NotesNeo

() { cout << << endl; }

() { cout << << endl;

. () { cout << << endl;

Base {

Member member ;

~ ~
& -
14
A
00
~ |~

() { cout <<
() { cout <<

0

Member Constructor
Derived Constructor
Derived Destructor
Member Destructor
Base Destructor

In the example above:
e Constructors are called in the order: Base, Member, Derived.
e Destructors are called in the order: Derived, Member, Base.

Section 2: Pointers and Dynamic Memory Management

2.1 Declaring and Initializing Pointers

1. Pointer Syntax and Declaration:

e Pointers are variables that store memory addresses of another variable.
e Syntax: data_type *pointer_name;
e Example:

*ptr;

24

NotesNeo

*floatPtr;
*charPtr;

2. Initialization Methods:

e Pointers can be initialized in several ways:

Direct Initialization:

e Assign the address of a variable to a pointer during declaration.
e Syntax: data_type *pointer_name = &variable_name;
[]

m
X
o)
3
i
®

*ptr = #

Assignment after Declaration:

e Declare a pointer first and then assign it a value (address) later.
e Syntax:

*ptr;

© m
X
a
3
i
®

tr = #

Using new Operator:

e Dynamically allocate memory for a variable and assign its address to a pointer.
e Syntax: data_type *pointer_name = new data_type;
e Example:

*ptr =

Example of Pointer Declaration and Initialization:

st

*ptr1 = #

*ptr2;
ptr2 = &val;

~
N
<
o)) ~
=
I
o

*charPtr =

N
u

NotesNeo

*charPtr =

.

cout << << num << endl;

cout << << ptr1 << endl;

cout << << val << endl;

cout << << ptr2 << endl;

cout << << *charPtr << endl;

charPtr;

Output:

| \
i

2.2 Accessing Data through Pointers :

1. Dereferencing Poiﬁfers_:

Dereferencing a pointer means'dccessing the value stored at the memory address pointed
to by the pointer.

Syntax: *pointer_name

Example:

*ptr = #

el e

~ "valueofnum: " // Dereferencing ptr to
access the value of num

)

cout << << *ptr << endl;

}

Output:

NotesNeo

2. Pointer Notation for Accessing Elements:

For arrays, pointer notation can be used to access array elements using pointers.

Syntax:
*(ptr + 1)

()
—+
o

m
X
Q
3
-2
o
=

—
1
~—
.
-
—

=
]
=

;i< owHi) o
cout << *(ptr + i) <<

dnt

cout << endl;

(o] == I
[=
=

I.-!.

In this example, *(ptr + i) and ptr[i] are equivalent and both are used to access array
elements using pointers.

2.3 Pointer Arithmetic

1. Increment and Decrement Operations:

Pointers can be incremented and decremented to move to the next or previous memory
location.

Increment Operation:

Decrement Operation:

Example:

27

NotesNeo

Output: -

7 i
b
"9

2. Arithmetic 6§er_qtions on Pointers:

Arithmetic operations such as addition and subtraction can be performed on pointers.

| |

Addition Operaﬁ&h:v-\v. -

Subtraction Operation:

Example:

cout << << ptr << endl;

ptr += ;
cout << << ptr << endl;

<< ptr << endl;

28

NotesNeo

return 0

Output:

Original pointer value: 0x7ffe88bfe9de

After addition, pointer value: 0x7ffe88bfe9d8

After subtraction, pointer value: 0x7ffe88bfe9d4
In this example, ptr += 2 moves the pointer two positions forward, and ptr -= 1 moves the
pointer one position backward.

2.4 Memory Allocation (Static and Dynamic)

Memory allocation refers to the process of reserving memory space for variables or
objects during program execution. In C++, memory allocation can be categorized into fwo
types: static memory allocation and dynamic memory allocation.

In static memory allocation, memory is allocated at compile-time, and the size of memory
is fixed throughout the program execution. Compile time refers to the period when the
programming code (such as C++) is converted to the machine code (i.e. binary code).

Example:
int 5
e Memory for arr is allocated on the stack.
e Memory size is fixed and determined during compile-time.
e Memory is automatically deallocated when the scope containing the variable ends.

In dynamic memory allocation, memory is allocated at runtime, and the size of memory
can be determined during program execution. Runtime is the period of time when a
program is actually running and occurs after compile time.

Dynamic Memory Allocation using new operator:

Single Object Allocation:

int new int
e Memory for ptr is allocated on the heap.
e Memory size can be determined during runtime.
e Memory needs to be explicitly deallocated using the delete operator to prevent
memory leaks.

Array Allocation:

int new int 5
e Memory for arr is allocated on the heap.
e Size of the array is determined during runtime.
e Individual elements of the array can be accessed using pointer notation.

29

