NotesNeo

// Override pure virtual function
void makeSound

"Cat meows"

int main

// Creating a Dog object
// Creating a Cat object

// Calling pure virtual function on Dog object

// Output: Dog barks

// Calling pure virtual function on Cat object

// Output: Cat meows

In this example:

We have an abstract base class Animal with a pure virtual function makeSound().
There are two derived classes Dog and Cat, each overriding the makeSound()
function with their specific implementation.

In the main() function, we create objects of type Dog and Cat using base class
pointers.

When we call the makeSound() function on these objects, the appropriate version
of the function is invoked based on the actual type of the object, demonstrating
polymorphic behavior through dynamic dispatch.

Abstract Class: A class that contains at least one pure virtual function. It cannot be
instantiated and serves as a blueprint for derived classes to implement common
behavior while allowing specific implementations for their own unique features.
Interface: C++ does not have a built-in concept of interfaces like Java or C#.
However, interfaces can be simulated using abstract classes. An interface in C++ is
an abstract class that has only pure virtual functions and no data members or
non-virtual member functions. This ensures that the derived classes implement the
specific methods defined by the interface.

Differences between Abstract Classes and Interfaces:

Feature Abstract Classes Interfaces

Definition pure virtual function pure virtual functions

A class containing at least one | An abstract class containing only

21

NotesNeo

Purpose

To provide a common base class

with some implementation and

some methods to be overridden
by derived classes

To define a contract that derived
classes must follow

Implementation

Can contain some
implementation (non-pure virtual
functions) and member variables

Contains only pure virtual
functions and no member
variables

Instantiation Cannot be instantiated directly Cannot be instantiated directly
Derived classes can inherit only . .
. . A class can implement multiple
Inheritance one abstract class (single . s -
. . interfaces (multiple inheritance)
inheritance)
Use when you need to define a
Use when you need a base class clear contract for behavior
Use Case

with some common behavior

without any implementation
details

3.4 Virtual Destructors

In C++, when dealing with polymorphism and inheritance, it is often necessary to use
virtual destructors to ensure that the proper destructors are called for objects of derived
classes. A virtual destructor is a destructor declared in a base class using the virtual
keyword, and it ensures that the destructors of both the base and derived classes are
called in the correct order when deleting an object through a pointer to the base class.
Virtual destructors become essential to ensure proper cleanup of resources allocated by

derived classes.

Declaration and Syntax:

e The virtual keyword is used in the base class destructor to make it virtual.

2

Base {

~Base() {

// Virtual destructor

e The derived class destructor overrides the base class destructor and provides its
own implementation.

Derived Base {

() {

// Derived class destructor

22

NotesNeo

1. Proper Destruction Order: Virtual destructors ensure that the destructors are called
in the correct order when deleting objects through base class pointers, preventing
memory leaks and undefined behavior.

2. Polymorphic Deletion: Virtual destructors enable the polymorphic deletion of
objects, allowing for the correct cleanup of resources allocated by derived classes.

3. Prevents Memory Leaks: Helps avoid memory leaks by ensuring derived class
destructors are called.

<iostream>
std;

// Base class with a virtual destructor

Base {
= () A
cout << "Base class destructor" << endl;
}
Hi
// Derived class with its own destructor
Derived : Base {
= () {

cout << "Derived class destructor" << endl;

s

int main() {
Base* basePtr = (); // Creating a Derived object through a

Base pointer
basePtr; // Deleting through a base class pointer

9;

3.5 Polymorphism

e Polymorphism is derived from the Greek words "poly"” (many) and "morphos”
(forms).
e Polymorphism refers to the ability of objects to take on different forms or

behaviors based on their context.

23

NotesNeo

e In OOP, polymorphism refers to the ability of objects of different classes to be
treated as objects of a common superclass.

e It allows a single interface (method or function) to represent multiple
implementations.

e It allows a single function or operator to exhibit different behaviors based on the
context in which it is called.

e Example: A man acts a father, husband, son, employee and many more.

=% Working

e

°f
I n Husband

1. Code Reusability: Polymorphism allows the same code to be reused with different
objects, reducing duplication and improving maintainability.

2. Simplification: Polymorphism simplifies code maintenance and enhances
readability by promoting a more modular and organized code structure.

3. Flexibility and Extensibility: It provides a flexible way to add new functionality to
existing code by extending existing classes.

4. Encapsulation: Polymorphism promotes encapsulation by abstracting away the
implementation details of objects and focusing on their behavior through a
common interface.

Polymorphism can be of two types:
1. Compile Time Polymorphism (Early / Static Binding)
o Achieved through method overloading and operator overloading.
o Decisions about method calls are made at compile time.
o Determined by the number and types of arguments and return type.
2. Run Time Polymorphism (Late / Dynamic Binding)
o Achieved through virtual functions or method overriding.
o Decisions about method calls are made at runtime.
o Facilitated by pointers or references to base class objects.

24

NotesNeo

[Polymorphism]

Y Y

l Compile Time J [Run Time
Method N Virtual
Overloading ” Function
< Operator N Function
"l Overloading d Overriding

Compile-time and Run-time

e Compile Time (Early/Static):

o This is the phase when the source code written in programming language is
being converted into executable code by a compiler.

o During compile time, the compiler checks for syntax errors (like missing
semicolons or mismatched brackets) and semantic errors (such as using a
variable that hasn’t been declared).

o The compiler will not create an executable file until all such errors are
resolved.

e Run Time (Late/Dynamic):

o Run time refers to the period when the executable code is actually running
on computer.

o If's the phase where the program interacts with inputs, performs
calculations, and may encounter runtime errors. These errors occur during
execution and can include issues like division by zero or accessing an array
out of bound.

e Polymorphism that is resolved at compile time when the source code is being
converted into executable code by compiler.

e It is achieved through method overloading and operator overloading, where the
compiler selects the appropriate function or operator based on the arguments and
context at compile time.

e Also known as static or early binding, this type of polymorphism is achieved
through method overloading and operator overloading.

25

NotesNeo

Method Overloading:

Definition: Method overloading is a form of compile-time polymorphism where
multiple methods in the same class have the same name but differ in the number or
type of their parameters.

Methods can be overloaded by changing the number or type of arguments.

It provides flexibility and clarity in code by allowing multiple functions with similar
functionality to be grouped under the same name.

Example:

#include

using namespace std;

class Calculator {
public:
int add(int a, int b) {
return a + b;

int add(int a, int b, int c¢) {
return a + b + c;

double add(double a, double b) {
return a + b;

int main() {
Calculator calc;

cout << calc. (5, 7) << endl; // Output: 12
cout << calc. (5, 7, 3) << endl; // Output: 15
cout << calc. (3.5, 2.5) << endl; // Output: 6
return 9;

}

Operator Overloading:

Definition: Operator overloading is a form of compile-time polymorphism where
operators are overloaded to work with user-defined data types.

It allows defining custom behavior for operators based on the data types involved.
Example:

#include <iostream>

using namespace

class Complex
private

int

26

NotesNeo

public
// Constructor to initialize real and imaginary parts, default
values are ©
int 0 int 0

// Overloading the + operator to add two complex numbers
operator const
// Adding real parts and imaginary parts separately
return

// Function to print the complex number in the format "real +
imagi”
void print

int main
// Creating two complex numbers
cl 186 5 c2 2 4

// Adding two complex numbers using overloaded + operator

// Printing the result
"Result of addition: "

return 0

Output:
12 9i

e Polymorphism that is resolved at runtime when the executable code is actually
running on computer.

e It is achieved through method overriding or virtual functions, where the
appropriate function to call is determined dynamically based on the actual object
type at runtime.

e Also known as dynamic or late binding, this occurs during program execution.

e Achieved through virtual functions (using the virtual keyword).

e Allows a base class pointer to invoke derived class methods.

27

NotesNeo

Virtual Functions:

e Definition: Virtual functions are used in run-time polymorphism to enable dynamic
method binding. They are member functions which are declared in the base class
with the virtual keyword and can be overridden in derived classes.

e They enable dynamic binding of function calls, allowing the correct function to be
called at runtime based on the type of object.

e Example:

#
std;
Shape {
void draw() {
cout << << endl;
}
i
Circle : Shape {
void draw() {
cout << << endl;
}
i

int main() {
Shape* shape = OF
shape-> (); // Output: Drawing Circle

0;
}

Method Overriding:

e Definition: Method overriding is a form of run-time polymorphism where a method
in a base class is redefined in a derived class. The method in the derived class must
have the same signature (name and parameters) as the one in the base class.

e It allows derived classes to provide a specific implementation of a method defined
in the base class, promoting flexibility and extensibility.

e Example:

#
std;

Animal {

void sound() {
cout << << endl;

28

NotesNeo

}

i

class Dog : public Animal ({

public:
void sound() override {

cout << << endl;

}

i

int main() {
Animal* animal = new (0);
animal-> (); // Output: Dog barks
return 9;

Assignment

1. Define Early Binding in C++.

Define Late Binding in C++.

What is Virtual Function.

Explain Pure Virtual Functions.
Explain Abstract Classes.

What are Virtual Destructures in C++.

A A

29

