NotesNeo

Section 2 : Operator Overloading and Type Conversion

2.1 Operator Overloading

Operator overloading is a powerful feature in C++ that allows us to define the behavior of
operators such as +, -, *, /, ==, |=, etc., for objects of user-defined classes. It provides a
way to to extend the functionality of built-in operators to work with objects of our own
classes.

Syntax:
return_type op (parameters) {
// Operator implementation
}

Where op is the operator being overloaded and parameters represent the operands of the
operator.

Conditions where operator overloading is necessary:

1. When working with user-defined types: Operator overloading allows user-defined
types, such as classes or structures, to behave like built-in types. This can make the
code more readable and maintainable by providing a natural syntax for operations
involving those types.

2. When defining mathematical operations for custom types: For example, when
working with complex nhumbers, matrices, or vectors, overloading operators like +,
-, *, etc., can make the code more expressive and concise.

3. When implementing custom data structures: Operator overloading can be useful
when implementing custom data structures like arrays, lists, or trees. For example,
overloading the subscript operator [] can provide array-like access to elements of
a custom container class.

4. When working with streams and IO operations: Overloading stream insertion
(<<) and stream extraction (>>) operators can enable custom formatting and
parsing of data types when performing input/output operations.

1. Only Existing Operators Can Be Overloaded:
e You cannot create new operators; you can only overload the existing ones.
2. Preserve the Operator's Arity:
e The number of operands an operator works with cannot be changed. For
instance, a binary operator (e.g., +) must remain binary.
3. Operator Overloading Cannot Change Precedence or Associativity:
e The precedence and associativity of operators remain the same regardless
of overloading.
4. Overloaded Operators Must Have at Least One User-Defined Type as Operand:
e At least one operand must be a user-defined type (class or struct).
5. Certain Operators Cannot Be Overloaded:
e There are a few operators that cannot be overloaded, including:
o :: (scope resolution)

10

NotesNeo

o . (member access)
o =->(pointer-to-member)
o 7?: (ternary conditional)

Operators can be overloaded to perform custom operations depending on the context
and the type of objects involved. Some common Unary or Binary operators that are
frequently overloaded include:

Arithmetic Operators: +, -, *, /, %
Relational Operators: ==, !'=, <, >, <=, >=
Logical Operators: &&, ||, !

Assignment Operators: =, +=, -=, *= /=

Increment and Decrement Operators: ++, --
Subscript Operator: []

Function Call Operator: ()

Stream Operators: >>, << (for input/output)

Note: Following operators can’t be overloaded :

e Conditional operator: ? : (ternary operator)
Member access operator: . (dot)
Pointer to member access operator: -> (arrow)
Scope resolution operator: : : (double colon)
Sizeof operator: sizeof

Operators that Cannot Be Overloaded Using Friend Function and Member Function

1. Using Friend Function:
e = (assignment operator)
e [] (subscript operator)
e () (function call operator)
e -> (member access operator)
2. Using Member Function:
e All operators can be overloaded using member functions, except for those
that cannot be overloaded at all (i.e., ::, ., ->, ?:).

Here's how you can overload the binary + operator using both member function and
friend function:

Using Member Function:

#include <iostream>
using namespace std;

class Complex {
private:

11

