NotesNeo

Class types can be converted to basic types by overloading conversion operators or by
providing explicit conversion functions. This allows for extracting relevant information or
converting class objects into values of basic types.

Example: Conversion from String Class to int

<iostream>
<string>
std;

String {

string value;

(string val) : (val) {}

// Conversion operator for int
int() const {
(value); // Convert string to int

int main() {
String str("42");
int number = str; // Conversion from String to int

cout << "Integer value: " << number << endl;
&l

Class types can be converted to other class types through constructors or conversion
operators defined in the respective classes. This allows for creating objects of one class
type from objects of another class type.

Example: Conversion from Feet Class to Meter Class

<iostream>
std;

Meter {

double value;

14

NotesNeo

(double val) : (val) {}

void display() {
cout << "Meter value:

<< value << endl;
s

class Feet {
private:
double value;

public:
(double val) : (val) {}

// Conversion operator for Meter
operator Meter() const {
return (value * 0.3048); // Convert feet to meter

int main() {
Feet feet(10);
Meter meter = feet; // Conversion from Feet to Meter

meter. O);
return 9;

Section 3 : Virtual Functions & Polymorphism

3.1 Concept of Binding

Binding in C++ refers o the association between function calls and function definitions. It
determines which function definition gets executed when a function is called. Binding can
be of two types:

1. Static (or Early) Binding

2. Dynamic (or Late) Binding

Early binding, also known as static binding or compile-time binding, occurs when the
function call is resolved at compile time. In early binding, the compiler determines which
function implementation to call based on the static type of the object or pointer.

Static binding is used for normal function calls, function overloading and operator
overloading.

15

