NotesNeo

Unit 3: Constructors, Destructors, Operator Overloading,
Type Conversion, Virtual Functions, and Polymorphism

Syllabus :

Constructors and Destructors: Need for constructors and destructors, copy constructor,
dynamic constructors, explicit constructors, destructors, constructors and destructors with
static members, initializer lists.

Operator Overloading and Type Conversion: Overloading operators, rules for
overloading operators, overloading of various operators, type conversion - basic type to
class type, class type to basic type, class type to another class type.

Virtual functions & Polymorphism: Concept of binding - early binding and late binding,
virtual functions, pure virtual functions, abstract clasess, virtual destructors.

Section 1 ;: Constructors and Destructors

Constructors and destructors are fundamental concepts in object-oriented programming
languages like C++. Constructors are special member functions of a class that initialize
objects of that class. On the other hand, destructors are used to clean up resources
allocated by an object when it goes out of scope or is explicitly destroyed.

1.1 Constructors

Constructors in C++ are special member functions of a class that are automatically called
when an object is created. They are primarily used for initializing the objects and setting
up any required resources.

Constructors have the same name as the class and can be overloaded to accept different
sets of parameters. It is declared in public section of the class. It has no return type so it
can't return any value. It can't be inherited though derived classes can call a base class
constructor. It can't be virtual.

e Initialization: Constructors are used to initialize an object's data members when it
is created.

e Default Values: They provide a way to set default values for data members.

e Resource Allocation: They can allocate resources such as memory or file handles
when an object is created.

Default Constructor: Initializes an object without any parameters.
Parameterized Constructor: Initializes an object with given parameters.
Copy Constructor: Initializes an object using another object of the same class.
Dynamic Constructor: Allocates memory dynamically for an object.

Explicit Constructor: Prevents implicit conversions to the class type.

LA A

NotesNeo

A default constructor is a constructor that does not take any arguments. It is

automatically called when an object is created without providing any initialization values.
If no constructor is defined in the class, the compiler generates a default constructor with
an empty code and no parameter.

Example:

#include <iostream>

using namespace std;

class MyClass {
public:

int

int value;

// Default constructor

O A

value = 0;

cout << "Default constructor called"

void display() {

<< endl;

cout << "Value: " << value << endl;
}
main() {
MyClass obj; // Default constructor is called
obj. (); // Value: ©
return 9;

A parameterized constructor is a constructor that takes one or more parameters or
arguments. It allows the user to initialize objects with specific values at the time of
creation.

Example:

#include <iostream>

using namespace std;

class MyClass {
public:

int value;

// Parameterized constructor

NotesNeo

(int val) {
value = val;
cout << "Parameterized constructor called" << endl;

void display() {
cout << "Value:

<< value << endl;
}s

int main() {
MyClass obj(42); // Parameterized constructor is called
obj. () // Value: 42
return 9;

A copy constructor is a special type of constructor that is used to copy data from one
object to another. It is called automatically when a new object is created from an existing
object, typically using the assignment operator or passing an object by value to a
function. The copy constructor performs a deep copy of the object's data members.

Example:

#include <iostream>
using namespace std;

class MyClass {
public:
int value;

// Parameterized constructor
(int val) {
value = val;

// Copy constructor
(const MyClass &obj) {
value = obj.value;
cout << "Copy constructor called" << endl;

void display() {
cout << "Value:

<< value << endl;

NotesNeo

int main() {

MyClass obj1(42); // Parameterized constructor is called
MyClass obj2 = obj1; // Copy constructor is called
obj2. (0); // Value: 42

;

A dynamic constructor allocates memory dynamically using new or malloc. It is useful
when the size of data members is not known at compile time and needs to be allocated at
runtime.

Dynamic memory allocation in C++ is typically done using the new operator. While it's not
a constructor itself, it's often used within constructors to allocate memory dynamically for
data members of a class.

Example:
<iostream>
std;
MyClass {
int *ptr;

(int size) {
ptr = int[size];
cout << "Dynamic constructor called" << endl;

= O A
[l ptr;
cout << "Destructor called" << endl;

s

int main() {
MyClass obj(5); // Dynamic constructor is called
e,

An explicit constructor is used to prevent implicit conversions. It is declared with the
explicit keyword, ensuring that the constructor cannot be used for implicit conversions
and copy-initialization.

