NotesNeo

e Encapsulation: Nested classes help in encapsulating related functionality within the
scope of the enclosing class, reducing namespace pollution and improving code
organization.

e Access to Enclosing Class Members: Nested classes have access to the private
members of the enclosing class, allowing them to manipulate the state of the
enclosing object.

e Information Hiding: They can be used to hide implementation details and provide a
cleaner interface to the users of the enclosing class.

2.9 Local Classes

Local classes in C++ are classes that are defined within the scope of a function or a block.
Local classes have limited local scope and are accessible only within the function or block
in which they are defined. Local classes can be used to encapsulate functionality that is
only relevant within a specific scope.

void myFunction() {
// Local class definition
LocalClass {

void localMethod() {
cout << << endl;

b

LocalClass obj;
obj. (); // Accessing method of local class

e Limited Scope: Local classes have a limited scope and are only accessible within
the block or function where they are defined, reducing namespace pollution.

e Encapsulation: They can encapsulate functionality that is only relevant within a
specific scope, improving code organization and modularity.

e Information Hiding: Local classes can hide implementation details and provide a
cleaner interface to the surrounding code.

37



NotesNeo

2.10 Abstract Classes

Abstract classes in C++ are classes that cannot be instantiated on their own and typically
contain at least one pure virtual functions. They serve as base classes or blueprints for
other derived classes and define an interface that derived classes must implement.
Pure virtual functions are declared with the virtual keyword and have no implementation
(no function body).
Syntax:

class AbstractClass {

public:

virtual void pureVirtualFunction() = ©; // Pure virtual function

s

class Shape {
public:
virtual double area() const = @; // Pure virtual function

}s

class Circle : public Shape {
private:
double radius;

public:
(double r) : (r) {}
double area() const override {
return 3.14159 * radius * radius;

e Defining Interfaces: Abstract classes define interfaces for derived classes,
specifying a set of methods that must be implemented.

e Enforcing Polymorphism: They provide a way to achieve runtime polymorphism
through dynamic binding and function overriding.

e Providing Frameworks: Abstract classes can be used to define frameworks or
templates for similar types of objects, providing a common structure and behavior.f

2.11 Container Classes

Container classes in C++ are classes that are used to store and manage collections of
other objects, known as elements, in an organized manner. They provide various methods
for accessing, inserting, removing, and manipulating elements within the container.
Standard template library (STL) provides a variety of container classes, such as vectors,
lists, sets, and maps.

38



NotesNeo

Vector: A dynamic array that can resize itself automatically.

List: A doubly linked list that allows for efficient insertion and deletion operations.
Stack: A Last-In-First-Out (LIFO) data structure that allows for push and pop
operations.

Queue: A First-In-First-Out (FIFO) data structure that allows for enqueue and
dequeue operations.

Map: An associative container that stores key-value pairs and allows for efficient
retrieval of values based on keys.

Set: A container that stores unique elements in a sorted order.

std;
int main() {
// Creating a vector container

vector<int> numbers;

// Adding elements to the vector

numbers. (1);
numbers. (2);
numbers. (3);

// Accessing elements of the vector
(int num : numbers) {
cout << num << ;

9;

Data Management: Container classes provide efficient ways to store and manage
collections of objects, facilitating data organization and manipulation.

Dynamic Storage: They dynamically resize to accommodate varying numbers of
elements, allowing for flexible storage of data.

Standardized Interfaces: Container classes in the STL provide standardized
interfaces and algorithms for working with collections, promoting code reusability
and interoperability.

39



NotesNeo

2.12 Bit Field and Classes

Bit fields in C++ are used to represent and manipulate groups of bits within a data
structure, allowing for efficient use of memory and bitwise operations. They are typically
used within classes to pack multiple boolean or integer flags into a single storage unit.

e Definition: Bit fields are declared within a class using integer data types,
specifying the number of bits to allocate for each field.

e Purpose: Bit fields are used to conserve memory by efficiently packing multiple
boolean flags or integer values into a single storage unit, reducing memory

overhead.
e Usage:

o Bit fields are accessed and manipulated using bitwise operators such as
bitwise AND (&), bitwise OR ()), bitwise XOR (), and bitwise shifts (<< and

>>).

o They are commonly used to represent sets of boolean flags, where each flag
corresponds to a single bit within the bit field.

e Syntax:

b

e Example:

int

BitFieldClass {

unsigned int flag1l : 1; // Bit field with 1 bit
unsigned int flag2 : 1; // Bit field with 1 bit
unsigned int value : 8; // Bit field with 8 bits

Permissions {

unsigned int read : 1; // Bit field for read permission
unsigned int write : 1; // Bit field for write permission
unsigned int execute : 1; // Bit field for execute permission

main() {
Permissions filel;
filel.read = 1;
filel.write = 0;
filel.execute = 1;

// Check if read permission is granted

(filel.read) {
std: :cout << << std::endl;

40



NotesNeo

e Memory Efficiency: Bit fields allow for efficient use of memory by packing multiple
variables into a single storage unit, reducing memory overhead.

e Compact Representation: They provide a compact representation of data,
especially for flags, status bits, or other binary values.

e Improved Readability: Bit fields can improve code readability by providing a
concise way to define and access binary data within a class.

MDU PYQs (Short)

1. Explain the following:
a. Encapsulation

Abstract class
Static Members
Const keyword
Member function
Preprocessor directives
Header files and library files
Access/Visibility Specifiers

i. Class and object
How main() function in C++ is different from main() function in C?
What is the need of declaring a member of class static ?
Explain controlling access function and utility function with example.
What is the use of scope resolution operator?
How can we define a class? How can we access class members?
What is abstraction? Explain with example.
What is an interface? How it is different from class?
What is in encapsulation? Explain with example.
10 What are nested classes ? Explain.

"S@ e oocvT

©ONO GO A OGN

MDU PYQs (Long)

1. In what ways Object oriented programming paradigm is better than a structured
programming? Explain features of OOPs.

2. Explain what features of C++ makes it different from C.

3. What are preprocessor directives. Why are they used? Explain any two
preprocessor directives.

4. Explain the concept of re-usability with example.

5. Differentiate between procedural and object oriented programming language.

6. What do you mean by library files? Explain with suitable examples.

41



