NotesNeo

int main() {
Circle circle;
Square square;

(&circle); // Drawing Circle
(&square); // Drawing Square

505
}
Here, the draw() function call is dynamically bound to the correct derived class
implementation at runtime, demonstrating polymorphic behavior.

3.2 Virtual Functions

In C++, a virtual function is a member function of a class that is declared with the virtual
keyword. Virtual functions enable polymorphic behavior, allowing derived classes to
provide their own implementation of the function by method overriding.

Declaration and Syntax:

e The virtual keyword is used to declare a function as virtual in the base class.
Base {

void myVirtualFunction() {
// Base class implementation

i
e In the derived class, the override keyword is used to explicitly indicate that the
function is overriding a virtual function from the base class.
Derived : Base {

void myVirtualFunction() {
// Derived class implementation

1. Polymorphism: Virtual functions enable polymorphism, allowing different classes to
provide different implementations of the same function.

2. Dynamic Binding: Virtual functions are resolved at runtime based on the actual
type of the object, enabling dynamic method dispatch.

3. Base Class Pointers: Virtual functions are often used with base class pointers to
achieve runtime polymorphism.

18

NotesNeo

Example:

st

/ Base class

// Virtual function

cout << << endl;

/ Derived class

public
| // Virtual function
[___cout << "Animal makes a sound" << endl;

Animal {

// Override virtual function

Q {

cout << << endl;

// Derived Ciass I E
——

// Override virtual function

O {

cout << << endl;

I §EO

Animal* animall = (); // Creating a Dog object
Animal* animal2 = (); // Creating a Cat object

&

// Calling virtual function on Dog object

animall-> (); // Output: Dog barks

// Calling virtual function on Cat object
animal2-> (); // Output: Cat meows

WJI

In this example:

19

NotesNeo

We have a base class Animal with a virtual function makeSound().

e There are two derived classes Dog and Cat, each overriding the makeSound()
function with their specific implementation.

e In the main() function, we create objects of type Dog and Cat using base class
pointers.

e When we call the makeSound() function on these objects, the appropriate version
of the function is invoked based on the actual type of the object, demonstrating
polymorphic behavior through dynamic dispatch.

3.3 Pure Virtual Functions

In C++, a pure virtual function (or abstract function) is a virtual function declared in a
base class that has no implementation. It is declared by assigning 0 in the base class,
must be overridden in derived classes. It serves as a placeholder for derived classes to
override and provide their own implementation. A class containing at least one pure
virtual function is known as abstract class and cannot be instantiated directly.

Declaration and Syntax:

e Pure virtual functions are declared with = 0 at the end of their declaration.
AbstractBase ({

void pureVirtualFunction() = ©; // Pure virtual function

<iostream>

// Abstract base class
Animal

// Pure virtual function
void makeSound 0

// Derived class
Dog

// Override pure virtual function
void makeSound
"Dog barks"

// Derived class
Cat

20

NotesNeo

// Override pure virtual function
void makeSound

"Cat meows"

int main

// Creating a Dog object
// Creating a Cat object

// Calling pure virtual function on Dog object

// Output: Dog barks

// Calling pure virtual function on Cat object

// Output: Cat meows

In this example:

We have an abstract base class Animal with a pure virtual function makeSound().
There are two derived classes Dog and Cat, each overriding the makeSound()
function with their specific implementation.

In the main() function, we create objects of type Dog and Cat using base class
pointers.

When we call the makeSound() function on these objects, the appropriate version
of the function is invoked based on the actual type of the object, demonstrating
polymorphic behavior through dynamic dispatch.

Abstract Class: A class that contains at least one pure virtual function. It cannot be
instantiated and serves as a blueprint for derived classes to implement common
behavior while allowing specific implementations for their own unique features.
Interface: C++ does not have a built-in concept of interfaces like Java or C#.
However, interfaces can be simulated using abstract classes. An interface in C++ is
an abstract class that has only pure virtual functions and no data members or
non-virtual member functions. This ensures that the derived classes implement the
specific methods defined by the interface.

Differences between Abstract Classes and Interfaces:

Feature Abstract Classes Interfaces

Definition pure virtual function pure virtual functions

A class containing at least one | An abstract class containing only

21

