NotesNeo

e Derived from std::runtime_error.
e Commonly used in situations where arithmetic operations result in overflow.
e Example:
try
int int 1 // Overflow
const
"Exception caught:

8. std::underflow_error:

e Indicates arithmetic underflow errors, where the result of an arithmetic operation is
smaller than the minimum representable value.
e Derived from std::runtime_error.
e Less common than std::overflow_error but used in similar situations where
arithmetic underflow occurs.
e Example:
try
float float 2 // Underflow
const

"Exception caught:

Section 2 : Templates and Generic Programming

Templates and generic programming are powerful features of C++ that allow developers
to write code that works with any data type. Templates provide a mechanism for creating
generic classes and functions, allowing them to operate on multiple data types without
the need for code duplication.

2.1 Template Concepts

e Definition: Templates are a feature of C++ that allows functions and classes to
operate with generic types. They enable the creation of generic code that works
with any data type.

e Benefits:

e Code Reusability: Templates allow you to write code once and use it with
different data types, promoting reuse.

e Flexibility: Templates provide flexibility by allowing algorithms to work with
various data types without sacrificing performance or type safety.

e Syntax: Template definitions begin with the template keyword followed by a list of
template parameters enclosed in angle brackets < >.

2.2 Function Templates

e Definition: Function templates allow you to create a single function that can
operate with different data types. They are instantiated to create specific functions
for each data type when called.



o m e
X
o
3
o2
o

NotesNeo

(T parameter) {

std;

/ Function template for adding two values of the same type

T>

(T a, T b)
a+ b;

=T 1
—~
— A
==
~—

// Instantiation for int
resultl = (., );
cout << << resultl << endl;

// Instantiation for double
result2 = (
cout << << result2 << endl;

~—

©
o
o)
o
Q
O
Q
=}
Q
2
o
<
o)
C
o
(7]
o
o
=)
<
[
0
<
o)

b

—
=
(7]
(]
b3
Q
3
o 0
. -+
>
()
—
[
>
(@]
=h
(©)
=)
sy
(1)
3
i
o o
o
Q
o
—
=
Q
-t
—y
()

e
3
—
Q
o
c
o
(]
D
—
0

N

I )

2.3 Class Templates

Definition: Class templates allow the creation of generic classes that can work with
any data type. They are instantiated o create specific classes for each data type
when used.

They are defined similar to function templates, but instead of functions, entire



