NotesNeo

Unit 4: Exception Handling and Templates Programming

Syllabus :

Exception Handling: Review of traditional error handling, basics of exception handling,
exception handling mechanism, throwing mechanism, catching mechanism, rethrowing an
exception, specifying exceptions.

Templates and Generic Programming: Template concepts, Function templates, class
templates, illustrative examples.

Section 1 : Exception Handling in C++

Exception handling in C++ is a structured way to handle errors and exceptional conditions
that occur during program execution. It provides a way to separate error-handling code
from regular code, making programs easier to read and maintain.

1.1 Review of Traditional Error Handling

Traditional error handling refers to the conventional methods used in programming
languages to deal with errors or exceptional situations that may occur during program
execution.

1. Error Codes: Traditional error handling often involves the use of error codes or
special return values to indicate the occurrence of an error. Functions or methods
may return specific values (e.g., -1) to signal an error condition.

2. Global Variables: Some programming languages utilize global variables to store
error information. These variables are checked after each operation to determine if
an error occurred.

3. Conditional Statements: Developers typically use conditional statements such as
if-else or switch-case to handle errors. These statements check for error conditions
and execute appropriate error-handling code.

#include <iostream>
using namespace std;

int divide(int a, int b) {
if (b == 0) {
return -1; // Indicate error

}

return a / b;

int main() {

NotesNeo

int a = 10, b = 0;

int result = (a, b);
(result == -1) {
cout << "Error: Division by zero" << endl;
} {
cout << "Result: " << result << endl;
}
0;

1. Error-Prone: Requires manual error checking, which can be easily overlooked.
Cluttered Code: Can lead to scattered error handling logic, making the code harder
to read and maintain.

3. Limited Information: Return values and error codes provide limited information
about the error context.

4. Control Flow Issues: Can lead to convoluted control flow, especially in deeply
nested functions or complex logic.

1.2 Basics of Exception Handling

e An exception in programming refers to an abnormal condition or unexpected event
that occurs during the execution of a program, disrupting the normal flow of
control. Exceptions are typically caused by errors or exceptional conditions that
arise at runtime and may prevent the program from continuing its execution as
expected.

e Common reasons that cause exceptions include division by zero (run-time error),
invalid input, null pointer dereference, out-of-bounds access, memory allocation
failure, file not found, resource exhaustion, concurrency issues, hardware failures,
and errors from system calls or library functions.

e Exception handling is a mechanism in programming that deals with runtime errors
or exceptional situations that may occur during the execution of a program. These
exceptional situations could include division by zero, file not found, out-of-memory
errors, and so on.

e Exception handling allows a program to respond to such situations in a controlled
and graceful manner rather than abruptly terminating or producing undefined
behavior.

e Exception handling in C++ involves the use of try, catch, and throw keywords to
manage runtime errors and handle exceptional conditions gracefully.

o try Block: The code that might generate an exception is placed inside a try
block.

NotesNeo

o throw Statement: When an error occurs, an exception is thrown using the
throw statement.

o catch Block: The exception is caught by a catch block that handles the
exception.

<jiostream>
std;

int divide(int num, int den) {
(den == 0) {
("Division by zero"); // Throwing an exception
num / den;

int main() {
int num = 10, den = 0;

{
int result = (num, den); // Code that may throw an exception
cout << "Result: " << result << endl;
} (const runtime_error& e) { // Catching the exception
cout << "Error: " << e. () << endl;

1. Separating Error-Handling Code from Regular Code:

o Exceptions allow you to separate the details of what to do when something
out of the ordinary happens from the main logic of a program.

o In traditional error management, error detection, reporting, and handling
often lead to confusing spaghetti code. By using exceptions, you can keep
the main flow of your code clean and deal with exceptional cases elsewhere.

2. Enhancing Robustness:

o Exception handling ensures the continuity of your program even when
unexpected errors occur.

o Instead of crashing, your program gracefully handles exceptions, making it
more robust and reliable.

3. Improving Readability and Maintainability:

o Separating error-handling code from regular code improves the readability

of your program.

NotesNeo

o Developers can focus on the main logic without getting distracted by
error-related clutter.
Accurate Error Reporting:
o Exceptions provide meaningful error messages, making it easier to identify
the cause of failures.
o When an exception occurs, you can include relevant information (such as
stack traces) to pinpoint the issue.
Facilitating Debugging and Troubleshooting:
o Exception stack traces help you trace the sequence of method calls that led
to the error.
o Debugging becomes more efficient because you can quickly locate the
problematic code.
Improved Security:
o Proper exception handling prevents security vulnerabilities caused by
unexpected behavior.
o By handling exceptions gracefully, you reduce the risk of exposing sensitive
information or allowing unauthorized access.
Better User Experience:
o When exceptions are handled well, users experience fewer crashes or abrupt
program terminations.
o A smooth user experience contributes to overall satisfaction with your
software.
Enabling Error Recovery Mechanisms:
o Exceptions allow you to recover from errors gracefully.
o You can catfch exceptions, log relevant information, and take corrective
actions without disrupting the program flow.

1.3 Exception Handling Mechanism

Exception handling in C++ provides a structured way to handle runtime errors or
exceptional conditions that may occur during program execution, allowing the program to
recover without crashing.

It involves three key components: try, throw, and catch.

try Block: The try block encloses the code that might throw an exception. If an
exception occurs within the try block, it is transferred to the appropriate catch
block.

throw Statement: The throw statement is used to explicitly throw an exception. It
can be followed by an expression, which is typically an object of an exception class,
to provide information about the error.

catch Block: The catch block catches and handles exceptions thrown by the
associated try block. It specifies the type of exception it can handle and provides
code to deal with the exception.

The throwing mechanism is used to signal that an exceptional condition has
occurred during program execution. It involves the throw statement.

5

