent of the path of integratlmom the theory of line integrals,
the third term becomes independent of the patmiglgration when the integrands

U;dx, must be exact differentials. Therefore, if theptisementsu (xlxzxg) are

to be independent of the path of integration, watrhave

Y, Y, for,j,1 =1,2,3 (5.5.16)
0x 0%,
Now
Ui =+ (%% )ler s — 8 )= dalenn =)
=€, ~8 T8 (% %)@ ~ € (55.17)
and

Ui =€ +(Xkl_xk)(eji,k| —€.1) ~ O (eji,k _Qd,j)
S TRCTRTTRI G VLY (5.5.18)
Therefore, equations (5.5.16) and (5.5.17), (5)5yléds
(%=X X €110 = € =€ +Esa] =0
Since this is true for an arbitrary choicexf-x, (as P'is arbitrary), it follows that

€ix T8 ~ 8k ~€wk =0 (8.9)
This is true as these are the compatibility refetiocHence, the displacement (5.5.8)

independent of the path of integration. Thus, theagatibility conditions (5.5.7) are

sufficient also.

Remarksl: The compatibility conditions (5.4.7) are necessamy sufficient for the
existence of a single valued continuous displacéemieid when the strain

components are prescribed.
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In details form, these 6 conditions are

e, _ 0 (—a%3+a%1+aq2

ox,0% Ox | Ox  Ox, 0x
62_922 _ 0 [~0ey + 08 + 0855
ox0x 0% | ox, Ox, 0x
ey = 0 [~0e, 08, 06y
ox0x, Ox | Ox,  9x 0%
20%, _0%, , 0%,
oxox, 0%’ 0%
20%,; _ 0%, | 0%y
0% 0% 0%

2 2 2
20°;, _0 % L9 & (5.5.20)
ox0x 0% 0%

These are the necessary and sufficient conditionthé components, to give single

valued displacements, for a simply connected region.

Definition: A region space is said to be simply connected i&rditrary closed curve
lying in the region can be shrunk to a point, byitomious deformation, without

passing outside of the boundaries.
Remarks2: The specification of the straing only does not determine the
displacements u; uniquely because the straing, characterize only the pure

deformation of an elastic neighborhood of the print
The displacements; may involve rigid body motions which do not affegt

Examplel: (i) Find the compatibility condition for the stratensore;if € ,,€,,,6;3

are independent of,ande,; =e,, =€, =0.
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(i) Find the condition under which the following are spible strain

components.
6. =kl(x’ - %,") &, =k %%, 6, = ki,
e, =6, =6, =0k& k'are constants
(i) ~ When g given above are possible strain components, finé th

corresponding displacements, given that 0

Solution: (i) We verify that all the compatibility conditisnexcept one are obviously

satisfied. The only compatibility to be satisfieg & is
(ii) Five conditions are trivially satisfied. Themaining condition (5.5.20) is satisfied
iff
k'=K as €120 = 2K, €5, =K', €,, =0
(iii) We find
€1=U, = k(X12 - Xzz)’ U, = KGXo, Uy, +Upy = =2K6%, (O K'=-K)
u2,3 = u1.3 = O
This shows that the displacement componen&hd u,are independent of; .

We find (exercise)

u = % (2)(13 - 6)(1)(22 + X23) —CX, +C

u, = % kx,x,” +cx, +c, wherec,,c,and ¢ constants.
Example: Show that the following are not possible straimponents
_ 2 2 _ 2 2 -
6. =Kl +%,7 )&, =Kk +x) e, =0

MAL-633 99



€, = K'XX,%,65=6, =0,k& k' being constants.
Solution: The given components; are possible strain components if each of the six
compatibility conditions are satisfied. On subsitn, we find

2k = 2K' X,
This can't be satisfied fog, # 0. Forx, =0, this gives k=0 and then a#, vanish.

Hence, the giverg, are not possible strain components.

Exercisel:Consider a linear strain field associated witlngp$y connected region R

such thate, = A><22,e22 = A>(12,(—:§LZB>(1x2,e13 =e,, =,;,0.find the relationship between

constant A and B such that it is possible to obtirsingle- valued continuous
displacement field which corresponds to the givteairs field.

Exercise2: Show by differentiation of the strain displacemestation that the
compatibility conditions are necessary conditiom fbe existence of continuous

single-valued displacements.
Exercise3:ls the following state of strain possible? (c=d¢any
2 2 2
&, =)’ + %", 8, = C%%, 8, = 20%%,%,, 8, =€, =€, =0
Exercise4: Show that the equations of compatibility represeset of necessary and

sufficient conditions for the existence single-valu displacements. Drive the

equations of compatibility for plane strain.
Exercise 5: If g,=¢,=¢6,;=0,6,=¢,,ande,; =¢,; where¢is a function ofx and
X,, show thatg must satisfy the equation

O’p=constant

Exercise 6:If e,and e, are the only non-zero strain components agle,.are

independent af,, show that the compatibility condition may be reed to the

following condition
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€5, — €3, = Constant.

Exercise 7:Find which of the following values of; are possible linear strains

() & =alx’ +x7) e, =ax’.6, = 2axx,6, =€, =&, = 0,0 = constant.

X+ X X X
(i) €= X X+ X X3
X, X X+ X

Compute the displacements in the case (i).

5.6 FINITE DEFORMATIONS

All the results reported in the preceding sectiohghis chapter were that of the
classical theory of infinitesimal strains. Infirstmal transformations permit the

application of the derivatives of superpositioreiects. Finite deformations are those

deformations in which the displacemenistogether with their derivatives are no

longer small. Consider an aggregate of particlea gontinuous medium. We shell
use the same reference frame for the location oficfes in the deformed and
undeformed states.

Let the coordinates of a particle lying on a cutye before deformation, be denoted
by (a,,a,,a,) and let the coordinates of the same particle itésrmation (now lying
same curve C) de!lxzxs) Then the elements of arc of the curGgand C are
given, respectively, by

ds’ =dada (5.6.1)
and ds® = dx dx (5.6.2)
we consider first the Eulerian description of thais and write

3 =8 (X, %, %) (5.6.3)

then da =q ;dx; =a ,dx, (5.6.4)
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substituting from (5.6.3) into (5.6.1), we write
ds’ =8 ;3 dxdx, (5.6.5)
using the substitution tensor, equation (5.6.2)lmanewritten as

ds’ = o, dx dx, (5.6.6)

j
We know that the measure of the strain is the wiffeeds’ — ds”
from equations (5.6.5) and (5.6.6), we get
ds’ -dg’ = (ij _ai,jai,k)dxjd&
217,,.0x; X, (5.6.7)
where
27 = 0~ 8 ;8 (5.6.8)

We now write the strain componentg, in term of displacement componeuts

where
U =X-3a (5.6.9)
this gives
& =X-Uu
Hence
8 =0 ~U, (5.6.10)
& = Ok ~Uy (5.6.11)

Equations (5.6.8), (5.6.10) and (5.6.11) yield
27 = Oy ‘(41 —ui'j)(d,k ~u,)

:5jk _[6jk —Ug; — U +ui,jui,k]
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:(uj,k+uk,j)_ui,jui,k g3.2)
The quantities 77, are called the Eulerian strain components.

If, on the other hand, Lagrangian coordinates asedu and equations of

transformation are of the form

X =% (a2, a) (5.6.13)
then

dx =x ;da =x ,da, (5.6.14)
and ds’ = x ;% dada, (5.6.15)
while

ds,” = J,da,da, (5.6.16)

The Lagrangian components of strairl], are defined by

ds’ —ds)’ =20, da,da, (5.6.17)
Since

X =a+u (5.6.18)
Therefore,

X =05 TU,

Xk = O Ui
Now

ds’ _d%z = ()ﬁ,j)ﬁ,k _ij)dajdak

:If( i +ui,i)(dlk +Ui,k)_6jkjdajdak

:éuj,k U | +ui,jui,k)dajdak (5.6.19)
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Equation (5.6.17) and (5.6.19) give

(5.6.20)

It is mentioned here that the differentiation in6(%2) is carried out with respect to

the variablex , while in (5.6.19) the &' are regarded as the independent as the

independent variables. To make the difference eitlyliclear, we write out the

typical expressiong,, andl], in unabridged notation,

s ERHEH]

oy ox

(au avj (auau Ov oV, w ow
M=l —F+— || =t ot

+
da oOa

0x oy axay ox oy

_0u (OUJ (OVJ (
0 = +
" da 2{ da ob
(au avj [au ou oOvov owow
ZD P S et
daodb o0aodb o0aadb

(5.6.21)
J (5.6.22)

ow)’
%j } (5.6.23)
j (5.6.24)

When the strain components are large, it is no dongpssible to give simple

geometrical interpretations of the straip and s, .

Now we consider some particular cases.

Casel:Consider a line element with
ds, =da,da, =0,da, =0
Define the extensioft of this element by

ds—ds,
ds,

E =
then

ds= (L+E,)ds,
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and consequently
ds’ - ds)’ =20, da,da,
20, da’ (5.6.27)
Equation (5.6.25) to (5.6.27) yield
(L+E)-1=20,
Or E =y1+20, -1 (5.6.28)
When the strairl .is small,(5.6.28) reduced to

E, [T,

As was shown in discussion of strain infinitesimadtrains.

Case Il: Consider next two line elements

ds, =da,,da, =0,da, =0 5.€.29)
and

ds, =da,,da, =da, =0 (5.6.30)
These two elements lie initially along tlag-and a;-axes.

Let 6 denote the angle between the corresponding deforreahd dZ, of length ds
and d§respectively. Then
dsdscosd =dxdx =x ,x ,da,da, =x ,x dada,
20da,da, (5.6.31)

Let Ap=r-8 (5.6.32)

Denotes the change in the right angle betweenitigedlements in the initial state.

Then, we have
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sina,, =20, (dizj(ﬁj (88)

ds | ds
:\/1+ 252232; 200, (5.6.34)
using relations (5.6.26) and (5.6.28).
Again, if the straing]; are so small that their products can be negletted,
a,, [ 20, (5.6.35)

As proved earlier for infinitesimal strains.

Remarks: If the displacements and their derivatives are kntfan it is immaterial
whether the derivatives are calculated at the joosibf a point before or after
deformation. In this case, we may neglect the mesli terms in the partial derivatives
in (5.6.12) and (5.6.20) and reduce both setsroffitas to

2 =Uj tU =20,

Which were obtained for an infinitesimal transfotiog, It should be emphasized of
finite homogeneous strain are not in general coratiwvet and that the simple

superposition of effects is no longer applicablénde deformation.
Books Recommended:

1. Sokolnikoff, I. S. Mathematical Theory of Elasticity, Tata McGraw Hill
Publishing Company, Ltd., New Delhi, 1977

2. S.Timoshenko and N. Goodier, Theory of Elasticity, McGraw Hill, New
York, 1970.
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CHAPTER-VI
ANALYSIS OF STRESS

6.1 INTRODUCTION

Deformation and motion of an elastic body are galhercaused by external forces
such as surface loads or internal forces such isgeakes, nuclear explosions etc.
When an elastic body is subjected to such forsehehaviour depends on magnitude
of forces, upon their direction and upon the inhestrength of the material of which
the body is made. Such forces give rise to inteadietween neighbouring portions
in the interior parts of the elastic solid. The cept of stress vector on a surface and

state of stress at a point of the medium shalliseudsed.

An approach to the solutions of problems in elasttd mechanics is to examine
deformation initially and then consider stresses applied loads. Another approach
is to establish relationship between applied laaus$internal stresses first and then to
consider deformations. Regardless of the approelgtted, it is necessary to derive
the components relations individually.

6.2 BODY FORCES AND SURFACE FORCES

Consider a continuous medium. We refer the poihthie medium to a rectangular
Cartesian coordinate system. Letepresents the region occupied by the body in
deformed state. A deformable body may be acted upotwo different types of
external forces.

(i) Body forces: These forces are those forces which act on evdoymeelement of
the body and hence on the entire volume of the bBdsexample, gravitational force
and magnetic forces are body forces. peenotes the density of a volume element
of the body. Let g be the gravitational force/accelerationeiftihe force acting on

masspAt contained in volumér is gpArt.
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(i) Surface forces: These forces act on every surface element of tliy bSuch
forces are also called contact forces. Loads appbeer the external surface or
bounding surface are examples of surface forcedrdsyatic pressure acting on the
surface of a body submerged in a liquid /waterssidace force.

(i) Internal forces: Internal forces such as earthquakes, nuclear siple arise
from the mutual interaction between various pafthe elastic body.

Now we consider an elastic body in its unreformedeswith no forces acting on it.

Let a system of forces applied on it. Due to tHesees, the body is deformed and a
system of internal forces is set up to oppose deiermation. These internal forces
give rise to stress within the body. It is therefoiecessary to consider how external

forces are transmitted through the medium.
6.3 STRESS VECTOR ON A PLANE AT A POINT

Let us consider an elastic body in equilibrium urithe action of a system of external

forces.

Let us pass a fictitious plarmethrough a point Pgx Xz, X3,) in the interior of this
body. The body can be considered as consisting@fpiarts, say, A and B and these
parts are in welded contacts at the interface Raftthe body is in equilibrium under
forces(external) and the effect of part B on thenplit We assume that this effect is

continuously distributed over the surface of inketon around the point P, let us
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consider a small surfag&s(on the placet) and let be an outward unit normal unit
vector (for the part A of the body).The effect @irpB on this small surface element
can be reduced to a force and a vector coo_bld\low let usshrink in size towards
zero in amanner such that the point P always resmaside and remains the normal

vector.

Now T is a surface force per unit area. The for€és called the stress vector or

traction on the plangat P.

Note 1: Forces acting over the surface of a body are neeatized point forces; they
are, in reality, forces per unit area applied aane finite area. These external forces

per unit area are also called tractions.
Note 2:Cauchy’s stress postulate

If we consider another oriented plane containingnesgoint P(¥, then the stress
vector is likely to have a different direction. Fthis purpose, Cauchy made the

following postulated known a&auchy’s stress postulate

“The stress vectorr depends on the orientation of the plane upon which acts’.

Letvbe the unit normal to the plame through the point P.This normal characterizes

the orientation of the plane upon which the stnemstor acts. For this reason, we
write the stress vector as indicating the dependence on the orientation

Cauchy’s Reciprocal Relation

When the planet is in the interior of the elastic body, the notutaas two possible

directions that are opposite to each other andheese one of these directions.
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Figure 6.2

For a chosefﬂ,the stress vector is interpreted as the internal surface force pér un

area acting on plang due to the action of part B of the material/bodlyiomais

directed upon the part A across the pfane
Consequently];v Is the internal surface force per unit area acbingt due to the action

of part A for whichv is the outward drawn unit normal. By Newton'’s thlaw of

motion, vectorg and -T balance each other as the body is in equilibrium.

which is known as Cauchy’s Reciprocal Relation.

Homogenous State of Stress

If mand 71'are any two parallel planes through any two poidtsand P'of a
continuous elastic body, and if the stress veatam at P is equal to the stress @h

at P', then the state of stress in the body is saictta homogeneous state of stress.
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6.4 NORMAL AND TANGENTIAL STRESSES

In general, the stress vectpris inclined to the plane on which it acts and neet
be in the direction of unit normal. The projectiohton the normabis calledthe
normal stress It is denoted byoorg,,. The projection ofron the planat in the

plane ofrandv, is calledthe tangential or shearing stresslt is denoted byora,

gnV
Figure 6.3
Thus, o=0,= iTV
r=o,= Tt (6.4.1)
T|* =02 + 0 (6.4.2)

V N
whereT unit vector normal tov and lies in the place

A stress in the direction of the outward normatassidered positive (i.€> 0) and
is called aensile stressA stress in the opposite direction is consideregative ¢<

0) and is called aompressible stress.
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1% A vV
If 6 = 0,Tis perpendicularte.The stress vector is called goure shear stressor a

pure tangential stress.

1% A vV
If t =0, then T is parallel to.The stress vectorl is then calledoure normal

V N
stressWhen T acts opposite to the normajthen the pure normal stress is called

pressure(c <0,1= 0).

From (6.4.1), we can writel =gV +7t (6.4.3)
r= |T|2 -g?

(6.4.4)

Note: 7 =g, =[T|Sna (6.4.5)

v
A

|o1:‘T><|/

N

as v|=1

Thist in magnitude is given by the magnitude of vectadpct of'i’andl; _

6.5 STRESS COMPONENTS

Let P(%) be any point of the elastic medium whose cootémare (X, X , X3)

relative to rectangular Cartesian systenxexs.
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P(x)

\ 4
v

ez a e? X7

€

x, Figure6.4

1
Let T denote the stress vector on theplane, with noedaslg x, —axis, at the point

1
P. Let the stress vectdr has componentsy,tiz, T13, i.€.

n
1 N N N n

T=r eatr,e+1;6=7;€, 6.5.1)

2
Let T denote the stress vector on the plane, with nloaipag x, —axis, at the point
P.

n
2 n N

'[ STy €+, €+ T 03 =T,€ (6.5.2)
" . . . .
Slmllarly T STy 6t+T,€+T;;685 = I3 € (653)
Equations (6.5.1) to (6.5.3) can be condensedarialfiowing form
-I: =T; € (6.5.4)
T.ek = (Tij ej )-ek = Tij ij = Tik (655)

Thus, for given i & j, the quantity; represent the jth components of the stress vector

i N
T acting on a plane havimg as the unit normal. Here, the first suffix i inglies the
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direction of the normal to the plane through P #mal second suffix j indicates the
direction of the stress component. In all, we hdw®mponents; at the point P(X in

the 0xx2 X3 system. These quantities are called stress — coemp®. The matrix

Z-11 T12 Z-13
(Tij) STy Tyn Ty
I3y T3 I3 360)
whose rows are the components of the three stexgerg, is called the matrix of the
state of stress at P. The dimensions of stress @oamps are force/(lengfML T2,

The stress components, r,,, 7;;are callednormal stressesand other components

i 1~
T1p 713, To1 T T30, T3, are called ashearing stressesfe: =e;;, T.e2 = e, etc.). In

CGS system, the stress is measureddyne per square centimetrdn English

system, it measured pounds per square inch or tons per square inch.

DYADIC REPRESENTATION OF STRESS

It may be helpful to consider the stress tensoa agctor - like quantity having a
magnitude and associated direction (s), specifiedrit vector. The dyadic is such a

representation. We write tis¢ress tensor or stress dyadias

T=r;€e =TI e+l ,e€+T;6€+7,€26+T7,,€26;

n n N N n N n n (6'5.7)
t7,,€283++7;, €361+ T7,,€3€2+7,;€3€3

where the juxtaposed double vectors are caljedis.

i . . "o
The stress vector acting on a plane having normal alosgs evaluated as follows:

i n A n A n A n

T=0e =(T,€je).6 =T, €0 =T; € =T € (6.5.8)
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6.6 STATE OF STRESS AT A POINT-THE STRESS TENSOR

We shall show that the state of stress at any pdiah elastic medium on an oblique

plane is completely characterized by the strespoments at P.
ANALYSIS OF STRESS

Let T be the stress vector acting on an oblique platieeatnaterial point P, the unit

normal to this plane beirﬁfgz v, -

Through the point P, we draw three planar elempatallel to the coordinate planes.
A fourth plane ABC at a distance h from the poirdrfél parallel to the given oblique

plane at P is also drawn. Now, the tetrahedron PA&®ains the elastic material.

A

Figure6.5

Let 1; be the components of stress at the point P reuaiilie signs (negative or

positive) of scalar quantitiag, we adopt the following convention.

If one draws an exterior normal (outside the medium a given face of the
tetrahedron PABC ,then the positive values of comeptst; are associated with
forces acting in the positive directions of the roate axes. On the other hand, if
the exterior normal to a given face is pointingailirection opposite to that of the
coordinate axes, then the positive valueg;ohre associated with forces directed

oppositely to the positive directions of the cooede axes.
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Let o be the area of the face ABC of the tetrahedrofigure. Leto;, o2, osbe the

areas of the plane faces PBC, PCA and PAB (havorgal’s along, —, X, —-&

X; —axes) respectively.

n

Then o, =ocos(x,,V) = ov, (6.6.1)

The volume of the tetrahedron is

vzéha (6.6.2)

Assuming the continuity of the stress vec?‘[eﬂv'i , the x component of the stress
force acting on the face ABC of the tetrahedron BA@ade of elastic material) is
('Iv'i +&)0

provided Ihim‘si =0 (6.6.3)

Hereg; are inserted because the stress force acts aspdfinbhe oblique plane ABC

and not on the given oblique plane through P. Utiderassumption of continuing of
stress field, quantities are infinitesimals. We note that the plane elenR®BC is a

part of the boundary surface of the material comt@iin the tetrahedron. As such, the

unit outward normal to PBC is- . Therefore, the xi component of force due tosstre

acting on the face PBC of areais
(T3 + &4)0, (6.6.4a)

wherelim &; =0
h-0

Similarly forces on the face PCA and PAB are

(T, +&,)0,, (T4 +E5)0,

MAL-633 116



with lim e, :Iirrgg3i =0
(6.6.4b)
On combining (6.6.4a) and (6.6.4b) , we write
(-1 +&;)0; (6.6.5)
as the x-- component of stress force acting on the facared providedhi[r(l) g =0

In equation (6.6.5), the stress components arentakth the negative sign as the
exterior normal to a face of aregis in the negative direction of the xj axis.Lgthe
the body force per unit volume at the point P. Ttienxcomponent of the body force
acting on the volume of tetrahedron PABC is

%ha(Fi +e') (6.6.6)

where €/ 's are infinitesimal and

lime =0
h-0

Since the tetrahedral element PABC of the elastitykis in equilibrium, therefore,

the resultant force acting on the material conthindPABC must be zero. Thus
(T+&)0+(-1, +£,)0, +%hU(Fi +£)h=0

Using (6.6.1), above equation (after cancellatiba)decomes
(T+)+ (-1, +&,)V, +%ha(Fi +£Yh=0 6.6.7)

As we take thelimh - Qin (6.6.7), the oblique face ABC tends to the giwdtique

plane at P. Therefore, this limit gives

or T =15v, (6.6.8)
MAL-633 117



v
This relation connecting the stress vegtaand the stress componenysis known as

Cauchy's law or formula.

It is convenient to express the equation (6.6.8hm matrix notation. This has the

form

(6.6.8a)

0)_|tl\.)_|<lﬁ_|<
1
~N
[N
N
~N
N
N
~N
w
N
<
N

As T andv; are vectors. Equation (6.6.8) shows, by quotiantfor tensors, thatew

components form a second order tensor.
This stress tensor is called tBAUCHY'S STRESS TENSOR.

We note that, through a given point, there exidinitely many surface plane
elements. On every one of these elements we camedestress vector. The totality of
all these stress vectors is called the state etstat the point. The relation (6.6.8)
enables us to find the stress vector on any sudbaeent at a point by knowing the
stress tensor at that point. As such, the statstrefss at a point is completely
determined by the stress tensor at the point.

Note: In the above, we have assumed that stress caefined everywhere in a body
and secondly that the stress field is continuoumsesé are the basic assumptions of
continuum mechanics. Without these assumptions;amedo very little. However, in
the further development of the theory, certain reatatical discontinuities will be

permitted / allowed.
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6.7 BASIC BALANCE LAWS

(A) Balance of Linear Momentum:

So far, we have discussed the state of strespaiha If it is desired to move from
one point to another,the stress components will change. Therefors,necessary to
investigate the equations / conditions which cdritre way in which they change.
While the strain tensor;eéhas to satisfy six compatibility conditions, thengoonents
of stress tensor must satisfy three linpartial differential equations of the first
order. The principle of balance of linear momentum gives these differential
equations. This law, consistent with the Newtoe'sosd law of motion, states that
the time rate of change of linear momentum is equdb the resultant force on the

elastic body.

Consider a continuous medium in equilibrium withwoe t and bounded by a closed

surfaces. Let K be the components of thedy force per unit volumeandT, be the

component of the surface force in thealixection. For equilibrium of the medium, the

resultant force acting on the matter withimust vanish i.e.

[Fdr+[T do=0 fori=1,2,3 6.7.1)

We know the following Cauchy's formula

T =1, fori=12,3 (6.7.2)

I

where; is the stress tensor awngis the unit normal to the surface. Using (6.7r291i

equation (6.7.1), we obtain

IFidr+Ir..v.da:0 fori=1,2,3 (6.7.3)

e

We assume that stressgsand their first order partial derivatives are atemtinuous
and single valued in the region Under these assumptions, Gauss-divergence

theorem can be applied to the surface integra8)imid we find
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J.rji,jdr:'[rjivjda

(6.7.9
From equations (6.7.3) and (6.7.4), we write
[z +F)dr=0 (6.7.5)
for each i =1, 2 , 3. Since the regiorof integration is arbitrary (every part ofthe

medium is in equilibrium) and the integrand is @onbus, so, we must have
r,,+F =0 (6.7.6)

for each i = 1,2,3 .and at every interior pointtleé continuous elastic body. These

equations are

o7, +ar21 +6r31 +E =0
ox, ox, ox, -

07, N o7, N 075,
0x, O0X, O0X,

+F, =0, (6.7.7)

07T, N 0T, N 0T,
ox, 0X, 0%,

+F, =0,

These equations are referred to @auchy's equations of equilibrium These
equations are also calledtress equilibrium equations These equations are
associated with undeformed Cartesian coordinatessd equations were obtained by
Cauchy in 1827.

Note 1 In the case of motion of an elastic body, thepeadons (due to balance of

linear momentum) take the form
7, +F = (6.7.8)

whereli, is the acceleration vector and p is the densitgs@mper unit volume) of the

body.
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Note 2 When body force Hs absent (or negligible), equations of equilibtiveduce

to

7. =0 (6.7.9)

jiij

Example: Show that for zero body force, the state of stifes an elastic body given
by

T, =X +Y+32°,1,, =2X+Yy* +22, 1, = -2x+y+7°

[, =T, =—XY+2Z, [, =1, =Y’ — X2, T, =T,, =X - yzis possible.
Example: Determine the body forces for which the followisigess field describes a
state of equilibrium

r,=—2X*-3y* =52 ,1,,=-2y* +7, [,, =4x+y+3z-5

T, =Ty =Z+AXy =6, T3 =T =—3X+2y+1, 7,,=7;,=0
Example: Determine whether the following stress field gmassible in an elastic
body when body forces are negligible.

yz+4 z°+2x 5y+z
[w]=] . xz+3y 8x°
2Xyz

(B) Balance of Angular momentum

The principle of balance of angular momentum fore&astic solid iSThe time rate
of change of angular momentum about the origin is qual to the resultant
moment about of origin of body and surface forcesThis law assures the

symmetry of the stress tenggr

Let a continuous elastic body in equilibrium oc&asgpihe regionbounded by surface
o. Let K be the body force acting at a point ?©f the body, Let the position vector
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of the point P relative to the origin be= X, € Then , the moment of force F is
rxF = &y X; Fi» Whereegy, is the alternating tensor.

As the elastic body is in equilibrium, the resuttamoment due to body and surface

forces must be zero. So
J'gijkxj F.dr+ J'tsijkxj T,do =0foreachi=1,2,3 (6.7.9)

Since, the body is in equilibrium, so the Cauclkygsilibrium equationsgive

Fo=-T,, (6.7.10)

v v
The stress vector « in terms of stress components is givenThy=r,v, (6.7.11)
The Gauss divergence theorem gives us

J.gijkxjrlkvlda:J.[gijkxjrlk]JdT
j.:gijk[xj Ty + 0, ]dr
=I5ijk[xjrlk,| +7,]dr (6.7.12)

From equations (6.7.9), (6.7.10) and (6.7.12); wigew

I“:ijkxj (=7,)d7 + J.gijk[xj Ty, *7;]dr =0 (6.7.13)

This gives

J.sijkxjrjkdr =0 (6.7.14)
fori=1, 2, 3. Since the integrand is continuand the volume is arbitrary, so
Exli =0 (6.7.15)

fori=1, 2, 3 and at each point of the elastidyod=xpanding (6.7.5) , we write
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Eipdf 23 T €13l 3, =0
=Ty~ 15, =0
Epalia T €zl =0
=Ty~ 105 = 0
Ex19T1p T Eqpil 2 =0
=T, "I,y = 0

i.e. =T, =T, for i # j at every point of the medium. (6.7.16)

This proves the symmetry of stress tensor. Thisitaalso referred tas Cauchy's
second law It is due toCauchyin 1827.

Note 1 On account of this symmetry, the state of stegssvery point is specified by
six instead of nine functions of position.

Note 2 In summary, the six components of the state efdiness must satisfy three
partial differential equationg; ; + F, =0 within the body and the three relations (

v

T =T

v;) on the bounding surface. The equatioﬁ;rii,jvj are called the

i,
boundary conditions.

Note 3 Because of symmetry of the stress tensor, thdil@gum equations may be

written asz; ; +F = 0

Note 4 Since‘l’lj =r1., equations of equilibrium (using symmetry®j may also be

ji
i . i
expressed asT, ;, =-F, or divT =-F,

Note 5 Because of the symmetry gf, the boundary conditions can be expressed as

4
Ti=rv,
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Remark: It is obvious that the three equations of equiiilm do not suffice for the

determination of the six functions that specify #tieess field. This may be expressed
by the statement that the stress field is stasifyiandeterminate. To determine the
stress field, the equations of equilibrium mussbpplemented by other relations that

can't be obtained from static considerations.

6.8 TRANSFORMATION OF COORDINATES

We have defined earlier the components of stre$is respect to Cartesian system

I,/ I

0XX2X3. Let 0XX,X;be any other Cartesian system with thesame origirobented

differently. Let these coordinates be connectethbylinear relations

PR (6.8.1)
wherel ; are the direction cosines of the - axis with respect to thg, - axis.
i.e { i =COS(X,, %) (6.8.2)

Let 7, be the components of stress in the new referersteray(Figure 6.6)
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X3 A 133

SRS

T22

Figure 6.6& 6.7
Figure 6.7, Transformation of stress componentseundtation of co-ordinates

system.

Theorem: let the surface elememt andao', with unit normaband v' , pass

through the point P. Show that the component ofthess vectorf acting onAg in

the direction of' is equal to the component of the stress ve%:t(acting onAg' in the

direction ofv

Proof: In this theorem, it is required to show that
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y N

Thus, VT.V' = Tv

- - (6.8.3)
The Cauchy's formulagives us

T=nv, (6.8.4)
and

=1y (6.8.5)
due to symmetry of stress tensors as with

V=V, ’ v'= V}
Now f.v = f WV,

_(ryviv,

- (TjiV’j )Vi

TV (6.8.6)

This completes the proof of the theorem.

Article: Use the formula (6.8.3) to derive the formulast@insformation of the
components of the stress tenspr

Solution: Since the stress components, is the projection on the, — axis of the

stress vector acting on a surface element normthleto, — axis (by definition), we

can write

o

=T =Tw (6.8.7)

pa

e}
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where
v'is parallel to the y‘axis (6.8.8)

v is parallel to the ¥'- axis

Equations (6.8.6) and (6.8.7) imply

Toq =TViV; (6.8.9)
Since
Vi =cos(x, X ) =1 880)
V, =C0oS(Xy, %) =4
Equation (6.8.9) becomes
Toa =TyViV, (6.8.11)

Equation (6.8.11) and definition of a tensor of erd2, show that the stress
components; transform like a Cartesian tensor of order 2. Tltus physical concept
of stress which is described byagrees with the mathematical definition of a tensor

of order 2 in a Euclidean space.

6.9 Theorem Show that the quantity

O =1, +7,, +Tg;is invariant relative to an orthogonal

transformation of Cartesian coordinates.

Proof: Let 7; be the tensor relative to the Cartesian systemyX,. Let these axes be

| R B |

transformed toox;X,X; under the orthogonal transformation
X =0 X (6.9.1)
where

i =cos,,X) (6.9.2)
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Letz ; be the stress components relative to new axes thiese components are given
by the rule for second order tensors.

r' =/(_l_ T, (Y.
Putting g= p and taking summation over the commuifixs we write

This implies T = 58,7

T+ 1o+ 153 =Ty +1pp+75=0 (6.9.4)
This proves the theorem.

Remark: This theorem shows that whatever be the oriemtatf three mutually
orthogonal planes passing through a given pois,sihm of the normal stresses is

independent of the orientation of these planes.

Exercise 1 Prove that the tangential traction parallel tbna | , across a plane at
right angles to a line I' , the two lines beingight angles to each other , is equal to
the tangential traction, parallel to the linedcross a plane at right angles to I.

Exercise 2 Show that the following two statements are edemna

(a) The components of the stress are symmetric.

(b) Let the surface elemenfss and Ac' with respective norma;l and V passes
through a point P. Thé%n.vA' :% v

Hint: (b)= (a)

Let V=i andv'=j

Then 'Ii'.v’:'ll:.'
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1
:|_.

1
'\'

and Tw=T i
by assumption TV =T,
therefore I, =T

ij ji
This shows that;; is symmetric.

Example I: The stress matrix at a point P in a materialvegias

3 1 4
[r,]=|1 2 -s|.
4 -5 0

Find

(i) The stress vector on a plane element throughdPparallel to the plane 2xx; —x3
=1,

(i) The magnitude of the stress vector, normassrand the shear stress.

(iif) The angle that the stress vector makes withnmal to the plane.

Solution: (i) The plane element on which the stress vestoequired is parallel to the

plane 2x+x, —x3 = 1. Therefore, direction ratios of the normathe required plane at

P are< 2, 1,-1>. So, the d.c.'s of the unit norﬁwl/i to the required plane at P are

2 1 1

Vl=—'|/2=— vV, =—

N

Iet'[ .=T, be the required stress vector. Then, Cauchy's flargives
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F
T3 1 4 \/16
T,[=[]1 2 -5| |—=
| |14 -5 0 *_/é
3 —_—
| V6.
v v v
or T, =/3/2,T,=3/3/2,T,=/3/2

So, the required stress vector at P is
T, =v/3/2(er+ €2+ &5) andT| = /3372
(i) The normal stress is given by

a:‘j'.v:\/g.%(z+3-1):%><4:2the shear stress is

2" e

given by

r=4[T) - 02 = /3372 - :%

(Asr #0,s0 the stress vectar. need not be along the normal to the plane element)

AN

v
iii)letBbe the angle between the stress vectoard normal .

Then

T.v
gd= —= ——=4/8/33
cos — }/33/2 N

u

This determines the required inclination.
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Example 2 The stress matrix at a point B(x a material is given by

X% X5 0
[Ti J ] = X§ O - X2

Find the stress vector at the point Q (1, 0, -Itloa surfacex? + xZ = x,
Solution: The stress vectoi‘ Is required on the surface element

f(x;, X2, X3) =X, — X5 —= x5 =0, at the point Q(l , 0, -I). We findlf = e+ 2esand

|0f| = /5 at the point Q.

Hence, the unit outward normak v, to the surface f = 0 at the pointQ(1,0,-1) is

N Df 1 N A
Vv=—-=—(e+2e
|Df| 5( 1 3)
giving vV -1 v, =0,V -2
1 \/g' 2 773 \/g
The stress matrix at the point Q(1, O, -I) is
-1 10
[Tij]: 100
1 0O

letT =T; be the required stress vector at the point Q. TBanghy's formula gives

1
o O -
o O O
EEINISPI
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or T, =-41/5,T, =+/1/5,T, =0

So, the required stress vector at P is

v 1 N N
T, =—=(-etez)

NG

Example 3 The stress matrix at a certain point in a givextanal is given by

[Tij ] =

Y
N O R
o N B

Find the normal stress and the shear stress ooctiadedral plane element through

the point.

Solution: An octahedral plane is a plant whose mbrmmakes equal angles

withpositive directions of the coordinate axes.Henthe components of the unit

N

normalv =v, are

V,=V, =V =

1
NE

letT =T, be the required stress vector. Then, Cauchy's flargives

<

1 311 1 5
T,|=|1 0 2| |1|]=-~=|3
T,| [ 2 0] [1 V3 3
or T, =45/3,T, =4/3,T, =3
The magnitude of this stress vector is
T|=+/43/3
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let o be the normal stress anthe the shear stress.Then

a:'il'.v (5+3+3)——andr-‘/43 121 \/5 2\/_

Sincec> 0, the normal stress on the octahedral plarensle.

Example 4 The state of stress at a point P in cartesiandioates is given by
111=500,t15= 121500, T13= 131=800, 125=1000733= -300,123= 135= -750

Compute the stress vect@rand the normal and tangential components of strass

the plane passing through P whose outward normalt urector is

v=le+lesle
S8t 5%t 6

Solution: The stress vectoris given tTy TV,

14
We find T, = 1,0, + T,,V, + T4V = 250+ 250+ 400v/2 =1064(approx.)

14
T, =T,V + TV, + T3V =250+ 500+ %) = 221(approx.)

%
T3 =T gV, + T3V, + T35 =400—- 375+ 150v2 = 237(approx.)
Books Recommended:

1. Sokolnikoff, I. S. Mathematical Theory of Elasticity, Tata McGraw
Hill Publishing Company, Ltd., New Delhi, 1977

2. S. Timoshenko and N. GoodierTheory of Elasticity, McGraw Hill, New
York, 1970.
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CHAPTER-VII
STRESS QUADRIC OF CAUCHY

7.1 Stress Quadric of Cauchy

In a rectangular Cartesian coordinate systsXx,, consider the equation
T %X = xk? (7.1.2)

where (X Xz, X3 ) are the coordinates a point P relative to thetps® whose
Coordinates relative to origin O arg’(x¢° ,xz’ ), Tj IS the stress tensor at the point
P’(x%) and k is a real constantThe sign + or - is so chosen that the quadric
surface (7.1.1) is real.

The quadric surface (7.1.1) is known as the siassiric of Cauchy with its centre at

the point B(x;").

X3
A

P(x°)

=A<<

v

X2

X1
Let A be the radius vector, of magnitude A, on thissstrguadric surface which is

normal on the plana through the point Phaving stress tensay. Let v be the unit

vector along the vector;AThen

v =R =% (7.1.2)
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Let T denote the stress vector on the plane at the piffthen, the normal stress N

on the plane is given by

v=Tiv, =,v,v, =1,vv,. (7.1.3)

=<

N =

From equations (7.1.1) and (7.1.2), we obtain
7, (Av))(Av,) = £k?

TV, =£k*/ A?

N =+k?/A? (7.1.4)

This gives the normal stress acting on the plaméth orientationy =v, in terms of

the length of the radius vectorof the stress quadric from the point (centre)dhgl
the vector. The relation (7.1.4) shows that themadrstress N on the plamethrough

P° along with orientation along;As inversely proportional to the square of thaliua

vector A =P°P of the stress quadric.

The positive sign in (7.1.1) or (7.1.4) is chosehemnever the normal stress N
represents tension (i.e., N > 0) and negative wigan N represents compression (i.e.
N <0).

The Cauchy's stress quadric (7.1.1) possesses anatteresting property. This

property is The normal to the quadric surface at the end of theadius vector Ai
v
is parallel to the stress vectofT acting on the planert at P,."

To prove this property, let us write equation (j.ih. the form
G(X;, Xy, Xg) =T X X, Fk? =0 (7.1.5)

Then the direction of the normal to the stress qualirface is given by the gradient

of the scalar point functid®(x,, x,, X;) . The components of gradient are
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_:T”XJ +Tini :Tinj_'l'Tini_
0X, 0X,, 0x,, 0x, 0X,

=T (0n) X} + T X0y = Ty Xj + Ty X;

=21, X; =2AT,V;

=2AT, (7.1.6)

Vi

v

a

Figure 7.2

1 =<

Equation (7.1.6) shows that vecto‘vfs and Z—G are parallel. Hence the stress vector
X

n

Ton the planatat R is directed along the normal to the stress quadric at P, P being

the end point of the radius vector-ApOp

Remark 1: Equation (7.1.6) can be rewritten as

f=2iDG (7.1.7)
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12
This relation gives an easy way of constructing #teess vectorT from the
knowledge of the quadric surface @(xz, X3) = constant and the magnitude A of the
radius vectorA .

Remark 2: Taking principal axes along the coordinate axhse, stress quadric of
Cauchy assumes the form

T X2 +T,X5 + T, =+k? (7.1.8)
Here the coefficients,7,,7,are the principal stresses. Let the axes be so enaub
thatr, 27,27,
If 7, >7, >7, >0 , then equation (7.1.8) represents an ellipsott pius sign. Then,

the relation N = #A? implies that the force acting on every surfacenelet through
P is tensile (as N < 0).

If 0>r, >71, >1, then equation (7.1.8) represents an ellipsoid witlegative sign on
the right and N = -A? indicates that the normal stress is compressive Q)
Ifr,=7r,#r,0r 7, #7, =1,0r 7, =7, #7,,Then the Cauchy's stress quadric is an

ellipsoid of revolution. It, =7, =7, then the stress quadric is a sphere.

7.2 PRINCIPAL STRESSES

v
In a general state of stress, the stress vektacting on a surface with outer normal

N N

V depends on the direction of

N

vV
Let us see in what directiom the stress vectoF becomes normal to the surface, on

which the shearing stress is zero. Such a surfa&k [se called a principal plane, its

MAL-633 137



normal agprincipal axis, and the value of normal stress acting on thecprat plane

shall be called arincipal stress.

n

Let v defines a principal axis at the poini(8’) and lett be the corresponding

v
principal stress andr be the stress tensor at that point. Tebe the stress vector.

Then
Fery
or 'Fi =1v, (7.2.1)
T =1, (7.2.2)
or (r; —19;)v; =0 (7.2.3)

N

The three equations i =1, 2, 3 are to be solvedifon, v3Since V is a unit vector, we

must find a set of non- trivial solutions for which
vZ+vli+vZ=1

Thus, equation (7.2.3) posses an eigenvalue problem, equad@) (vas a set of non

vanishing solutionsy; v, vsiff the determinant of the coefficients vanishes

i'e'! ‘Z—” —TO_”‘:O
Tll r T12 Tl3
or T,, T,—-T T, |=0 (7.2.3a)
T13 T23 T33 r
On expanding (7.2.2), we find
-3+ 2 _ + =
r'+6r--6,r+6,=0 (7.2.3b)
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where

O, =1,+7,, + T, (7.2.4a)
02 — |:T11 Tl3j| + |:Tll T12:| + |:T22 T23j| (724b)
T31 T33 T21 T22 T32 T33
O =L 157,73 = det(;) (7.2.4¢)

Equation (7.2.3) is a cubic equationtiri_et its roots be;, 1, 13, Since the matrix of

stress, 1) is real and symmetric; the roots) ©f (7.2.3) are all real. Thus, 12, 13 are
the principal stresses. For each value of the principal stress, aoumal vectory
can be determined.

Case t Whenr, #71, # 1,

1 2 3
let vi , Vi , Vi, be the unit principal axes corresponding to the principal stressgs

T3, respectively. Then principal axes are mutually orthogonal to eaeh oth

3
Case Il If 7, =71, #1, are the principal stresses then the direstiprworresponding

to principal stresss is a principal direction and any two mutually perpendicular lines

3
in a plane with normadi, may be chosen as the other two principal direction of stress.
Case lll: If 7, =7, =7, then any set of orthogonal axes throgdlmay be taken as
the principal axes.

Remark: Thus, for a symmetric real stress tensor, there are three principal stresses
which are real and a set of three mutually orthogonal principal dinsctib the
reference axes;x X ,x3 are chosen to coincide with the principal axes ,then the

matrix of stress components becomes

r, 0 O
r,=|0 7, O (7.2.5)
0 0 1,
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Invariants of the stress tensor
Equation (7.2.3) can be written as

(t-1)(t-12) (t-13) =0, (7.2.6)
and we find

6,=1,+1, +1,

0, =11, +7T,I,+1,T,

6, =1,1,T, (7.2.7)
Since the principal stresgs, 7,,7, characterize the physical state of stress at point
they are independent of any coordinates of referenc
Hence, coefficientsd,,d,,6,0f equation (7.2.3) are invariant with respect be t
coordinate transformation. Thu&, 6,,6,are the three scalar invariants of the stress
tensorrj. These scalar invariants are called the fundarhstiess invariants.

Components of Stresg;; in terms of 7,

Let X, be the principal axes. The transformation law fasais

Xa = giaxl
or X =lig Xy (7.2.8)
where liq = cos(x, X,) (7.2.9)
The stress matrix relative to axegiX
T, =diag(7,,7,,75) (7.2.10)

Let t; be the stress matrix relative to axesxesThen the transformation rule for

second order tensor is
3
—_ ! —_
Z-i0/ - giagiﬁra[ﬁ’ - Zgia(g jara)
a=1
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This gives

3
Tig = Zlaia(ajara) (7.2.11)

Definition (Principal axes of stress)

A system of coordinate axes chosen along the pahdirections of stress is referred
to as principal axes of stress.

Question: Show that, as the orientation of a surface eleraeiat point P varies the
normal stress on the surface element assumes @Emexvalue when the element is a

principal plane of stress at P and that this extiamalue is a principal stress.

Solution: Let 1 be the stress tensor at the point P.1.6e the normal stress on a

surface element at P having normal in the directibanit vectorv =v,. Thus, we

have to findz =7;v,v; .We have to findv =v,for which t is an extremum. Since

N

v =V, is a unit vector, we have the restriction
V.V, —1=0 (7.2.12)

We use the method of Lagrange multiplier to finé #xtreme values of. The

extreme values are given by

d
E{Tij vivi =AMy, 1)} =0 (7.2.13)
|

wherel is a Lagrange’s multiplier. From (7.2.13), we find

r{vi +oyv;} -Mv, 6,} =0

2ryv, —=2Av; =0
r;v, —A9;v; =0
(Tij _Adij)vj =0 (7.2.14)
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These conditions are satisfied iff=v,is a principal direction of stress awel is the

corresponding principal stress. Thugssumes an extreme value on a principal plane

of stress and principal stress is an extreme \@laaiven by (7.2.12).

7.3 MAXIMUM NORMAL AND SHEAR STRESSES

Let the coordinate axes at a poifitbe taken along the principle directions of stress
1=\ is the corresponding principal stress. ket to,t3 be the principal stresses at
P’ Then

T1 STy Tp =05 Ty =15 T, =Ty =75, =0

v A
Let T =0be the stress vector on a planar element hafing the normals = v,

Let N be the normal stress and S be the sheamegsstThen

Tj=N?+s? (7.3.1)
The relation%i =r,v, sothat N :'Ii' v =TV +T,V:+T Y} (7.3.1a)
N is a function of three variables,v,,v, connected by the relation
V.V, —1=0 (7.3.2)
From (7.3.1) and (7.3.2) we write
N=r,(-v>-vi)+T1,V2+T1V?2
N=r,+(r, -1,V +(r, -1,V (7.3.3)

The extreme value of N are given by

oN _o oN

1_:0
ov, ov,

which yield
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v,=0V,=0for r, 27, & 1, 21,
Hence v, =21, v,=v,=0&N=r1,
Similarly, we can find other two directions
v,=0 v,=%1v,=0&N =7,
v,=0 v,=0v, =#x1& N =71,
Thus, we find that the extreme values of the Norstigdss N are along the principal
directions of stress and the extreme values amagbkes principal stresses. So, the

absolute maximum normal stress is the maximum efs#t {;, 1, t3}. Along the

principal directions, the shearing stress is zeeo the minimum)
Now S*=(tw+rvi+1v) -(rvi+r vl +rv2)?*  (7.3.3a)
To determine the directions associated with the maximum vaifiesNn=|g .We
maximize the function $(,v,,v;) in (7.3.3) subject to the relationv; = 1
For this, we use the method of Lagrange multipliers to finfréwe extremum of the
functions

FQ1, V2, V3) = S - A(Vi vi-1) (7.3.4)
For extreme values of F, we must have

oF _OF _ 0oF -0 (7.3.5)
ov, 0dv, 0V,

The equations;3£ =0, gives
V.

2riv, =4ty (twl+r,vZ+1,v2)-2Av, =0
or A=r2-21,(T V] +1,v5+10}) (7.3.6)
Similarly from the equation, we obtain
A=12=2r,(T V] +1,V5 +1V7) (7.3.7)
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A= T§ - 27—3(7-1V12 + T2V§ + T3V§)

Equations (7.3.6) & (7.3.7) yield

T22 - T12 =2, - Tl)(T1V12 + T2V22 + T3I/§)

For 7, #7,, This leads to
T, +1, = 2TV, +T,V] +T.V3)
or Z-Dr, + @2 -)Yr,+v?r, =0

This relation is identically satisfied if

(7.2.8)

(7.3.9)

v :+i v :i v.=0
1 _\/E, 2 \/5’ 3
From equations (7.3.Ib), (7.3.3a) and (7.3.9),dtxesponding maximum value fsf
is
S = 5l72
2
and N=2 +7,

Also, for the direction

v,=0v, =z

i

:+i|/
_\/E, 3

the corresponding values of af$€|lmax and|N are, respectively ,
1 1
—|t, -1, and =T, +T
e =] and 2, +|

The result can recorded in the following table

V1 V2 Vs |S| max/min

0 0 +1 Min S=0

|r5| = Max
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0 +1 0 0(Min.) |r5| = Max
+1 0 0 0(Min). |ra| = Max
0 i% i% %|r2—r3|:Max. %|r2+r3|:Min.
i% 0 i% %|r3—r1|:Max. %|r3+r1|:Min.
i% i% 0 %|rl—r2|:Max. %|r1+r2|:Min.

If 7,>1,>71,,thent, is the absolute maximum values of N ands its minimum

value, and the maximum value |sf is

1
|S|max =§|T3 -7

and the maximum shearing stress acts on the sudheent containing the;x
principal axis and bisecting the angle between xtheand % axes. Hence the

following theorem is proved.

Theorem: Show that the maximum shearing stress is equahéohalf the differences
between the greatest and least normal stress dadache plane that bisects the

angle between the directions of the largest andlsstg@rincipal stresses.
7.4 MOHR'S CIRCLE OR MOHR’S DIAGRAM

(GEOMETRICAL PROOF OF THE THEOREM AS PROPOSED BY O.
MOHR, 1882)

We know that
N=rVv?2+1,v2+1V? (7.4.1)

and S*+N? =t} +rvi+12v} (7.4.2)
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Also vZ+vZ+vli=1 (7.4.3)

Solving equations (7.4.1) to (7.4.3), by Cramer's rule, #gtv>,v? we find

U2 S®+(N —1,)(N -15)

= 7.4.4

! (1, —1,)(1,—T3) ( )

v2 = S*+(N-7)(N-7) (7.4.5)
(Tz _Tl)(TZ _Ts)

y2 = STHIN-T)N-7) (7.4.6)

(75 —1,)(1,—1,)
Assume that7, >7,>7, so that 7, -7,>0 andr, -7,>0. Sincev? is non -
negative. We conclude from equation (7.4.4) that

S*+(N-7,)(N-7,)=0

or S*+N?=N(r,+71,)+71,1,2 0
(r, +71,) * (r,-1,)
Sz+(N——22 3} z(—zz 3) (7.4.7)

This represents a region outside the circle

2 2
+ —
82+(N—(T2 TS)j :[TZZT?J in the (N, S) plane.

2

C.

v

T2 N
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Figure (7.3) Mohr's Circles

o I, +T . (1,-1,) . :
This circle, say ¢ has centre(% ,Oj and radius (%] in the Cartesian

SN-plane with the values of N as abscissas andetlmdsS as ordinates. Since

r,-1,>0andr, -7, >0, we conclude from (7.4.5) that
S*+(N-7,)(N-7,)<0 (7.4.8)
The region defined by (7.4.8) is a closed region, interidheocircle, whose equation
is
S*+(N-7,)(N-7,)=0 (7.4.8a)
The circle G passed through the points,(0), &1, 0) have centre on the N — axis.

Finally, equation (7.4.6) yields
SZ +(N_Tl)(N_T2)20 (749)
Since, r; -1, <0and 7; -7, <0. The region defined by (7.4.9) is exterior to the

circle Gs, with centre on the N-axis and passing through the paipt®), @2, 0). It
follows from inequalities (7.4.7) to (7.4.9) that the adnblesvalues of S and N lie in
the shaded region bounded by the circles as shown in the figure.

From figure, it is clear that the maximum value of shearing stréssepresented by

the greatest ordinat®'Q of the circle G.

-7
Hence Sax == (7.4.10a)

The value of N, corresponding tg,&is OO" where

I, — 1T, :71"'73

00'=71, +
2 2

(7.4.10D)
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Putting the values of S & N from equations (7.4.10&.10b) into equations (7.4.4) to
(7.4.6) We find

or 2"° (7.4.11)

Equation (7.4.11) determines the direction of treximum shearing stress and shows
that the maximum shearing stress acts on the platebisects the directions of the
largest and smallest principal stresses.

7.5 OCTAHEDERAL STRESSES

Consider a plane which is equally inclined to théngpal directions of stress.
Stresses acting on such a plane are known as dcthhgtresses. Assume that

coordinate axes coincide with the principal diree$ of stress, Let,,7,,7, be the

principal stresses. Then the stress matrix is

r, 0 O
0r, O (7.5.1)
0 0 1,

A unit normalv =v;, to this plane is

Vi, =V, =V =—F=

NE

v N
Then the stress vectdr on a plane clement with normalis given by

v

Ti=r,v,

This gives

14 v v
Ti=trw, , Ta=1,V,, Ta=1V,
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Let N be the normal stress and S be the sheassirbsn

\

T

2

" 1
— 2 2,2 2,2 _ 2 7l _ni2
V=TV TV, H TV —§(T1+r2 +7,), S° = N

=<

N =

1
(12,2 , 2.2 2 2 2
=(ryv; +15V; +T3V3)_§(T1+T2+T3)

=1(rf +1; +15) —E(Tl +7, +1,)°
3 9
= S[BE re )~ w ke TE v 2n, v 2rr, v 2r,)
=é[(r12 +72 -20,71,) + (12 +12 - 21,1,) + (15 + 17 - 21.1,)]

=) (1) + (1 1)) (752)

giving

S:%\/(Tl - Tz)z +(7, - Ts)z + (75 _Tl)2

Example: At a point P, the principal stressesgre 4,7, =17, =-2. Find the stress

vector, the normal stress and the shear stredseooctahedral plane at P.
. v 1 N N N
[Hint: N=1,S=46T =— (4er+ex—-2e3) ]
- 43

7.6. STRESS DEVIATOR TENSOR

Let t; be the stress tensor. Let
1 1
O = (T + Ty +T5) == (T, +7, +75)
3 3
Then the tensor

(d) — -
L' =T JOJij)
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is called the stress deviator tensor. It spectfiesdeviation of the state of stress from

the mean stress),

Books Recommended:

1. Sokolnikoff, I. S. Mathematical Theory of Elasticity, Tata McGraw
Hill Publishing Company, Ltd., New Delhi, 1977

2. S. Timoshenko and N. Goodier, Theory of Elasticity, McGraw Hill, New
York, 1970.
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CHAPTER-VIII
EQUATIONS OF ELASTICITY:GENERALIZED HOOKE'S LAW

8.1 INTRODUCTION

An ordinary solid body is constantly subjecteddeccés of gravitation, and, if
it is in equilibrium, it is supported by other fec We have no experience of a body
which is free from the action of all external fosc&rom the equations of motion we
know that the application of forces to a body nettates the existence of stress
within the body. Again, solid bodies are not absajurigid. By the application of
suitable forces they can be made to change batlzénand shape. When the induced
changes of size and shape are considerable, tlyedoed not, in general, return to its
original size and shape after the forces which eeduthe change have ceased to act.
On the other hand, when the changes are not t@b tre recovery may be apparently
complete. The property of recovery of an originaésand shape is the property that is
termedelasticity. The changes of size and shape are expressecebijyspg strains.
The “unstrained state” with reference to whichisBare specified, is as it were, an
arbitrary zero of reckoning, and the choice o&itn our power. When the unstrained
state is chosen, and the strain is specified, itexrial configuration of the body is

known.
We shall suppose that the differential coefficseat the displacement,v,w)

by which the body could pass from the unstrainedesto the strained state, are
sufficiently small to admit of the calculation dfet strain by the simplified method

and we shall regard the configuration as spectigthis displacement. The object of
experimental investigations of the behavior of #tabodies may be said to be the
discovery of numerical relations between the quiastithat can be measured, which
shall be sufficiently varied and sufficiently nuroes to serve as a basis for the
inductive determination of the form of the intriosnergy function. When such a
function exists, and its form is known, we can dedérom it the relations between
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the components of stress and the components of stra conversely, if, from any
experimental results, we are able to infer suchtiais, we acquire thereby data

which can serve for the construction of the funttio

The components of stress or of strain within aslobdy can never from the
nature of the case be measured directly. If thelmes can be found it must always be
by a process of inference from measurements oftijesnthat are not, in general
components of stress or of strain. Instrumentshmadevised for measuring average
strains in bodies of ordinary size, and othersni@asuring particular strains of small
superficial parts. For example, the average culdmoaipression can be measured by
means of a piezometer; the extension of a shogtheaf a longitudinal filament on
the outside of a bar can be measured by means@ftansometer. Sometimes, as for
example in experiments on torsion and flexure,spldcement is measured. External
forces applied to a body can often be measured gvéht exactness, e.g. when a bar
is extended or bent by hanging a weight at one kanslich cases it is a resultant force
that is measured directly, not the component wastiper unit of area that are applied
to the surface of the body. In the case of a baayeu normal pressure, as in the

experiments with the piezometer, the pressure potiarea can be measured.

In any experiment designed to determine a reldbetmween stress and strain,
some displacement is brought about, in a body glgrtiixed, by the application of
definite forces which can be varied in amount. Vi ithese forces collectively “the
load”. It is a fact of experience that deformatioha solid body induces stresses
within. The relationship between stress and deftionas expressed as a constitutive
relation for the material and depends on the nat@noperties and also on other
physical observables like temperative and perhgs edlectromagnetic field. An
elastic deformation is defined to be one in whibke stress is determined by the

current value of the strain only, and not on rdtsti@in or strain historyr =7(e).

An elastic solid that undergoes only anfinitesimal deformation and for

which the governing material ignear is called alinear elastic solid or Hooken
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solid. From experimental observations, it is known thadarnnormal loading many
structural materials such as metals, concrete, vemadrocks behave as linear elastic
solids. The classical theory of elasticity (or An¢heory) serves as an excellent model
for studying the mechanical behavior of a wide etgrof such solid materials.

8.2. Hook’s Law

The first attempt at a scientific description oé tstrength of solids was made
by Galileo. He treated bodies as inextensible, vawesince at that time there existed
neither experimental data nor physical hypothesaswould yield a relation between
the deformation of a solid body and the forces oasfble for the deformation. It was
Robert Hooke who, some forty years after the ages of Galileo’s Discourses
(1638), gave the first rough law of proportionalibetween the forces and
displacements. Hooks published his law first in tlmm of an anagram
“ceiinosssttuu” in (1676), and two years later géve solution of the anagram: “ ut
tension sic vis,” which can be translated freely tiee extension is proportional to the

force.”

Most hard solid show that same type of relatiomken load and measurable
strain. It is found that, over a wide range of lote measured strain is proportional
to the load. This statement may be expressed mbyebfy saying that

1) When the load increases the measured strain ireg@ashe same ratio,
2) When the load diminishes the measured strain dehés in the same
ratio,

3) When the load is reduced to zero no strain candsesared.

The most striking exception to this statement isfbin the behavior of cast metals. It
appears to be impossible to assign any finite raofydoad, within which the

measurable strains of such metals increase andhidimin the sameproportion as the
load.The experimental results which hold for maatdhsolids, other than cast metals.

It appears to be impossible to assign any finitegeaof load, within which the
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measurable strains of such metals increase andigimin the same proportion as the

load.

The experimental results which hold for most hadlids, other than cast
metals, lead by a process of inductive reasoninfpeoGeneralized Hooke’s Law of
the proportionality of stress and strain. The gahtarm of the law is expressed by
the statemenEach of the six components of stress at any point of a body are linear

functions of the six components of strain at the point.

In 1678, Robert Hook, on experimental groundstedtahat the extension is
proportional to the force. Cauchy in 1822 geneealitiook law for the deformation
of elastic solids. According to Cauchy, “Each comgat of stress at any point of an

elastic body is a linear function of the componaitstrain at the point”.

In general, we write the following set of lineatations

T, =Ci €1 F Clisfn F o +Cpafs

T = Cip11€1 FCoisfln F o + Cppafss
Tag =Ca311811 T Cag1 o€ F v + Cy334€33
Or

I, =Gy, 1,0,k =123(8.2.1)

wherer; is the stress tensor arg} is the strain tensor. The coefficients, which are

81=3 in number, are called elastic moduli. In genetiase coefficients depend on
the physical properties of the medium and are iaddpnt of the strain components

g;-We suppose that relations (8.2.1) hold at everntpoii the medium and at every
instant of time and are solvable fgf in terms of; . From (8.2.1), it follows that;

are all zero whenever a# are zero. It means that in the initial unstraintatesthe
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body is unstressed. From quotient law for tens@istion (8.2.1) shows thafkcare

components of a fourth order tensor. This tensaralted elasticity tensor. Since g;

are dimensionless quantities, it follows that etashoduli G have the same
dimensions as the stresses (force/Area). If, howeye do not change throughout the
medium for all time, we say that theedium is (elastically) homogeneoushus, for

a homogeneous elastic solid, the elastic modulicarestants so that the mechanical
properties remain the same throughout the solidafotimes. The equation (8.2.1)

represents the generalized Hooke's law in thsystem. These coefficientg very
from point to point of the medium and are calledstt constants. Ifc,, are
independent of position of point then the mediuncadled elastic homogeneous.
These are 81 in numbers now we shall discussedrdsvealy those media which are
homogeneous continuous and elastic. Also, compengate symmetric,

l.e.r; =7 (8.2.2)
on interchanging the indiceand] in the formula will not change so thgf =c, .
Now let we denotes,, is also symmetric with respect to the last two d¢edk and

for this let we define

1 1
Iy = {E (Cij +Cyjuwc) + 5 (Cou — Cijik )}em (8.2.3)
' 1 , 1
Let Cijw = E{Cijkl + ka}’ Cijw = E{Cijkl - Cijlk}
O T :{(Ci'jkl + Ciiy }ekl (8.2.4)

Now Ciu = %{Cijkl - Cijlk} = _%{Cijlk ~ Cij } =—Ciy

n

= 1, ={(Chy +Cl feu (8.2.5)

adding (8.2.4) and (8.2.5) we get
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T :{(Ci'ikl }ekl (- i,]=123)
wherec,, =c;, then
Tj = Cyy€ (8.2.6)
wherec,, is symmetric with respect to first two indices aaldo with respect to last

two indices. With the help of this symmetric pragethe 81 constants in equations
(8.2.6) are reduced into 45 constants. (out ofgh&k constants 36 constants are

decreased due to symmetric property of the corstanintroducing the notations
(known as engineering notations)

Z-ll:Tl'TZZ :TZ’Z-33:TS'T23:T4’T13:T5'T12 :TG

}(8.2.7)
ell :el' e22 :eZ' e33 :e3’2e23 :e4’2e13 :e5’2e12 :eﬁ

Using the above into (8.2.1), the six equation®bezs

T T - +Cy8;
Ty =Cpy€ +Cpo€ Ferverrrerreerrnrienon. +Cps
Ty = Cai€ +Cpr€ Foverrerreerreriseienenn. + Cags
Ty = Cu +Cip€ Ferreererrerereneneen, +Ce€s (8.2.8)
Ty =Coi +Cep€ Fovrrrerrerrrrsrnaninnnns + Cogs
Ts = Cos€ + Cap€y +orrrrrrrerrreerrsrmerinns + Cogs

The equation (8.2.8) in tensor form can be givdnwe

r, =cse; (i,]= 12 34,56) (8.2.9)
For unique solution of equation (8.2.9), we must/ehetacij‘io then e can be
expressed as

e =C,7,(C#c & i,j= 12 3456)(8.2.10)

Therefore 36 elastic constant are required to stieyproperties of elastic continuous

medium. But the numbers of constants reduce to 2lLimber,whenever there exists a
function
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W :%c.ee. (i,j= 12 3456)

ij i)
such that — =T, (8.2.11)

This potential functionW was first introduced by Green aMlis called the strain

energy density function and it exists when the esscof deformation is Isothermal

and Adiabatic. Alsow :%cij ee, and taking its partial derivative with respectgo

we get,
oe.
| e (8.2.12)
aek 2 aek aek
g 0 ifizk
No A =5, =
" de {1 ifi =k
ow 1 1 1
- EZEC” (a-‘kei +q51k):§CijJikej +Ecij5jkq
but a =Ty =§ijej +§ejcjk ZE(Cjk +ij)ej (8213)

now by the Hook’s law

r.=ce (i,j= 12 3456)
= orr, =cye; (k,j = 12 34,56)(8.2.14)
using (8.2.13) and (8.2.14) we get

1 1 B
(Ecjk +§ckj)ej =y €

= (Cy *+Cjk) = 2¢;0rcy, =¢
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Thusc are symmetric.So we have, if process is isotheronahdiabatically, then

¢; =c; . Now our formula (8.2.8) in which elastic constaate 36 in number can be

written in matrix form is

Z-1 Cll ClZ C13 Cl4 ClS C16 e1
TZ C21 C22 C23 C24 C25 C26 eZ

4 . . . . . .

= & (8.2.15)
I, : : : : : A
Ts &

TG C6l C62 C63 C64 C65 CGG e6

So due to symmetric properties, these constanteiureduce to 21. If the media is

elastically symmetric in certain direction then tiembers of elastic constantsare
further reduced. We shall discuss two types oftielagmmetry

8.3 Case-1: Symmetry with respect to planeConsider that medium is elastically

symmetric with respect to thex, —plane

= X, =X, Xy =Xp, Xg = —Xg (8.3.1)

N
AN
\\

Figure 8.3.1
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The elastic constants; are invariant under the transformation, now we kitoat the

law of transformation of tensor of order one is

X, =L ,% (o0, =Cos(x},x) (8.3.2)
11 512 13 1 O O
where Ca=la Ly [|=]0 1 0 (8.3.3)
5 32 33 00 -1

we know Hook’s law is

1, =c;€\andr; =c;e, (i, j = 1 23456)

= T =Cpy€ FCLE, o +C6

Ty T Cp€ FCpp) F o + C,eE5

Ty T Cai F Corh Foviiiiiiei it + Cye€l

Ty =Cu€ FCpf) F i + C €5

Ti = Cqi€ +Cop) F o + Cy€;

Tg T Coi€ +Cop€ F i + Cg€s (8.3.4)
and

Ty =CHE FC0E, F i +C6;

Ty T Cp€ FCpnf) F i + Cpe€s

T3 =C30€ FCof) F o + Cye€s

Ty TCuE FCp0s F i +C 66

Ts = Cqi€ T Cosp€ F i + Cq8s

Tg =Coi€ F Coofy i + Cge8s (8.3.5)

Law of transformation of tensor of order two isgagen below

MAL-633 159



=0 01 (8.3.6)

Ty =Lyl Ty =Ly (Ellril + 00,7, +€13Ti3)

= gll (ﬁ 11T11 + £12T12 + €13T13)

using
+ 512 (ﬂ 11T21 + EZLZTZZ + 5132-23)
+ 613(6 nlar 075 + 6131-33)
(8.3.3), we get r'y,=11r,, +0r,, +0r3)+0+0=1,,
= I,,=T,,0r7T;, =T, (8.3.7)
Similarly, T,=T,Ty="0,T; =141, =-T,andr, =-7;
€=e,6 =6,€ =e,6 =6, =—6,ande, = e, (8.3.8)

from relations (8.3.5),(8.3.6),(8.3.7)and (8.3\&¢, get
=1,
C11€; + C1p€) +C3€5 +C4€) + CisE + C1g€5 = C11€) +C 285 + i385 +C14€y + Cis€5 + Cr6g
C116 T C1o€) +Ci363 = C14€ — Ci585 + C €5 = €116 +C 26, +C 363 +C 1484 + C585 + 1665
or  2(C484 +Ci565) =0

(8.3.9)
= C,=C:=0 (801
Similarly I, =T,=C,, =Cy =0,
T3 =T3=Cy =Cy5 =0,
Tlt - T4:>C41 = C42 = C43 = C46 = 0’
Ty = ~T3=Cg = Csp = Cg3 = Cq =0,
Tg =Tg=>Cy =Cg =0, (8.3.11)

Then elastic constants reduces to 13, so matieefficients is
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7,] [c, ¢, € O 0 c4fe]
I, Cu Cp Cp3 0 O 2 || €
I3 —| 73 Cy; Css 0 0 Cx || &
Iy 0 0 0 ¢y c5 O|e
Is 0 0 0 ¢ Cs 0 |e
76| G G G 0 0 Cgjles] (8.3.12)

8.4 Case-ll: Let us consider symmetrywith respecta another plane is-consider
that medium is elastically symmetric with respectitex,x, — plane
= X, ==X, X, =X, X3 =X; (8.4.1)
again applying same transformation law as earherget
C16 = C26 = C36 = C45 = C51 = C61 = C62 = C63 = O (842)

Such materials which have three mutually orthogmta@hes of symmetry are called

orthotropic. T hus for orthotropic media matrix fay, takes the following form

Tl Cll C12 C13 O O 0 e.l.
7, Ch Cp Cpy 0 0 0|6
T3 - C31 C32 C33 O O 0 eS (843)
7, 0O 0 O ¢, O O]e,
Iy 0O 0 O O ci O|e
7] |0 0 0 0 0 cxje]

From the relation (8.4.3) there armeconstants required to study the elastic property
of the material.

Definition:-Orthotropic Material: A material is said to be orthotropic if it hasdar
mutually orthogonal plane of elastic symmetry foample, wood, is a common

example of an orthotropic material.
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8.5 Case-lll: Transversely Isotropic Media: If an orthotropic medium exists elastic

symmetry with respect to arbitrary rotation abowe of the axis, say, —axis. Then it
is called transversally isotropic. Let the systemjx,x;be obtains from the system
0X,X,X; by a rotation about the, —axis to an angléthen direction cosine are given

by

Xy = Xq Figure 8.2

Law of transformation of tensor of order two is

cosd sind O
Toq =1yl 4T;Where/; =| —sind cosd 0O (8.5.1)
0 0 1

Then ¢; must be invariant under this rotation, using rela(8.5.1) we have
r,, =1, =T1,c08 8+71,sin* @ +1,cosfsing

r,=r,=r,sin>8+1,c08 —-1,c0s6sinb
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and

Tog =Ty =15, T,3=T7,=T7,C088—1,SInG;
I, =Tz =7,Sin@+71,c0s0

r,, =14 =—(r, - 1,)cos@sing + r,(cos’ 8 - sin® )

€, =€ =g cos d+e,sin’  +e, cosdsing

U

e, =€, =g sin’ 6 +e, cos’ §-e, cosdsing

U

€,=€ =T1,, €,=¢€, =¢,cosf—e,sind,;

e, =6 =¢e,sind+e,cosl, 2€,,=¢€',,2¢ ;=€ ,2€,,= €

e, =€, = —(e —e,)cosfsing + g, (cos’ 8 —sin® )

For all possible value d.

(8.5.2)

(8.5.3)

Sub case:- (i)f we take @ = gthen the relations (8.5.2) and (8.5.3) becomes

n=r, | d=e,
=0 €& =6
T?_Ts and%,_es
Ty =715 € ="6
Ts =1, & =8
Te = T4 & =6

using the relation (8.4.3) and (8.5.4) we have
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1,=T1,
C11€ +C,€ TC 8 =Cp8 +Cp08, +Cpfy
118 +Cp6 +Cp5€ = Cy)€ +Cy0€, +C8
(C;1=C,)&8 +(Cyy —Cypr)e, +(C 3 —Cpp)e; =0

= C12 = CZl’ C11 = C22’ C13 = C23
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Similarly, by comparison of other relations of (8) we get the constants as follows

C12 = C21’(':22 = Cll'c23 = C13’C44 = C55 ’C32 = C31

(8.5.5)

Sub case:- (ii)f we take Hzgthen the relations (8.5.2) and (8.5.3) gives a new

relation between that stresses as follows

, 1
T, == (T —Ty)
1 ande; = (e, -¢)
= T('s :E(Tz _Tl)

after comparing the coefficient on both sides 05.@) we get

1 1
Ces = E(sz —Cp) = E(Cll —Cp)

Thus, the matrix of elastic moduli given in relati(8.4.3) becomes

_z'l ] Ci Cp G 0 0 0 _el ]
7, Cp, Cy C3 O 0 0 e,
7, C;; Cy C O O 0 e
I, 10 0 0 ¢, O 0 e,
. 0O 0 O 0 c, 0 e

| 76 | 0 0 0 0 0 %(cll—clz) | € |

This matrix hadiveindependent elastic constants.

(8.5.6)

(8.5.7)

(8.5.8)

8.6 Case-IV: Homogenous Isotropic Mediumin the case of an isotropic material

the elastic coefficients are independent of orientation of coordinate ares.|

particular, every plane is the plane of isotrog@sgc symmetry and is a particular

case of a transversely isotropic elastic symmeatnaddition to elastic symmetric
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about thex; —axis. Let there is an elastic symmetry aboutXxheaxis, i.e. a rotation
of axis through a right angle about tRe—axis is given by the transformation.

X =X, X =X, X, ==X (8.6.1)

this transformation leads to the relation

A
X2
X=X
X3 = =X,
v
43 =X, Figure 8.6.

C12 =C13’C33 =C11’(':66 =(':44'(':31 =C13 (862)
If we define C,=C3=A,Cc=Cyy=U (8P
then Cy=Cyp=Cypy=A+2u,

Therefore the number of independent elastic caeffts for an isotropic medium are

two,i.e.,Aandu, these coefficients are known as Lame’s constaftais the

generalized Hooke’s law becomes
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I, | [A+2u A A 0 0 O|ey
T, A A+2u A 0 0 Ofey
Tas | _ A A A+2u 0 0 0|eg, (8.6.4)
Ty 0 0 0 u 0 0} 2e,
[ 0 0 0 0 u 0|2,
| | O 0 0 0 0 uj2e,|

This can be written as
r, =Ad,e, *+2ue;(8.6.5)

The results in relation (8.6.5) are known as ste#issn relation. Putting= j , we find
I, =3/e, +2.1k,

Ty + T, + 15 =3A(6; +€, +65) +2U(e,; +6,, +ey)

©=EB1+2u)d (8.6.6) from
relation (8.6.5)
1 A
€; ZZ_IUTij _Z_Iua—ijekk(8'6-7)

using (8.6.6) into (8.6.7) we get

_ 1 A 1
€ =57 __—a—ijrkk
2U 24 (34 +24)
= 8 = A 1 +il'-- (8.6.8)

__—5” Ty ij
2 (34 +2u) 2U
This is possible whem # dhd 34 +2u # 0. So this relation express as strains as a

linear combination of stress components.

8.7. The generalized Hooke’s law for anisotropictiear elastic medium.
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Solution: Letg, and 7, be the components of strain and stress tensorseateeely.
According to the generalized Hooke’s law for arsgétamedia

T = Ciwu € (8.7.1)
wherec,,, is a tensor of order four since the media is cgotr therefore the tensay,
is an isotropic tensor. Henag,; can be represented in the form

Cyg = 00,0, + 0,0, +y5,0; (8.7.2)
wherea , S and y are scalars from (8.7.1) and (8.7.2) we obtains
r, =ad;(0,e,)+ B0, (0,8,)+0,(J,€,)
I, =ao;e, + Bo,e, *+yo,€
T, =00,€, + &, + )&
I, =ad;e, +2/e, (8.7.3)
wherea = Aand2u=[(+y
Hence, 7, = AJ,e, +2ueg; is known as Hooke’s law foanisotropic linear elastic

v Lj

medium.

Question: Show that if the medium is isotropic, the printigees of stress are

coincident with the principal axes of strain.
Solution: Let thex; —axes be directed along the principal axes of stiien
€,=€3=6;3=0 (8.7.4)
The stress-strain relations for an isotropic medaren
Tj = A0 6y + 2.8 (8.7.5)
Combining (8.7.4) and (8.7.5), we find

T1p=T137 T3 =0 (8.7.6)
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This shows that the coordinates axesire also the principal axes of stress. This

proves the result. Thus, there is no distinctiotwben the principal axes of stress and
of strain for isotropic media.

Books Recommended:

1. Y.C. Fung: Foundation of Solid Mechanics, Prentice Hall, Inc.,
New Jersey, 1965.

2. Sokolnikoff, I.S. Mathematical Theory of Elasticity, Tata McGraw
Hill Publishing Company, Ltd., New Delhi, 1977
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CHAPTER-IX
ELASTIC MODULI FOR ISOTROPIC MEDIA

9.1 INTRODUCTION

To study the statementhe extension is proportional to the forcg we
discuss the deformation of a thin rod subjected tensile stress. Consider a thin rod
(of a low-carbon steel, for example), of initialoss sectional areg which is

subjected to a variable tensile fofee If the stress is assumed to be distributed

uniformly over the area of the cross section, tttenominal stress T = % can be

calculated for any applied lo&d. The actual stress is obtained, under the assompti
of a uniform stress distribution, by dividing theat at any stage of the test by the
actual area of the cross section of the rod at stege. The difference between the
nominal and the actual stress is negligible, howeteough-out the elastic range of

the material.

If the nominal stresd is plotted as a function of the extensiefchange in
length per unit length of the specimen), then fuane ductile metals a graph is very
nearly a straight line with the equation

T=Ee (9.1.2)
until the stress reached the proportional limiteTgosition of this point, however,
depends on a considerable extent upon the sehsitifithe testing apparatus. The
constant of proportionalityE is known as Young's modulus. In most metals,
especially in soft and ductile materials, carefbkervation will reveal very small
permanent elongations which are the results of wamall tensile forces. In many
metals, however (for example, steel and wrought)jri these very small permanent
elongations are neglected (less thAt000000f the length of a bar under tension),

then the graph of stress against extension is aghtrline, as noted above, and
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practically all the deformation disappear after floece has been removed. The
greatest stress that can be applied without produai permanent deformation is
called the elastic limit of the material. When Hpplied force is increased beyond this
fairly sharply defined limit, the material exhibit®th elastic and plastic properties.
The determination of this limit requires succesdiwading and unloading by ever
larger forces until a permanent set is recorded.nr@ny materials the proportional
limit is very nearly equal to the elastic limit,cathe distinction between the two is
sometimes dropped, particularly since the formen@e easily obtained. When the

stress increases beyond the elastic limit, a peirdgached

A

IStress

P.Y B

Strain

v

Figure 9.1

(Y on the graph) at which the rod suddenly stretchiis Ntle or no increase in the

load. The stress at poiivtis called the yield-point stress.

The nominal stres§ may be increased beyond the yield point until the
ultimate (pointJ ) is reached. The corresponding forlee= Tais the greatest load that

the rod will bear. When the ultimate stress is nedg a brittle material (such as high-
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carbon steel) breaks suddenly, while a rod of sdomile metal begins to “neck”;
that is, its cross sectional area is greatly redunesr a small portion of the length of
the rod. Further elongation is accompanied by anemse in actual stress but by a
decrease in total load, in cross-sectional ared, iamominal stress until the rod
breaks (point B).

We shall consider only the behavior of elasticemats subjected to stresses
below the proportional limit; that is, we shall bencerned only with those materials

and situations in which Hooke’s law, expressed bg generalization of it, is valid.
9.2 PHYSICAL MEANINGS OF ELASTIC MODULI

We have already introduced two elastic modualnd in the generalized
Hooke’s law for an isotropic medium. In order targaome insight into the physical
significance of elastic constants entering in galiweed Hooke’s law, we consider the
behavior of elastic bodies subjected to simpleitenspure shear and hydrostatic
pressure.
Sub Case-l:- Simple Tension

Consider a right cylinder with its axis parallel tbhe x, —axis which is

subjected to longitudinal forces applied to theseofithe cylinder. These applied

forces give rise to a uniform tensif1gure, 93 cross-section of the cylinder so that

the stress tensdr; has only one non-zero componept=T , i.e.,

T3 = T, Ty =T33 =Ty =T33=Ty3=0 (9.2.1)
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Since the body forces are absent 0, the state of stress given by (9.2.1) satisfies th
equilibrium equationgy;, | =0 in the interior of the cylinder. A normato the lateral

surface lies in the plane parallel x9x; —plane, sov = (0,v,,V;) .

Vv \ \ \
The relationT, =7;v; implies thatT, =T, =T; =0.

HenceT =0. (9.2.2)

This shows that the lateral surface of the cylinderfree from tractions. The

generalized Hooke’s law giving stains in termstoésses is

:qurkk +irij (9.2.3)
213 +2u) 2u

Gi
We find from equations (9.2.1) and (9.2.3) that

_Avu
e+ 2

=e,=—— T, =e.=¢e,=0 9.24
€, =65 20(GBA+24) €, =65=6; ( )
Since l=/]i andgz# (9.2.5)
E  u@B1+2u) E 2u@BA+2u)
T o
Therefore e, :E’ e,=6,= _ET =-0],, €,-€,=6,=0 (9.2.6)

These strain components obviously satisfy the cadilmpty equations
€k TEui G ~Ciik = 0 (9.2.7)

and therefore, the state of stress given in (9.2.1) actually conésgo one which

can exist in a deformed elastic body. From equation (9.2.6), we writ
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i:E 2:%:—0’ (928)
€1 G &

Experiments conducted on most naturally occurriagte media show that a tensile
longitudinal stress produces a longitudinal ext@mdogether with a contraction in a

transverse directions. Accordingrio=T >0, we take

g,>0ande,, <0,e,<0.
It then follows from (9.2.8) that

E>0ando >0 (9.2.9)
From equation (9.2.8), we see that E representsatieeof the longitudinal stress,

to the corresponding longitudinal sta@y produced by the stress. From equation

(9.2.8), we get

€|
€

S
€

=g (9.2.10)

Thus, the Poisson’s rati@ represents the numerical value of the ratio of the
contraction e,(ore,;;) in a transverse directionto the correspondingxtension €,

in the longitudinal direction.

Sub Case-ll:- Pure Shear

From generalized Hooke’s law for an isotropic mediwe write
op=N2 =" - I (9.2.11)

The constan2u is thus the ratio of a shear stress componentdatiresponding

shear strain component. It is, therefore, relatethé rigidity of the elastic material.

For this reason, the coefficientis called themodulus of rigidity or the shear

modulus.
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The other Lame’s constardt has no direct physical meaning. The valuguof

in terms of Young’'s modulus E and Poisson ratis given by

E
= 9.2.12
H 21+ 0) ( )
Since E>0,0 >0, it follows thatu >0 (9.2.13)
Sub Case-lll:- Hydrostatic Pressure

Consider an elastic body of arbitrary shape whglput in a large vessel

containing a liquid. A hydrostatic pressuge is exerted on it by the liquid and the
elastic body experience all around pressure. Tigsstensor is given oy = -pJ; .
That is,

1505, =153="D, T, =Ty =T51=0 (9.2.14)

~ Hydrostatic
Pressurt

Figure 9.3

These stress components satisfy the equilibriunateans for the zero body force. We
find

Ty =—3p
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And the generalized Hooke’s law giving strainsamis of stresses

—/ s 1 (9.2.15)

P A—
51‘, 2/,1(3A+2,U) |]Tkk 2/,1 ij

using (9.2.14) in to (9.2.15) we get

e12:e23:%l:0
1| 34p -p
-e, =e,=—— -pl= 9.2.16
€176 =6 2;1{3A+2,u P} 3 +24 ( )

which obviously satisfy the compatibility equatioNfge find

-3p _ -p _-p

6, = = = (9.2.17)
3A+2u L2 U K
3
That is,
S(cubical dilatation) :_Tp (9.2.18)

From experiments, it has been found thétydrostatic pressure tends to reduce the

volume of the elastic material That is, ifp > 0, then
e, =Vv<0. (9.2.19)

Consequently, it follows from (9.2.19) tHat 0. Relation (9.2.18) also shows that the
constantk represents theumerical value of theratio of the compressive stres$o

the dilatation.

Substituting the value of and xin terms of E and o, we find

E

Sincek >0and E >0, if follows that0< g < %for all physical substances. Since
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Eo

Aemeonm— (22)
1+o0)1-20)

and E >0, O<U<%, it follows thatA >0.

Remark: The solutions of many problems in elasticity are¢hesi exactly or
approximately independent of the value chosen @&sdon’s ratio. This fact suggests

that approximate solutions may be found by so dngd3oisson’s ratio as to simplify

the problem.
Question: Show that, if =0 thend :O,,uzg,k :gand Hooke's law is
expressed by
1
T, = ke :EE(ui,j +U;) (22)

Note 1: The elastic constants E, o,k have physical meanings. These constants are

called engineering elastic modulus.
Note 2: The material such as steel, brass, copper, leass,gktc. are isotropic elastic

materials.

Note 3 We find €y = ——=——T (9.2.23)

Thus e, =0 iff a:%, providedE andr, remain finite.

when Ja%,/}—>oo,k—>oo,,u:§,v:e,i:ui’izo (9.2.24)

Thislimiting case corresponds to which is called an incompressible elastic body.
Question: In an elastic beam placed along tkg- axis and bent by a couple about

the x, —axis, the stresses are found to be
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E
[33= _Exl' I, =T, =T, =T,;3 =T, =0, R=constant

Find the corresponding strains.

Solution: The strains in terms of stresses and elastic m&dahd o are given by the

Hooke’s law

e = %5” T +1+?0 r, 425)
Here T = —E X
Hence, (9.2.25) becomes

& =%, +1+EU 7, (9.2.26)

o o 1
This gives,, = e,, :E)(l’ €33 :_Exl’elz =€;=6;=0

Question: A beam placed along thg —axis and subjected to a longitudinal stress

r,, at every point is so constrained that =e,; =0at every point. Show that

1-0° _—o(+o0)

T22 = 0711' e.l.l = E Z-11' e33 - E 11

Solution: The Hooke’s law giving the strain in terms of stesis

1+o0

-0
e”- :?5”— Tkk + i (9227)
. -0 1+o0
It gives €, = _(Tn + Ty + Tss) +—722
E E
-1 o
€, = Erzz _E(Tn + Tss) (9-2-28)
Puttinge,, =e,, =0in (9.2.28), we get
T,, =07, (9.2.29)
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Also, from (9.2.27) we find

_ -0 1+o0
ell_ E (T11+T22+T33)+ E Tll

_ -0 1+o0
_?(Tll +JT11) +?T11

:%[—0—02 +1+0]r,, (9.2.30)

Also, from (9.2.27), we get
_ -0 1+o0
€3 = ?(711 + Tzz) +?T33

-0
= ? (1, +07y,)

=%(1+ o)1, (9.2.31)

Practice:1 Find the stresses with the following displacenfeids:-
0) u=kyz,v=kzx, w= kxy
(i)  u=kyz,v=kzx, w=k(x* - y?)
(i)  u=k(y*+2z%),v=kzx, w=kxy
(iv)  u=kyz,v=k(z* +x?), w=kxy
(v) u=kyz,v=kzx, w= kxy
(vi) u=ky’zZ’,v=k(z*-x*), w=kxy
(vii)  u=kyz,v=k(z®+x%), w=kx’y
Practice: 2 (i) A rod placed along the; —axis and subjected to a longitudinal stress

T,,is so constrained that there is no lateral contracShow that
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_ (@-o0)E
Z-11_— 1
1+o0)1-20)
(i) A rod placed along the, — axis and subjected to a longitudinal stress
T.,iS SO constrained that there is no lateral corilacShow that
o= (l-o)E e
¥ +o0)1-20)
(i) A rod placed along the&, —axis and subjected to a longitudinal stress
T,,1s so constrained that there is no lateral contracShow that
_ @-o0)E
T22 T N A\ 22
1l+o0)1-20)

Practice: 3 Determine the distribution of stress and the disg@ents in the interior
of an elastic body in equilibrium when the bodycfs are prescribed and the

distribution of the forces acting on the surfaceéhef body is known.

Practice: 2 Determine the distribution of stress and the disgi@ents in the interior
of an elastic body in equilibrium when the bodyctks are prescribed and the

displacements of the points on the surface of tuy lare prescribed functions.

Practice: 3 Are the principal axes of strain coincident witlogk of stress for an
anisotropic medium with Hooke’s law expressed? &omedium with one plane

elastic symmetry? For an orthotropic medium?

Practice: 4 Show directly from the generalized Hooke’s law timaan isotropic body

the principal axes of strain coincide with thoseswéss.

9.3 RELATIONSHIP BETWEEN YOUNG MODULUS OF ELASTICI TY
AND LAME’'S CONSTANTS
We have already introduced two elastic modditand 4 in the generalized

Hooke’s law for an isotropic medium. We introdubese more elastic moduli defined
below
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AL ) R By Y 9.3.1)
A+ u 24+ p) 3

The quantityo is dimensionless and is called the Poisson rdtiwak introduced by
Simon D. Poisson in 1829.

The quantityE is calledYoung’'s modulusafter Thomas Young who introduced it in

the early 18 century, probably in 1807. Its dimension is tha stress (force/area).
The elastic modulu& is called the modulus of compression or the butiduius.

Solving the first two equations fotand u (in termso andE), we find

Eo E

/]:—' - -
= o+ o)

(9.3.2)
1+o0)1-20)

from relation (9.3.2), we find the following relatis

A+2u= Ed-0) /1+,u: 1)
A+o0)d-20)" u 1-20

A+2u  2(1-0) A O
U 1-20)" A+2u 1-0

(9.3.3)

J
Practice: Derive the following relations between the Lame fioents Aandu,

Poisson’s ratiag , Young's modulusE, and the bulk moduluk:

1= 2uo :/J(E—Z,u)zk_gyz Eo _ 3kE =3k(3k—E) (9.3.4)
1-20 3u-E 3 l+o0)Q-20) 1l1l+0 9%k -E
L= Al-20) :E(k—A) __E _ 3K@-20) _ 3kE (9.3.5)
20 2 20+0) 20+0) 9%-E
o= A _ A 25_1: 3k—2u :3k—E (9.3.6)
20+u) 3k-A 2u 23k + 1) 6k
= H(BA+2u) _ All+0)1-20)
A+u o
_ 9k(k =) (9.3.7)

3k-A
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k=a+2,=A0ro) _2ul+o) pE _ E
3 30 31-20) 3@Bu-E) 301-20)

(9.3.8)

9.4 EQUILIBRIUM EQUATIONS FOR ISOTROPIC ELASTIC SO LID

We know that Cauchy's equation’s of equilibrium bterm of stress

components are
1., +F =0 (9.4.1)
where F, is the body force per unit volume and = 1, 2, 3.The generalized Hooke’s
law for a homogeneous isotropic elastic body is
T, =A0,8 + 2Lk, (9p.2
= AQUy, + H(u; +u;;) (9.4.3)
where Aand p are Lame constants. Putting the value,pform (9.4.3) into equation

(9.4.1), we find

/]Jijuk'kj +u(u, v U g )+F =0

AUy + %0+ g, +F = 0
(A +,u)%+;ﬂzui +F =0 (9.4.4)

whered =u,,, =div U =cubical dilatation andi = 12,3.
Equations in (9.4.4) form a synthesis of the analysisrafrstanalysis of stress and
the stress-strain relation.

These fundamental partial differential equations of the elasticity treeerknown a
Navier’'s equations of equilibrium, aftBlavier (1821).Equation (9.4.4.) can be put in

several different forms.

(D: In vector form, equation (9.4.4) can be written as
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(A+p)grad divu+x0’U+F =0 (9.4.5)
(IN: We know that the following vector identity
OxOxu = grad diva -0%U (9.4.6)
Putting the value of1?T from (9.4.6) into (9.4.5), we obtain
(A + ) grad div U + g grad diva —curl curl t]+ F =0 (9.4.7)
or (A+2u)graddivi— g curl curl t+F =0
(111):  Putting the value ofgrad divar from (9.4.6) into (9.4.5), we get
(A + w[0% +curlcurl U]+ 0% +F =0
or (A+2u)0%U+(A+ geurlcurl T+F =0 (9.4.8)
(IV): We know that

/1+,u: 1

7 1-20 (9.4.9)
Form (9.4.9) and (9.4.5), we find
2 1 I R
07U+ graddivu+—F =0 (9.4.10)
1-20 7]

9.5 DYNAMIC EQUATIONS FOR ISOTROPIC ELASTIC SOLID

Let pbe the density of the medium. The components offéthee (mass

. . d°u . L
acceleration /volume) per unit volume ;ax%t—z'. Hence, the dynamical equations in

terms of the displacementsbecome

2
(/1"'/1)?4'/“52% +F :Pa o

fori=123. 9.5.1
” e (9.5.1)

Various form of it can be obtained as above forldarium equations.
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Practice: In an isotropic elastic body in equilibrium undiee body forcef = ax,x,&,
where
a is constant, the displacements are of the @QrMAX’X,X,,U, = BX,X: X,
u, =Cx,x,x. where A, B, C are constants. Find A, B, C. Evaluthe
corresponding stresses.
Practice: In an isotropic elastic body in equilibrium undiee body forcef = ax,x,& ,
where
a is constant, the displacements are of the EMMAX X5 X,, U, = BX2X5 X,
u, =Cx,x;x; where A, B, C are constants. Find A, B, C. Eviluthe
corresponding stresses.
9.6 BELTRAMI-MICHELL COMPATIBILITY EQUATIONS IN TERMS
OF THE STRESSES FOR ISOTROPIC SOLID
The strain-stress relations for an isotropic edasilid are

1+o g
g = = I —Ed.@, ©O=r. (9.6.1)

1 1

In which ois the Poisson’s ration an@ is the Young’'s modulus. The Saint-

Venant’'s compatibility equations in terms of straomponents are

& sk €4 1ij kst €1k = 0 (9.6.2)
Which impose restrictions on the strain componeatensure that giverg; yield
single-valued continuous displacemants

When the regiorr is simply connected, using (9.6.1) in (9.6.2), el f

1+o

g
?{ Tiju Ty i "o Tl } = E{é-” elm +5k| O’ij _é-ike’n _5j|e'ik}
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g
{750 ¥ Tas ~ T Ty} = E{a—ijeam +040,;-9,0,;,-9,0,,} (9.6.3)
9°r. 2
with Tju = — G’ij = 0—@ )
T 0X0X, 0x,0X;

These are equations of compatibility in stress cumepts. These are 81*3in

number but all of them are not independent.aifd j or kand| are interchanged, we
get same equations. Similarly for= j =k =1, equations are identically satisfied.

Actually, the set of equations (9.6.3) containg/@nk independent equations obtained
by setting

~ ~ ~ ~ ~
I o
L T | TR
P pF
I 1 I 1
l\) — — —
1 I 1
IR

w

2, i=3 j=1

k=1=3, i=1 j=2

Settingk =1in (9.6.3) and then taking summation over the comimdex, we get

g
Tine T i ~ ik " Tikoik = E{ 0,0, 1040, =940, =0, O, }
Since 0,,=0°0, 1, =0°1; , 1y; =O,; and g, =3 (9.6.4)
Therefore, above equations become
g
Dzrij +O, Ty ~ Tk = m[dlj 0’0+ 30,;,-20,; ]
2 _ 0 2

(9.6.5) This is a set afine equations and out of which ondyx are independent due
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to the symmetry of and j. In combining equations (9.6.3) linearly, the nembf

independent equations is not reduced.

Hence the resultant set of equations in (9.6.8}jisvalent to the original equations in

(9.6.3). Equilibrium equations are
T« tF =0 (9.6.6)

where F,is the body force per unit volume. Differentiating these (9.6di)ations

with respect tox; , we get

Loy =—F (9.6.7)

1]
Using (9.6.7), equation (9.6.5) can be rewritten in the form

Tt 0,4 0 aT0=-FF). (069

Setting | =iin relation (9.6.8) and adding accordingly, we ®rrit

D2®+LDZO—£DZGZ‘2FM
1+o 1+o

a+—1 — 3 )29 = oF

1+o0 1l+0
2079) hog - oF =2 diVE,
1+o
giving

, 140 , -

g LtO (9.6.9)
1-0

Using relation (9.6.9) in the relations (9.6.8) e Viind the final form of the
compatibility equations in terms of stresses.

1 @’ij __ o
1+o0

Dzz',. +

These equations in Cartesian coordinates (x, gaz)oe written as
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2
D2+t 99 9 gyg %
1+ 0 ox l1-o ox
: . OF
g, +t 99-_ 9 gyE %y
1+0 dy l1-o oy

2
2+ 1 99 9 4yp-_p%
1+0 0z 1-o 0z

2 1 0°0 _

oF, oF
r,+ =- +—Z
¥ 1+ 0 oyoz 0z oy

o2 4+ L 629:-[6F2+a':xj
* 1+ 0 020x ox 0z
2
0°r,, + 1 00 __ al:X+6Fy (9.6.11)
1+ o oxoy dy  OXx

In 1892, Beltrami obtained these equations for=0 and in 1900 Michell obtained
them in the form as given in (9.6.11). The equations (9.&dElLalled thdeltrami-

Michell compatibility equations.

9.7 HARMONIC AND BIHARMONIC FUNCTIONS
Definition: A functionV of classC*is called éiharmonic function when
0%0% =0
Theorem 1: When the components of the body forEeare constants, show that the

stress and strain invariant® and J are harmonic functions and the stress

components; and strain components are biharmonic functions.

Proof: The Beltrami-Michal compatibility equations in terms of stress ar

1 O, =- g

D%r; + i
1+0 1+0

O_ijdiVﬁ_(Fi’j+Fj’i) (9.7.1)
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In which F is the body force per unit volume.

It is given that the vectoF is constant. In this case, equations in (9.7.1)cedo

1
1+o0

0%, +——©,,=0 (9.7.2)

Settingi = j in (9.7.2) and taking summation accordingly, we get

D%z, +ie’iizo

1+o0

2 1

0°0+—0°0=0

1+o0

1 2
1+——)0?0=0

1+o0

0?0=0 (9.7.3)

This shows that the stress invari@t 7, is harmonic function.
The standard relation between the invarig@tand Jis

O =(31+2u)9 (9.7.4)
and the equation (9.7.3) implies that

0%9=0 (9.7.5)

showing that the strain invariagt= e, is also a harmonic function. Again

0%0%r, =0°%| - 1 0,
) 1+ 0 )

1
= - 07(0. ..
1+0 ©)

= —1+1U(Dze),ij %)

Using (9.7.3) in the relations (9.7.6), we get
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2M2 —
0°0%r; =0 (9.7.7)
This shows that the stress componenjtare biharmonic functions.

The following stain-stress relations

qj :Ldje-k_rij
2u(3A +2u) 2u
; 2M2 - 22 1 .5
give 0°0% = —————¢,0°0°0+_—0°0°7;
234 +2p) 24
0%0% =0 (9.7.8)

Equation (9.7.8) shows that the strain componenése also biharmonic functions.

Theorem 2:1f the body forceF is derived from a harmonic potential function, show

that the strain and stress invariastaind © are harmonic functions and tistrain

and stresscomponents are biharmonic function.
Proof: Let ¢ be the potential function and is derived from¢ so that

F=OgorF, =g, (9.7.9)
Then

divF =g, =0%=0 .140)
Since ¢ is a harmonic function (given). Further

Fo=Fi=9, (9.7.11)

The Beltrami-Michell compatibility equations in term of stresseghis case, reduce

to

1 _
0%r, +1+Ue -2¢,; (9.7.12)

lij -
Putting j =i in relation (9.7.12) and taking the summation adcaly, we obtain

MAL-633 188



1

O%r, + O, =-2¢,.
1 1+0_ 1 2wll
2 1 2 2
0O+ o=-20¢
1+o

Using relations (9.7.10) we get

0%0=0 (9.7.13)
This shows that® is harmonic. And, the relatio® = (34 + 2u)J immediately shows
that Jis also harmonic.

From relation (9.7.12), we write

1
007, + 0%, =20’
This gives 0°0%r; =0 as 0?0 =0%=0 (9.7.14)

It shows that the components are biharmonic. The strain-stress relations yikét t

the strain components are also biharmonic function.

9.8 APPLICATION OF THE BELTRAMI-MICHELL EQUATIONS

Example 1: Find whether the following stress system can beoktion of an

elastostatic problem in the absence of body forces:
T = XX, Ty = XX, Ty = X5, T3 =T4 =14, =0. (9.8.1)
Solution: In order that the given stress system lvara solution of an elastostatic
problem in the absence of body forces, the follgxequations are to be satisfied:
0] Cauchy’s equations of equilibrium with =0, i.e.

Ty F 015, 1T45,3=0

T121 T+ 55,5=0

Tig T 05,51 T53,5=0 (9.8.2)
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(i) Beltrami-Michell equations witlF, =0, i.e.

|]21-11 +ﬁ(rll + Z-22 + T33)'11 = O

DZTZZ +L(Tll + T22 + Z-33)’22 = O
1+0

27y (731 + Ty + T)135= 0
1+o0

027 4 (T +Tpp + T3 =0
1+o

027+ (T3 + Tpp + T35) = 0
1+o0

1
Dzz-23 +E(T11 + Tzz + T33),23 =0 (983)

It is easy to check that all the equilibrium eqoasi in (9.8.2) are satisfied. Moreover,

all except the fourth one in (9.8.3) are satishgdhe given stress system.

Since the given system does not satisfy the BeitMichell equations fully, it cannot

form a solution of an elastostatic problem.

Remark: The example illustrates the important fact thatress system may not be a
solution of an elasticity problem even though itisfees Cauchy's equilibrium

equations.

Practice 1 Show that the stress-system=r1,,=7,,=7,,=7,,=0, 75 = 00X;,
where p and g are constants, satisfies that equationswliteium and the equations
of compatibility for a suitable body force.

Practice 2 Show that the following stress system cannot bsolution of an

elastostatic problem although it satisfies cauclegjgations of equilibrium with zero
body forces: 1,=x+0(X2-X), T,=xX+0(X2-X), Tu=00+X5),

I, =—20%X,, T,; =T =0whereo is a constant of elasticity.
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Practice 3 Determine whether or not the following stress ponments are a possible

solution in elastostatics in the absence of bodscefsrr,, = ax,x,, 7,, =bx,x,
T, =CXX,, T,,=dx%, T,=ex;, 7,,=fx where a, b, c, d, e and f all are
constants.

Practice 4 In an elastic body in equilibrium under the bddsce f = ax,x,8,, where
a is constant, the stresses are of the farm= ax,X,X;, T,, =bXX,X;, T43 = CX,X,Xs,
I, =(@x?+bx2)x,,1,, = (bx; +cx})x, 7,=(cx;+ax’)x,; where a, b, ¢ are
constants. Find these constants

2

Practice 5 Define the stress functi@®by 7; =S, :aa—asand consider the case of
X, 0X:

i9%
zero body force. Show that, & =0, then the equilibrium and compatibility equations

reduce to

[1%S = Constant .

Books Recommended:

1. Y.C.Fung: Foundation of Solid Mechanics, Prentice Hall, Inc.,
New Jersey, 1965.
2. Sokolnikoff, I.S. Mathematical Theory of Elasticity, Tata McGraw
Hill Publishing Company, Ltd., New Delhi, 1977
3. A.E.H. Love A Treatise on the Mathematical Theory of
Elasticity,
Combridge Universtress, London.
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CHAPTER-X
STRAIN ENERGY DENSITY FUNCTION

10.1 INTRODUCTION

The energy stored in an elastic body by virtuet®ideformation is called the
strain energy. This energy is acquired by the betgn the body force and surface
traction do same work. This is also termed as i@aleenergy. It depends upon the

shape and temperature of the body.

10.2 STRAIN-ENERGY FUNCTION

Let 7; be the tensor and, be the strain tensor for an infinitesimal affindatenation
of an elastic body. We write

[0 =115 =15, 153 = 15 (10.2.1)
Ty3 =Ty T3 =15,1,, =1

and

€.-6,6,=6,65=6
2e,;,=€,,26,=6;,26, =€

In terms of engineering notations.

(10.2.2)

We assume that the deformation of the elastic hedgothermal or adiabatic. Love
(1944) has proved that, under this assumption tiest a function of strains

W=W(e,e,,e;,€, 6,6) (10.2.3)
with the property

ow =T, fori=1,2,....,6. (10.2.4)

08

This function Wis called the strain energy function.
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W represents strain energy, per unit of undeformed/olume, stored up in the body

by the straing .

forcexL _ force

The units oW are E B that of a stress

The existence oW was first introduced by George Green (1839).Expandhe
strain energy functioWV, given by (10.2.3) in a power series in termstadiss €,
we write

2N =d, +2d;g +d;g€,i,j=1,2,....,6 (10.2.5)
After discarding all terms of order 3 and higher in the strgias straing are

assumed to be small. In second terms, summationioto be taken and 8" term,
summation over dummy suffices i & j are to be taken.
In thenatural state, e =0, consequentlyV =0 for g =0.
This gives
d, =0 (10.2.6)
Even otherwise, the constant term in (10.2.5) can be neglected sirare wméerested
only in the partial derivatives W . therefore, equation (10.2.5) and (10.2.6) yield
2W =2de +d;ege, (10.2.7)
This gives
PRRL LS P UL

1
=d, +§{dija—kiej +d;€9,}

ij i

_dk +%[dkjej +dkie|]

=d, + %(olkj +d,)e,
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=d, +(dkj.ej)ej
This gives

7, =d, +ce (10.2.8)
where

G = %(dij +dj;)=c; (10.2.9)
we observe that thgis symmetric.

we further assume that the stress 0 in the undeformed state, wher=0.

This assumption, using equation (10.2.8), gives

d =0 i=1, 2,....,6 (10.2.10)
Equations (10.2.7), (10.2.8) and (10.2.10) give

T, =Ce 10.2.11)
And

W =%cije,ej =%e,ri (10.2.12)

Since, two quadric homogeneous forms\Wéare equal as

dijqej =c,ee (10.2.13)
Equation (10.2.12) shows that the strain energy func¥énis a homogeneous
function of degree 2in strainsg, i = 1,2,3/4,5,6, and coefficients; are symmetric.

The generalized Hooke’s law under the conditions of existencerah stnergy
function is given in equations (10.2.9) and (10.2.11).

The matrix form, it can be expressed as
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T |G G2 Gs Cu Gs Ce| €
T22 ClZ 022 CZ3 CZ4 CZ5 026 e22
C13 C23 C33 CS4 C35 C36 %3
T23 C14 C24 C34 C44 C45 C46 2e23
Z-13 C15 C25 C35 C45 C55 C56 2613
T12 ClG 026 CSG C46 C56 CGG_ 2e12_

This law contains 21 independent elastic constants.

Result I From equation (10.2.2); we write
1
W= E[Tlel T8 +T 8 +1,6 +T:6+ Teee]
1
= E[Tlle.l.l + z-22622 + Z-33633 + 2T23e23 + 21-13613 + 2TlZe.L2]
::%Tijqj I,j =123

The result in (10.2.14}% called Claperon formula.

Result Il: For an isotropic elastic medium, the Hooke’s lawegi
T, =Ad,8, +208;, i, j = 1,2,3(10.2.16)

]

This gives
1
W=§Qj [Adijekk +2,qu]
1
ZE/‘ekkekk +t HE; €

1
=§/1‘5‘fk +ue;

1
:E/](eu"'%z +%3)2 +,u(e121+e222 +ee>23 +2e122 + 26123 +2€§3)

Result 3: Also, we have

__ o l+o

e” Ea-ij L +?Tij

Hence,
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+

o 1+o0
W :——Tikak +—7T
E

10.2.19
>E ( )

ij i

Result 4: From (10.2.12), we note that in the valué/df we may interchange and
r,. Consequently, interchangirgandr, in equation (10.2.4), we obtain

g_\iv =e,fori= 1,234,56 (10.2.20)

This result is due t@astigliano (1847-1884).

It follows form the assumed linear stress-stralatiens.

Result 5: We know that the elastic moduliand x are both positive for all physical
elastic solids. The quadratic form on the rightesaf (10.2.17) takes only positive
values for every set of values for every set ofigalof the strains. This shows that the

strain energy functioWV is a positive definite form in the strain comporsept for an

isotropic elastic solid.
10.3 Application of Strain Energy Function
Example 1: Show that the strain-energy functioW for an isotropic solid is
independentof thechoice of coordinateaxes.
Solution: We know that the strain energy functidiis given by
1

W=ST8
1
:qu (Ad;84 +218;) (10.3.1)
1
25/1(911"'%2 +€33)° + (€] + €5, + €55 + 26, + 263 + 265;)
Let
l, =€ =€, +6, +&;) (10.3.2)
l,=g€; —8g¢€, (10.3.3)
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be the first and second invariants of the straimsde €. As the given medium is
isotropic, the elastic moduld andy are also independent of the choice of coordinate
axes. We write
W = % A2+ ,U[(eu +e,+e,)° —2e,e,26,6,—2e,8,+26, +2e, + 2e§3]
= %/1 124 112 -2{(010,~ €)% + (€8~ € + (e85 €19 )]

:%/1 |2+ ul2=2ul,

:(%ﬂ,/jlf —2ul, (10.3.4)

Hence, equation (10.3.4) shows that the strainggnieinction W is invariant relative
to all rotations of Cartesian axes.

Example 2EvaluateW for the stress field (for isotropic solid), =7,, =7,,=7,, =0
T,; = —HaX,,T,, = pax,, a #0is constant ang. is the Lame’s constant.

Solution:We find r,, =7, +7,, +7,,=0

.1 A o
Hence, the relatios; = 2;1{7” 3+ 9, Tkk:|' i,j =123
: _1
gives g _Z_/JTij
That is e,=e,=6,=€,=0 (10.3.5)
1 1
€3 = _Eaxz 1€, = Eaxl (10.3.6)

The energy functioW is given by

W:%riie”.

1

1
=Eri'rij =4_,U(T123 +755)
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= %,ua'z(xl2 +x2) (10.3.7)

Example 3:Show that the strain energ¥is given by
W =W, +W,

whereW, = EkeIi e = ir”rii , k =bulk modulus ,and
2 18k

1
W, :élu[(ell _622)2 +(& _633)2 + (65 _en)z + 6(3122 +e§3 + efl)]

1
= @[(Tn —T,,) " + (T —Tas)? + (T —T,,) > +6(15, + T2, + r321)] (10.3.8)

Example 41f W :%[/Iefk +2/¢;6€ ] Prove the following,
0) . Ly,

.. 1

Il W==Zr.¢e
(i) 5

(i)  Wis a scalar invariant.

(iv)  W=0andW =0iff g =0

w _
T, %

(v)

Solution: (i) We note thatVis a function te, . Partial differentiation of this function

with respect t&; gives

ow _1 08,
— =2 12e, —* +4ue |=|)e. 0. +2ue |=T. 10.3.9
o 2{ e ua,} ey, +2ug =1, (10.3.9)
. 1
(i w =2 legeq + 2uee)]

1
:E[/‘ekk (a-iqu' )+ Zluql'eu']
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1
:E[/w-ijekk +2/€, ]Qj
1
W = qu T (10.3.10)
(i) Since 7; and g are components of tensors, each of order 2, régpBctSo by

. 1 . . .
contraction rulew = ET” € is a scalar invariant.

(iv) Since A >0, >0,€; =0and g, >0, if follows thatW >0MoreoverW =0

iff e, =0. Sinceg; =0automatically implies thag, = 0. HenceW = 0hold iff

§ =0
(v)Putting (10.3.11)
_1+0 o
8 —?rij —Er
Into (10.3.10) we find

_1lj1+0 g _1lj1+0 g,
W _E[?rij T _Erkkdij Tu} _E[?Tijrij _Erkkj|

ki (10.3.11)

This implies oW :[HU 97 ar"k}

- 7. —— K
or, | E ' E “ar,

oW 1+0 o
N L L T (10.3.12)
ij kk ~ij ]
ar; E E

10.4 Theorem: Show that the total work done by the external derén altering
(changing) the configuration of tmatural state to the state at timd’*is equal to the
sum of thekinetic energy and thestrain energy.

Proof: the natural/ unstrained state of an elastidy is one in which there is a
uniform temperature and zero displacement withregfee to which all strains will be

specified.
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Let the body be in the natural state when t=0. €fx,, X;) denote the coordinate of

an arbitrary material point of the elastic bodyhe undeformed/unstrained state.

P"

t U t+dt

t=0 P

U;
P
X
0)
Figure 10.1

If the elastic body is subjected to the actionxdkmal forces, then it may produce a
deformation of the body and at any time ‘t’, the@abnate of the same material point
will be X +u, (X, X,,X;) -

The displacement of the point P in the intervdirmke (t, t+dt) is given by

aﬁdt =udt, (10.4.1)
ot

. _ 0y
U, =—-
ot

The work done by the body fordeacting on the volume elemedt , in time dt sec,

where

located at the material point P is
(Fdr)(udt)=Fudrdt,

and the work performed by the external surfacee®iic in time interval (t, t+dt) is

Tiudtdr, wheredo is the element of surface.
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Let E denote the work done by the body and sutfia@®s acting on the elastic body.
Then the rate of doing work on the body originadigcupying some regiom (by

external forces) is
d—EsziuidHﬁiuido— (10.4.2)
dat 5
Where . denote the original surface of the elastic body.
Now I'Iv'iuida:j(rijvj)uida
> z
:I(rij u)v,do
z
:IUhq)da
=I[ﬁjui+fuq,ﬂdf

ijrj i

=[r,, udr+[r, g dr+[rwdr  (10.4.3)

Where

& =, +u,,)/2 andw; =(u;,;-u;, )/2 (10.4.4)
Since W, =-W;and7; =7,
So W, =0 (10.4.5)

Form dynamical equations of motion for an isotrdpacly, we write
I =PuU —F
Therefore, r; U =p0 0 -uk (104.6
Using results (10.4.5) and (10.4.6); we write farquations (10.4.4) and (10.4.2)
‘:']I—'tz=jFiuiolr+j[,ouiui ~FuJdz+[7,e,dr
r r r (10.4.7)
:jpuiuidr+jrijejdr
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The kinetic energy K of the body in motion is givien

1l
K —Elpuiuidr (10.4.8)
dk _1
Th — == udr 10.4.9
en & 23 ol ( )

We define the engineering notation
T Z-l’ T22 Z-2 ! Z-33 - Z-3 ' T23 - T4 ' T13 TS’ le TG
€1 =€,6, =8,,85=6;,26,,7€,,26,;,=6,26, = ¢ (10.4.10)
" . _ (. 0e
Then !rijqjdr —!ri Edr (10.4.11)

for i=123...cccceenn. ,6 and under isothermal condition, there exists argne

function

We the property that 3—\2/ =T, (10.4.12)
1<i<6. From equations (10.4.11) and (10.4.12), we write

jr” e dr = j(g\g ‘Z:J -% v\/dr-cij—LtJ (10.4.13)
where U= jvvdr (10.4.14)

from equations (10.4.7) , (10.4.9) and (10.4.14) write

E_oK, (10.4.15)

dt  dt  dt
Integrating equation (10.4.15) with respect tdo#tween the limits =0andt =t, we
obtain
E=K+U (10.4.16)
Since both E and K are zerd &0. The equation (10.4.16) proves the required result
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Note 1: If the elastic body is in equilibrium instead of imotion, thenK =0and
consequenthe =U .

Note 2 U is called the total strain energy of the defation.

10.5 CLAPEYRON’'S THEOREM

Statementif an elastic body is in equilibrium under a giv&stem of body forces.

and surface forces i, then the strain energy of deformation is equadrie-half the
work that would be done by the external forces tta equilibrium state) acting

through the displacementsfrom the unstressed state to the state of equihori

Proof. We are required to prove that

J'Fiuidr+j'l\iiuid0:2J.WdT (10.5.1)
T xz T

where X denotes the original surface of the unstresse@dmegof the body andV is

the energy density function representing the seaary per unit volume. Now

ij i

I'Iv'iuida :Iruuv.da
z o
=J.(rij u),; do (using Gauss divergence theorem)

:J.{Tij’j u +Tijui’ j}dT

:I{T u +7 {ui’jﬂj"’i +ui’j_uj’i}}dr
i U+ 5

2
ij 7

:Ir.. .uidr+J‘rij (qj +Wij)dT

:J.Z'»» .u.dr+Idr

ijrj i
:.[(Tii s +rijqj)dr (10.5.2)

Since
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W, =-w; and 7 =T
again from (10.5.2)

[Tiudo = [(-Fu, +2w)dr, (10.5.3)
z T

Since 7;,;+F =0

Being the equilibrium equations and

1
W =Er”qj,

From (10.5.4), we can write

jFiUidT+j%iuidU:2JWdT, (10.5.4)
T 2 T

proving the theorem.
Books Recommended:
1. Y.C.Fung: Foundation of Solid Mechanics, Prentice Hall, Inc.,
New Jersey,1965.

2. Sokolnikoff, I.S. Mathematical Theory of Elasticity, Tata McGraw
Hill Publishing Company, Ltd., New Delhi, 1977

3. A.E.H. Love A Treatise on the Mathematical Theory of
Elasticity, Combridge University Press, London.

4. MDU, Rohtak Handbook of Directorate of Distance Education,
MDU, Rohtak.
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