NotesNeo

Example:

delete // Deallocates memory allocated for the integer pointed by ptr
In the example above, the delete operator is used to deallocate the memory allocated for
the integer pointed to by ptr. After deletion, the memory is returned to the system for
reuse.

Example:

#include <iostream>

using namespace

int main

// Dynamic memory allocation
int new int // Allocates memory for an integer dynamically
16 // Assigns a value to the dynamically allocated memory

// Accessing and printing the dynamically allocated value
"Dynamically allocated value: "

// Deallocating dynamically allocated memory
delete

return 0

In this example:

Memory for an integer is allocated dynamically using the new operator.

The value 10 is assigned to the dynamically allocated memory.

The value stored in the dynamically allocated memory is printed.

Finally, the dynamically allocated memory is deallocated using the delete operator.

Notes:

Dynamically allocated memory remains allocated until explicitly deallocated using
the delete operator.

Failure to deallocate dynamically allocated memory can lead to memory leaks,
causing the program to consume more memory than necessary.

It's essential to deallocate dynamically allocated memory when it's no longer
needed to ensure efficient memory usage.

2.6 Pointer to an Object

In C++, pointers can also be used to point to objects of classes. This allows for dynamic
allocation of objects and provide flexibility in memory management.

Pointers to objects are declared similarly to pointers to primitive data types.

31



NotesNeo
Syntax:

ClassName *pointer_name = new ClassName;

Example:

#include <iostream>
using namespace

// Class definition
class MyClass
public
void display
"Inside MyClass"

int main
// Creating an object of MyClass dynamically
new

// Accessing member function using pointer
// Output: Inside MyClass

// Deallocating dynamically allocated memory
delete

return 0

In the example above:
e Memory for an object of MyClass is allocated dynamically using the new operator.
e A pointer ptr of type MyClass is used to point to the dynamically allocated object.
e The display() member function of the MyClass object is called using the pointer.
e Finally, the dynamically allocated memory is deallocated using the delete operator.

Once a pointer is pointing to an object, its member functions and variables can be
accessed using the arrow (->) operator.

Syntax:

Example:

#include <iostream>
using namespace

32



NotesNeo

// Class definition
class MyClass
public

int

int

void display
"Data: "

main
// Creating an object of MyClass dynamically
new

// Accessing and modifying member variable using pointer
10

// Accessing member function using pointer
// Output: Data: 10

// Deallocating dynamically allocated memory
delete

return 0

In this example:

A pointer ptr of type MyClass points to the dynamically allocated object of MyClass.
The member variable data is accessed and modified using the pointer.

The member function display() is called using the pointer to display the value of the
member variable.

Finally, the dynamically allocated memory is deallocated using the delete operator.

2.7 'this’ Pointer

In C++, the this pointer is a special pointer that points to the current instance of the class.
It is available as a keyword within non-static member functions of a class. It is used to
distinguish member variable from parameter.

Points to the Current Object: The this pointer points to the address of the object
invoking the member function.

Distinguishing Member Variables: It helps distinguish between member variables
and parameters with the same name.

Returning the Current Object: It can be used fo return the current object from
member functions.

33



NotesNeo

#include <iostream>
using namespace std;

class MyClass {
private:
int value;

public:
// Constructor with a parameter
(int value) {
// Using 'this' pointer to distinguish member variable from
parameter
this->value = value;

// Method to display the value
void display() {
cout << "Value: " << this->value << endl;

int main() {
// Creating an object of MyClass
MyClass obj(10);

// Displaying the value using the object
obj. (); // Output: Value: 10

return 9;

2.8 Pointer-Related Problems

Pointers are powerful features in C++ that provide flexibility and control over memory
management. However, improper use of pointers can lead to several issues, including
dangling pointers, wild pointers, null pointer assignments, memory leaks, and allocation
failures.

e A dangling pointer is a pointer that references a memory location that has been
deallocated (freed). Accessing or modifying the memory location through a
dangling pointer leads to undefined behavior.

34



NotesNeo

Example:

int* ptr = (18); // Allocate memory
ptr; // Deallocate memory

// ptr is now a dangling pointer

cout << *ptr << endl; // Undefined behavior

Prevention:

e After deallocating memory, set the pointer to nullptr.
ptr;
ptr = ;

e Wild pointers are uninitialized pointers that point to arbitrary memory locations.
Accessing or modifying memory through wild pointers can lead to unpredictable
behavior and program crashes.

Example:

int* ptr; // Uninitialized pointer
cout << *ptr << endl; // Undefined behavior

Prevention:

e Initialize pointers when they are declared.
int* ptr = ;

e A null pointer is a pointer that points to nothing (typically initialized to nullptr).
Dereferencing a null pointer results in undefined behavior and typically crashes the

program.

Example:

int* ptr = ; // Null pointer
cout << *ptr << endl; // Undefined behavior

Prevention:
e Always check if a pointer is nullptr before dereferencing it.

(ptr != ) A
cout << *ptr << endl;

e A memory leak occurs when memory is allocated but not deallocated properly,
leading to a gradual increase in memory usage. This can eventually exhaust
available memory, causing the program to crash or slow down.

35



NotesNeo
Example:

for (int 1 = 0; i < 1000000; ++i) {
int* ptr = new (18); // Allocate memory
// No delete operation, memory leak occurs

}

Prevention:

e Ensure that every new operation has a corresponding delete operation.
delete ptr;

e Memory allocation failures occur when the system cannot allocate the requested
memory, typically due to insufficient available memory.

Example:
int* ptr = new int[1000666600]; // Large allocation request

Prevention:

e Always check the return value of memory allocation functions and handle
exceptions for new.

try {

int* ptr = new int[1000000000] ;
} (bad_alloc& ex) {

cout << "Memory allocation failed: " << ex. () << endl;
}

36



