NotesNeo

return 0

Output:

Original pointer value: 0x7ffe88bfe9de

After addition, pointer value: 0x7ffe88bfe9d8

After subtraction, pointer value: 0x7ffe88bfe9d4
In this example, ptr += 2 moves the pointer two positions forward, and ptr -= 1 moves the
pointer one position backward.

2.4 Memory Allocation (Static and Dynamic)

Memory allocation refers to the process of reserving memory space for variables or
objects during program execution. In C++, memory allocation can be categorized into fwo
types: static memory allocation and dynamic memory allocation.

In static memory allocation, memory is allocated at compile-time, and the size of memory
is fixed throughout the program execution. Compile time refers to the period when the
programming code (such as C++) is converted to the machine code (i.e. binary code).

Example:
int 5
e Memory for arr is allocated on the stack.
e Memory size is fixed and determined during compile-time.
e Memory is automatically deallocated when the scope containing the variable ends.

In dynamic memory allocation, memory is allocated at runtime, and the size of memory
can be determined during program execution. Runtime is the period of time when a
program is actually running and occurs after compile time.

Dynamic Memory Allocation using new operator:

Single Object Allocation:

int new int
e Memory for ptr is allocated on the heap.
e Memory size can be determined during runtime.
e Memory needs to be explicitly deallocated using the delete operator to prevent
memory leaks.

Array Allocation:

int new int 5
e Memory for arr is allocated on the heap.
e Size of the array is determined during runtime.
e Individual elements of the array can be accessed using pointer notation.

29



NotesNeo

Deallocating Dynamically Allocated Memory:

Single Object Deallocation:

delete

Array Deallocation:

delete
e The delete operator is used to deallocate memory previously allocated using the
new operator.
e For arrays, the delete[] operator is used to deallocate memory allocated for the
entire array.

Comparison:

e Static memory allocation is simpler and faster compared to dynamic memory
allocation.

e Dynamic memory allocation provides flexibility in memory management but
requires manual deallocation to prevent memory leaks.

e Static memory allocation is suitable for scenarios where memory size is known in
advance, while dynamic memory allocation is preferred when the size of memory is
determined during runtime or when memory needs to be allocated and deallocated
dynamically.

2.5 Dynamic Memory Management using new and delete Operators

Dynamic memory management in C++ allows the allocation and deallocation of memory
during runtime. This is useful for managing memory that cannot be determined at compile
time. The new operator is used to allocate memory on the heap, and the delete operator is
used to deallocate that memory.

Memory can be allocated dynamically using the new operator in C++.

Syntax:
new
Example:
int new int // Allocates memory for an integer dynamically

In the example above, memory is allocated on the heap to store an integer value, and the
address of the allocated memory is assigned to the pointer pfr.

After dynamically allocating memory, it's essential to release it when it's no longer needed
to prevent memory leaks.

Syntax:
delete
30



NotesNeo

Example:

delete // Deallocates memory allocated for the integer pointed by ptr
In the example above, the delete operator is used to deallocate the memory allocated for
the integer pointed to by ptr. After deletion, the memory is returned to the system for
reuse.

Example:

#include <iostream>

using namespace

int main

// Dynamic memory allocation
int new int // Allocates memory for an integer dynamically
16 // Assigns a value to the dynamically allocated memory

// Accessing and printing the dynamically allocated value
"Dynamically allocated value: "

// Deallocating dynamically allocated memory
delete

return 0

In this example:

Memory for an integer is allocated dynamically using the new operator.

The value 10 is assigned to the dynamically allocated memory.

The value stored in the dynamically allocated memory is printed.

Finally, the dynamically allocated memory is deallocated using the delete operator.

Notes:

Dynamically allocated memory remains allocated until explicitly deallocated using
the delete operator.

Failure to deallocate dynamically allocated memory can lead to memory leaks,
causing the program to consume more memory than necessary.

It's essential to deallocate dynamically allocated memory when it's no longer
needed to ensure efficient memory usage.

2.6 Pointer to an Object

In C++, pointers can also be used to point to objects of classes. This allows for dynamic
allocation of objects and provide flexibility in memory management.

Pointers to objects are declared similarly to pointers to primitive data types.

31



