NotesNeo

car2. O);

Object-Oriented Programming (OOP) is built upon several fundamental principles that
help in designing and implementing effective software solutions. These principles are as
follows:

1. Encapsulation

e Definition: Encapsulation is the wrapping of data (attributes) and methods
(functions) into a single unit or class.
e Benefits:

o Data Hiding: Encapsulation hides the internal state of an object from the
outside world, allowing controlled access to the object’s data through
well-defined interfaces.

o Modularity: Encapsulation promotes modularity by grouping related data
and functions tfogether, making it easier to manage and maintain complex
systems.

2. Abstraction

e Definition: Abstraction is the process of hiding the complex implementation details
and showing only the essential features of an object.
e Benefits:

o Simplification: Abstraction simplifies the system by focusing on what an
object does rather than how it does it, making it easier to understand and
use.

o Managing Complexity: Abstraction helps in managing complexity by
breaking down a system into manageable parts and hiding unnecessary
details from the user.

3. Inheritance

e Definition: Inheritance is a mechanism by which a class (derived class) can inherit
properties and behaviors from another class (base class).
e Benefits:

o Code Reusability: Inheritance facilitates code reuse by allowing derived
classes to inherit common functionality from a base class, avoiding
redundancy and promoting modularity.

o Hierarchical Classification: Inheritance establishes a hierarchical
relationship between classes, enabling the creation of specialized classes
that inherit and extend the functionality of their base classes.

NotesNeo

4. Polymorphism

Definition: Polymorphism is the ability of objects of different classes to be treated
as objects of a common superclass. It allows for writing code that can work with
objects of various types without needing to know their specific class.

Benefits:

o Flexibility: Polymorphism enables writing flexible and extensible code that
can accommodate changes and variations in object types without modifying
existing code.

o Code Reusability: Polymorphism promotes code reuse by allowing methods
to be defined in terms of their abstract behavior, rather than specific
implementations, facilitating easier maintenance and enhancement of code.

1.3 Encapsulation

Encapsulation is the bundling of data (attributes/variables) and methods (functions) that
operate on the data into a single unit or class. It hides the internal state of an object from
outside interference, allowing access to the data only through well-defined interfaces.

class

Variable Methods

1. Data Hiding: Encapsulation prevents direct access to the internal state of an object
from outside the class, enforcing data hiding. This protects the integrity of the data
and prevents unintended modifications.

2. Modularity: Encapsulation promotes modularity by organizing related data and
methods into a single unit or class. This improves code organization and makes it
easier to understand and maintain.

3. Access Confrol: Encapsulation allows for controlling access to the data members of
a class through access specifiers (public, private, protected), enabling selective
exposure of data and behavior.

4. Code Reusability: Encapsulation facilitates code reuse by encapsulating data and
behavior within a class, allowing objects of the class to be reused in different parts
of the program or in other programs.

Example:
#include
#include

using namespace std;

10

NotesNeo

// Class definition with encapsulation
class Employee {
private:
string name;
int employeelD;
double salary;
public:
// Constructor to initialize employee attributes
(string n, int id, double s) {
name = n;
employeeID = id;
salary = s;

// Getter methods to access private attributes
string getName() {
return name;

int getEmployeeID() {
return employeelD;

double getSalary() {
return salary;

// Setter method to modify salary (demonstrating access control)
void setSalary(double s) {
if (s >= 0) {
salary = s;

int main() {
// Creating an object of class Employee
Employee empi(, 101, 50000.0);

// Accessing and modifying private attributes using getter and setter methods

cout << << empl. () << endl;

cout << << empl. () << endl;
cout << << empl. () << endl;
emp1. (55600.0); // Modifying salary

11

NotesNeo

cout << << empl. () << endl;

Access specifiers determine the accessibility of class members (attributes and methods)
from outside the class:

1.

Public: Members declared as public are accessible from outside the class. They
form the interface of the class and can be accessed by any part of the program.
Private: Members declared as private are only accessible from within the class.
They are hidden from outside access, enforcing encapsulation and data hiding.
Protected: Members declared as protected are accessible from within the class and
its derived classes. They provide a level of access that is intermediate between
public and private, allowing derived classes to access them while still maintaining
encapsulation.

Access specifiers play a crucial role in encapsulation by controlling the visibility of class
members, thereby enforcing data hiding and encapsulation principles.

Getter and Setter Methods

Getter and setter methods are a part of encapsulation and are used to access and modify
the private data members of a class. Getter methods allow you to retrieve the values of
private data members, and setter methods allow you to set or modify the values of
private data members.

Data hiding is a fundamental concept in object-oriented programming (OOP) that
involves restricting direct access to an object’s internal details, specifically its data
members (attributes).

The goal of data hiding is to ensure that the internal state of an object remains
private and can only be accessed or modified through well-defined interfaces
(methods or functions).

Data hiding is achieved through encapsulation by declaring the data members of a
class as private, preventing direct access from outside the class.

Access to the private data members is provided through public member functions
(getters and setters), which act as controlled interfaces for accessing and
modifying the data.

This encapsulation of data within the class hides the internal state of an object,
protecting it from unintended modifications and ensuring data integrity.

12

NotesNeo

1.4 Abstraction

Abstraction is the process of hiding complex implementation details and showing only the
essential features of an object. It allows for focusing on what an object does rather than
how it does it, thereby simplifying the complexity of the system and enhancing clarity and
maintainability.

e Abstract Class: A class that contains at least one pure virtual function. It cannot be
instantiated and serves as a blueprint for derived classes to implement common
behavior while allowing specific implementations for their own unique features.

e Interface: A class containing only pure virtual functions, representing a contract for
classes that implement it. It defines a set of methods that must be implemented by
any class that inherits from it, ensuring consistency in behavior while allowing
flexibility in implementation.

1.5 Inheritance

e Inheritance is a mechanism by which a new class (derived class) can inherit
properties and behaviors from an existing class (base class).

e The derived class inherits the attributes and methods of the base class, enabling
code reusability and establishing a hierarchical relationship between classes.

e The class that is being inherited from is known as the "parent class” or "base class”
or "superclass”, and the class that inherits from the base class is known as the
“child class” or "derived class” or "subclass”.

Soniam
Base Class

Dad i am
Derive Class

e The child class will inherit all the public and protected properties (attributes) and
methods from the parent class. In addition, it can have its own properties and
methods,this is called inheritance.

e Example: A Car class may inherit from a Vehicle class. Here, Car is a specific type of
Vehicle.

13

NotesNeo

Code Reusability: Inheritance allows classes to inherit attributes and methods from
other classes, reducing redundancy and promoting code reuse.

Extensibility: Inheritance enables the addition of new features to a class without
modifying its existing structure, thus facilitating the extension of functionality.
Relationship Representation: Inheritance models real-world relationships making
the code more intuitive and reflective of real-world scenarios.

Specialization: Inheritance allows for the creation of specialized classes (derived
classes) that inherit common features from a more general class (base class) and
add their own unique functionalities.

Transitivity: If class B inherits from class A, and class C inherits from class B, then
class C automatically inherits properties and behaviors from both class A and class
B.

Hierarchical Organization: Inheritance enables the creation of a hierarchical
organization of classes, where classes can be organized into a hierarchy based on
their relationships.

Encapsulation: Inheritance encourages encapsulation, as it promotes the creation
of well-defined, modular classes with clear boundaries.

Polymorphism: Inheritance supports polymorphism, which allows objects of derived
classes to be treated as objects of their base class.

1. Single Inheritance:

In single inheritance, a derived class inherits from only one base class.
It forms a simple one-to-one relationship between classes.
It is like Father -> Child relationship.

Example:

#include <iostream>

.) Parent
using namespace std;

// Base class (Parent)
class Parent {
public:
void parentMethod() {
cout << "Method of Parent Class" << endl; Child

s

// Derived class (Child) inheriting from Parent
class Child : public Parent {
public:
void childMethod() {
cout << "Method of Child Class" << endl;

14

NotesNeo

3

int main() {
Child obj;
obj. (); // Output: Method of Child Class
obj. (); // Output: Method of Parent Class
return 9;

}

2. Multiple Inheritance:

In multiple inheritance, a derived class inherits from multiple base classes.

e It allows a class to inherit attributes and behaviors from more than one parent
class.

e It is like Mother & Father -> Child relationship.
Example:

#include <iostream> Parentl Parent2

using namespace std;

// Parent1 class
class Parent1 {

public:
void parentiMethod() { Child
cout << "Method of Parentl Class" << endl;
}
i

// Parent2 class
class Parent2 {
public:
void parent2Method() {
cout << "Method of Parent2 Class" << endl;

s

// Child class inheriting from both Parent1 and Parent2
class Child : public Parentl1, public Parent2 ({
public:
void childMethod() {
cout << "Method of Child Class" << endl;

}
s
int main() {
Child obj;
obj. (); // Output: Method of Child Class

15

NotesNeo

obj. (); // Output: Method of Parentl Class
obj. (); // Output: Method of Parent2 Class
return 9;

}

3. Multilevel Inheritance:

In multilevel inheritance, a derived class becomes the base class for another
derived class, forming a chain of inheritance.

It allows for creating a hierarchy of classes with each level adding additional
features.
It is like Father -> Child -> Grandchild relationship. Parent
Example:

#include <iostream>

using namespace std;

// Parent class
class Parent { Child
public: 1

void parentMethod() {
cout << "Method of Parent Class" << endl;

}s
GrandcChild

// Child class inheriting from Parent
class Child : public Parent {
public:
void childMethod() {
cout << "Method of Child Class" << endl;

s

// GrandChild class inheriting from Child
class GrandChild : public Child {
public:
void grandChildMethod() {
cout << "Method of Grand Child Class" << endl;

s

int main() {
GrandChild obj;

obj. (); // Output: Method of Grand Child Class
obj. (); // Output: Method of Child Class

obj. (); // Output: Method of Parent Class

return 9;

16

NotesNeo

}

4. Hierarchical Inheritance:

In hierarchical inheritance, multiple derived classes inherit from a single base class.
It allows for creating a hierarchy of classes with a common base class.
It is like Father -> Son & Daughter relationship.

Example: Parent
#include <iostream>
using namespace std;
// Parent class
class Parent { child1 Child2
public:
void parentMethod() {
cout << "Method of Parent Class" << endl;
}
i
// Child1 class inheriting from Parent
class Child1 : public Parent {
public:
void child1Method() {
cout << "Method of Child1 Class" << endl;
}
i
// Child2 class inheriting from Parent
class Child2 : public Parent {
public:
void child2Method() {
cout << "Method of Child2 Class" << endl;
}
it
int main() {
Child1 obj1;
obj1. (); // Output: Method of Child1 Class
obj1. (); // Output: Method of Parent Class
Child2 obj2;
obj2. (); // Output: Method of Child2 Class
obj2. (); // Output: Method of Parent Class

return 9;

17

NotesNeo

5. Hybrid Inheritance:

Hybrid inheritance is a combination of multiple types of inheritance, such as single,
multiple, multilevel or hierarchical inheritance.

It allows for creating complex class hierarchies by combining features of different
types of inheritance.
Example:

#include <iostream>
using namespace std;

Parentl Parent2

// Parentl1 class

class Parent1 {
public: Child2 Child1
void parenti1Method() {
cout << "Method of Parentl1 Class" << endl;

s

// Parent2 class
class Parent2 {
public:
void parent2Method() {
cout << "Method of Parent2 Class" << endl;

s

// Child1 class inheriting from both Parent1 and Parent2
class Child1 : public Parent1, public Parent2 {
public:
void child1Method() {
cout << "Method of Child1 Class" << endl;

s

// Child2 class inheriting from Parent1
class Child2 : public Parent1 {
public:
void child2Method() {
cout << "Method of Child2 Class" << endl;

il
void main() {
Child1 obj1;
obj1. (); // Output: Method of Child1 Class

obj1. (); // Output: Method of Parent1 Class

18

NotesNeo

obj1. (); // Output: Method of Parent2 Class
Child2 obj2:

obj2. (); // Output: Method of Child2 Class
obj2. (); // Output: Method of Parent1 Class

1.6 Polymorphism

Poly means ‘many’ and morph means ‘forms’.

Polymorphism refers to the ability of objects to take on different forms or
behaviors based on their context.

In OOP, polymorphism refers to the ability of objects of different classes to be
treated as objects of a common superclass.

It allows a single interface (method or function) to represent multiple
implementations.

It allows a single function or operator to exhibit different behaviors based on the
context in which it is called.

Example: A man acts a father, husband, son, employee and many more.

E

»

0y

Father

of
1 _' n Husband

1. Code Reusability: Polymorphism allows the same code to be reused with different
objects, reducing duplication and improving maintainability.

19

NotesNeo

2. Flexibility: Polymorphism enables the development of flexible systems that can
accommodate changes and variations in object behavior without modifying
existing code.

3. Extensibility: New classes can be added to the system without affecting the
existing codebase, as long as they adhere to the common inferface provided by the
base class.

4. Encapsulation: Polymorphism promotes encapsulation by abstracting away the
implementation details of objects and focusing on their behavior through a
common interface.

Polymorphism can be of two types:
1. Compile Time Polymorphism (Early / Static Binding)
o Achieved through method overloading and operator overloading.
o Decisions about method calls are made at compile time.
o Determined by the number and types of arguments and return type.
2. Run Time Polymorphism (Late / Dynamic Binding)
o Achieved through virtual functions or method overriding and dynamic
diispatch.
o Decisions about method calls are made at runtime.
o Facilitated by pointers or references to base class objects.

[Polymorphism

Y Y

l Compile Time ’ L Run Time

Method Ny Virtual
Overloading 4 Function
" Operator i Function
"l Overloading i Overriding

Compile-time and Run-time

e Compile Time (Early/Static):
o This is the phase when the source code you’ve written is being converted
into executable code by a compiler.
o During compile time, the compiler checks for syntax errors (like missing
semicolons or mismatched brackets) and semantic errors (such as using a
variable that hasn’t been declared).

20

NotesNeo

o The compiler will not create an executable file until all such errors are
resolved.

Run Time (Late/Dynamic):

o Run fime refers to the period when the executable code is actually running
on your computer.

o If's the phase where the program interacts with inputs, performs
calculations, and may encounter runtime errors. These errors occur during
execution and can include issues like division by zero or accessing an array
out of bound.

1. Compile-time Polymorphism (Static Polymorphism):

Polymorphism that is resolved at compile time. It is achieved through method
overloading and operator overloading, where the compiler selects the appropriate
function or operator based on the arguments and context at compile time.

Also known as static or early binding, this type of polymorphism is achieved
through method overloading and operator overloading.

Definition: Method overloading is a form of compile-time polymorphism where
multiple methods in the same class have the same name but differ in the number or
type of their parameters.
Methods can be overloaded by changing the number or type of arguments.
It provides flexibility and clarity in code by allowing multiple functions with similar
functionality to be grouped under the same name.
Example:
#

std;

Calculator {
int add(int a, int b) {

a+b;

int add(int a, int b, int c) {
a+b+c;

double add(double a, double b) {
a+ b;

s

int main() {
Calculator calc;
cout << calec. (5, 7) << endl; // Output: 12

21

NotesNeo

cout << calc. (5, 7, 3) << endl; // Output: 15
cout << calc. (3.5, 2.5) << endl; // Output: 6
return 9;

Definition: Operator overloading is a form of compile-time polymorphism where
operators are overloaded to work with user-defined data types.

It allows defining custom behavior for operators based on the data types involved.
Example:

#include <iostream>

using namespace

class Complex
private
int
public
// Constructor to initialize real and imaginary parts, default
values are ©
int 0 int 0

// Overloading the + operator to add two complex numbers

operator const
// Adding real parts and imaginary parts separately
return

// Function to print the complex number in the format "real +
imagi”
void print

int main
// Creating two complex numbers
cl 16 5 c2 2 4

// Adding two complex numbers using overloaded + operator

// Printing the result
"Result of addition: "

return ©

22

Output:

12 50 91

2. Run-time Polymorphism (Dynamic Polymorphism):

NotesNeo

Polymorphism that is resolved at runtime. It is achieved through method overriding

and virtual functions, where the appropriate function to call is determined
dynamically based on the actual object type at runtime.

Also known as dynamic or late binding, this occurs during program execution.

Achieved through virtual functions (using the virtual keyword).
Allows a base class pointer to invoke derived class methods.

Definition: Virtual functions are used in run-time polymorphism to enable dynamic
method binding. They are member functions which are declared in the base class

with the virtual keyword and can be overridden in derived classes.

They enable dynamic binding of function calls, allowing the correct function to be

called at runtime based on the type of object.

Example:
#
std;
Shape {
void draw() {
cout << << endl;
}
i
Circle : Shape {
void draw() {
cout << << endl;
}
i

int main() {
Shape* shape = 0);
shape-> (); // Output: Drawing Circle

9;

23

NotesNeo

Definition: Method overriding is a form of run-time polymorphism where a method
in a base class is redefined in a derived class. The method in the derived class must
have the same signature (name and parameters) as the one in the base class.

It allows derived classes to provide a specific implementation of a method defined
in the base class, promoting flexibility and extensibility.

Example:

#include

using namespace std;

class Animal {
public:
virtual void sound() {
cout << << endl;

i
class Dog : public Animal {

public:
void sound() override {

cout << << endl;
}
i
int main() {
Animal* animal = new 0);
animal-> (); // Output: Dog barks
return 9;

Section 2: Other Concepts of OOP

2.1 Messaging

Messaging in object-oriented programming (OOP) refers to the process of communication
between objects in a system. It involves sending messages from one object to another to
request actions, retrieve information, or trigger behaviors. In C++, messaging is primarily
achieved through method calls, where an object invokes a method of another object to
interact with it.

In C++, objects communicate with each other by invoking methods of other objects.
When an object sends a message to another object, it invokes a method of the
target object to perform a specific action or retrieve information.

24

NotesNeo

Method calls are the primary means of messaging in C++.

In a message-passing scenario, the object that sends the message is called the
sender, and the object that receives the message is called the receiver.

Sender objects typically invoke methods of receiver objects to communicate with
them.

Messages can include parameters that provide additional information to the
receiver object.
Parameters are passed as arguments to the method being invoked.

In many cases, when an object sends a message to another object, it expects a
response or a return value.

The return value of a method call can be used by the sender object for further
processing.

Messaging promotes encapsulation and information hiding principles in OOP.
Objects encapsulate their data and behaviors, exposing only the necessary
methods for communication.

Encapsulation ensures that the internal state of an object is protected and
accessed only through well-defined interfaces.

std;

// Sender class
Sender {

// Method to send a message

void sendMessage(int data, Receiver& receiver) {
// Invoking receiver's method and passing data as a parameter
int result = receiver. (data);
cout << << result << endl;

¥

// Receiver class
Receiver {

25

