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e Derived from std::runtime_error.
e Commonly used in situations where arithmetic operations result in overflow.
e Example:
try
int int 1 // Overflow
const
"Exception caught:

8. std::underflow_error:

e Indicates arithmetic underflow errors, where the result of an arithmetic operation is
smaller than the minimum representable value.
e Derived from std::runtime_error.
e Less common than std::overflow_error but used in similar situations where
arithmetic underflow occurs.
e Example:
try
float float 2 // Underflow
const

"Exception caught:

Section 2 : Templates and Generic Programming

Templates and generic programming are powerful features of C++ that allow developers
to write code that works with any data type. Templates provide a mechanism for creating
generic classes and functions, allowing them to operate on multiple data types without
the need for code duplication.

2.1 Template Concepts

e Definition: Templates are a feature of C++ that allows functions and classes to
operate with generic types. They enable the creation of generic code that works
with any data type.

e Benefits:

e Code Reusability: Templates allow you to write code once and use it with
different data types, promoting reuse.

e Flexibility: Templates provide flexibility by allowing algorithms to work with
various data types without sacrificing performance or type safety.

e Syntax: Template definitions begin with the template keyword followed by a list of
template parameters enclosed in angle brackets < >.

2.2 Function Templates

e Definition: Function templates allow you to create a single function that can
operate with different data types. They are instantiated to create specific functions
for each data type when called.
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(T parameter) {

std;

/ Function template for adding two values of the same type

T>

(T a, T b)
a+ b;
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// Instantiation for int
resultl = (., );
cout << << resultl << endl;

// Instantiation for double
result2 = (
cout << << result2 << endl;
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2.3 Class Templates

Definition: Class templates allow the creation of generic classes that can work with
any data type. They are instantiated o create specific classes for each data type
when used.

They are defined similar to function templates, but instead of functions, entire



