NotesNeo

throw Statement: The throw statement is followed by an expression, typically an
object of an exception class. This expression is the exception that is being thrown.
Throwing Syntax:
throw (arguments);
Example:
("Division by zero");

The catching mechanism is used to handle exceptions thrown by the try block. It
involves catch blocks.

catch Block: A catch block is associated with a try block and specifies the type of
exception it can handle. When an exception of that type is thrown, the
corresponding catch block is executed.

Example:
(const runtime_error& e) {

cout << "Error: " << e. () << endl;
}
try-catch Syntax:
try {

// Code that may throw an exception
} (ExceptionTypel el1) {

// Code to handle ExceptionTypel
} (ExceptionType2 e2) {

// Code to handle ExceptionType2
} (...) o

// Catch-all block to handle any other exceptions

Rethrowing an exception allows an exception caught in one catch block to be
thrown again to be handled by another catch block.
throw Statement (inside catch block): In a catch block, we can use the throw
statement without any argument to rethrow the caught exception.
Rethrow Syntax:
(ExceptionType e) {
// Code to handle the exception
throw; // Rethrow the exception

}
Example:
(const runtime_error& e) {
cout << "Caught error: " << e. () << endl;
; // Rethrow the exception
}

NotesNeo

e In older versions of C++, it was possible to specify the types of exceptions that a
function could throw. This feature, known as exception specifications, is deprecated
in C++11 and removed in C++17.

e Specifying exceptions allows to document the types of exceptions that a function
may throw during its execution.

e Syntax:
returnType functionName(parameters) throw(ExceptionTypel, ExceptionType2, ...)

{
// Function body

}
e Instead of specifying exceptions, it's better to document the exceptions a function
might throw in comments and handle them accordingly.

In C++, the Standard Template Library (STL) provides a set of standard exception classes
that can be used for common error scenarios. These classes are defined in the <stdexcept>
header and serve as a hierarchy of exception types that cover a range of standard error
conditions.

Common Standard Exception Classes:

1. std::exception:

e The base class for all standard C++ exceptions.
Provides a virtual function what() that returns a descriptive string representing the
exception.

e Developers can define their own custom exception types by deriving from
std::exception or its subclasses.

2. std::runtime__error:

e Represents errors that occur during runtime and are typically not detectable before

the program is executed.
e Derived from std::exception.
e Commonly used to report logical errors or exceptional conditions that arise during

program execution.
e Example:

try
throw "A runtime error occurred"
const

"Exception caught:

3. std:logic_error:

e Represents errors that occur due to logical errors in the program'’s design or
implementation.
e Derived from std::exception.

NotesNeo

e Examples include out-of-range errors, domain errors, and invalid argument errors.
e Example:

}

std:: ();
(std::exception& e)

() << std::endl;

4. std:invalid_argument:

e Indicates that a function has received an invalid argument.

e Derived from std:logic_error.

e Used when a function is called with an argument that is not acceptable or within
the expected range.

e Example:

} (std: :exception& e) {

std::cerr << : () << std::endl;

5. std::out_of_range:

e Indicates that an index or value is out of the valid range.

e Derived from std:logic_error.

e Commonly used in situations where accessing elements beyond the bounds of a
container or array.

e Example:

6. std::bad_alloc:

std::cerr << : () << std::endl;

Represents errors that occur when memory allocation fails.

Derived from std::exception.

Typically thrown by the new operator when it fails to allocate memory.
Example:

}

std:: (0);

std::exception& e) {
std::cerr << : () << std::endl;

7. std::overflow_error:

e Indicates arithmetic overflow errors, where the result of an arithmetic operation
exceeds the range of representable values.

8

NotesNeo

e Derived from std::runtime_error.
e Commonly used in situations where arithmetic operations result in overflow.
e Example:
try
int int 1 // Overflow
const
"Exception caught:

8. std::underflow_error:

e Indicates arithmetic underflow errors, where the result of an arithmetic operation is
smaller than the minimum representable value.
e Derived from std::runtime_error.
e Less common than std::overflow_error but used in similar situations where
arithmetic underflow occurs.
e Example:
try
float float 2 // Underflow
const

"Exception caught:

Section 2 : Templates and Generic Programming

Templates and generic programming are powerful features of C++ that allow developers
to write code that works with any data type. Templates provide a mechanism for creating
generic classes and functions, allowing them to operate on multiple data types without
the need for code duplication.

2.1 Template Concepts

e Definition: Templates are a feature of C++ that allows functions and classes to
operate with generic types. They enable the creation of generic code that works
with any data type.

e Benefits:

e Code Reusability: Templates allow you to write code once and use it with
different data types, promoting reuse.

e Flexibility: Templates provide flexibility by allowing algorithms to work with
various data types without sacrificing performance or type safety.

e Syntax: Template definitions begin with the template keyword followed by a list of
template parameters enclosed in angle brackets < >.

2.2 Function Templates

e Definition: Function templates allow you to create a single function that can
operate with different data types. They are instantiated to create specific functions
for each data type when called.

