NotesNeo

Code
Reusability

Code reuse is limited to
functions.

Encourages the reuse of classes and
objects through inheritance and
composition.

Maintainabillity

Managing complexity
becomes challenging as the
program grows in size.

Provides better organization and
easier maintenance through
modularization and encapsulation.

Encapsulation

Not a primary concern; data
and functions are loosely
connected.

Encourages bundling data and
methods into a single unit (class),
promoting data hiding and
abstraction.

Inheritance

Not supported or limited
(e.g., through library
functions).

Supports inheritance, allowing new
classes to inherit properties and
behaviors from existing classes,

promoting code reusability.

Polymorphism

Achieved through functions
with the same name but
different parameters.

Achieved through method overriding
and dynamic dispatch, allowing
objects to be treated as instances of
their parent class.

Abstraction

Limited; focuses more on
procedural logic.

Promotes abstraction by simplifying
complex systems through modeling
classes based on essential features.

Example
Languages

C, Pascal, BASIC

Java, C++, Python

1.2 Basic Concept of OOP

Classes:

e Aclass is a blueprint or template for creating objects. It defines the properties
(attributes) and behaviors (methods) that objects of that class will have.

e A class encapsulates data members (attributes) and member functions (methods)
that operate on the data.

e Classes facilitate code reusability and promote modularity by organizing related
data and functions into a single unit.

e Classes act as user-defined data types.

e In C++, aclass is declared using the class keyword, followed by the class name and
a pair of curly braces containing class members.

e Syntax:

MyClass {

// Class members (attributes and methods)

¥,




NotesNeo
Objects:

e Objects are instances of classes. They represent specific instances of the class,
each with its own unique state.

e An object encapsulates data and behaviour, and provides an interface (through its
methods) to interact with that data.

e Multiple objects can be created from the same class, each with its own independent
state.

e Object attributes can be initialized using the dot (.) operator.

*?w €

CLASS OBJECTS
& DOG & NAME
o s B
A r
ATTRIBUTES METHODS
& HEIGCHT ¢ RUN
% WEIGHT € PLAY
$ FOO0D & EAT

Attributes:

e Attributes are the data members or variables associated with a class.

e They represent the state of an object and define its characteristics or properties.

e Attributes are declared within the class and are usually private to enforce
encapsulation, but they can also be public or protected based on the desired
access level.

e Data members can be accessed using the dot (.) operator.

Methods:

Methods are functions associated with a class.

They define the behavior or actions that objects of the class can perform.
Member functions are called using the dot (.) operator

Methods operate on the object’s data (attributes) and can manipulate its state.
Methods can be public, private, or protected, determining their accessibility from
outside the class.



NotesNeo
Example:

#include <iostream>
#include <string>
using namespace std;

// Class declaration
class Student {
public:
// Data members
int studentID;
string name;

// Member function to display student information
void displayInfo() {
cout << "Student ID: " << studentID << ", Name: " << name << endl;

int main() {
// Creating objects of class Student
Student studentl1, student?2;

// Initializing object attributes
studentl1.studentID = 101;
student1.name = "Deepak Modi";

student2.studentID = 162;
student2.name = "Sumit Modi";

// Accessing member functions to display student information

cout << "Student 1: ";
student1. (0);

cout << "Student 2: ";
student?2. 0);

return 9;

Defining a Class without a Constructor

e When a class is defined without a constructor, the compiler generates a default
constructor implicitly. This default constructor initializes the data members of the



NotesNeo

class with default values (zero for numeric types, empty string for string types,
etfc.).

e However, if any constructor is explicitly defined within the class, the compiler does
not generate the default constructor.

Example:

#include <iostream>
#include <string>
using namespace std;

// Class declaration
class Person {
public:

// Data members

string name;

int age;

// Member function to display person's information
void displayInfo() {
cout << "Name: " << name << ", Age:

<< age << endl;

int main() {
// Creating an object of class Person
Person p1;

// Initializing object attributes
p1.name = "Sanjay";
pl1.age = 30;

// Accessing member function to display person's information
p1. ()

return 9;

}

Defining a Class with a Constructor

e A constructor is a special member function of a class that is automatically called
when an object of that class is created.

e Itis used to initialize object properties.

e It has the same name as the class. It has no return type.

Example:

#include <iostream>
#include <string>



NotesNeo

using namespace std;

// Class declaration
class Person {

public:

s

// Data members
string name;
int age;

// Constructor declaration
(string n, int a) {
name = n;
age = a;

// Member function to display person's information
void displayInfo() {

cout << "Name: << pame << ", Age:

<< age << endl;

int main() {

}

// Creating an object of class Person with constructor
Person p1("Sanjay", 30);

// Accessing member function to display person's information
p1. ()

return 9;

Defining a Class with this Keyword

e The "this" keyword in C++ is a pointer that refers to the current instance of a class.
It is used within class methods to refer to the current object on which the method is
being invoked.

e this->member is used to access the members (attributes or methods) of the current
object.

e It resolves the scope and ensures that the member being accessed belongs to the
current object.

Example:

#include <iostream>

#include <string>

using namespace std;



NotesNeo

class MyClass {
private:
int value;

public:
// Constructor with parameter
(int value) {
// Using 'this' to distinguish between member and parameter
this->value = value;

// Member function to display value
void displayValue() {
// Accessing 'value' using 'this'
cout << "Value: " << this->value << endl;

int main() {
// Creating object of MyClass
MyClass obj(10);

// Calling member function
obj. ()

return 9;

Constructors are special member functions that are automatically called when an object is
created.
Default constructors (with no parameters)
e A default constructor is a constructor that does not take any parameters. It is
called implicitly when an object of the class is created without any arguments.
e The default constructor initializes the data members with default values.
e If no constructor is explicitly defined within the class, the compiler generates a
default constructor automatically.

Parameterized constructors (with parameters)

e A parameterized constructor is a constructor that takes one or more parameters. It
allows for initializing object attributes with specified values at the time of object
creation.

e The parameterized constructor takes the arguments and initializes the data
members with the provided values.



NotesNeo
Example:

#include <iostream>
#include <string>
using namespace std;

// Class declaration
class Car {
private:
string brand;
string model;

int year;
public:

// Default constructor
() {
brand = "";
model = "";
year = 0;

}

// Parameterized constructor
(string brand, string model, int year) {
this->brand = brand;
this->model = model;
this->year = year;

// Member function to display car information
void displayInfo() {

<< brand << ", Model:

<< model << ", Year:

cout << "Brand:
<< year << endl;

}
s

int main() {
// Creating objects of Car class using default and parameterized

constructors
Car caril; // Using default constructor
Car car2("Toyota", "Camry", 2022); // Using parameterized constructor

// Displaying information about the cars

cout << "Car 1: ";
carl. O);

cout << "Car 2: “;



