NotesNeo

Unit 1 : Fundamental of OOP

Syllabus :

Object-Oriented Programming Concepts: Introduction, comparison between procedural
programming paradigm and object-oriented programming paradigm, basic concepts of
object oriented programming — concepts of an object and a class, interface and
implementation of a class, operations on objects, relationship among objects, abstraction,
encapsulation, data hiding, inheritance, overloading, polymorphism, messaging.

Classes and Objects: Specifying a class, creating class objects, accessing class members,
access specifiers, static members, use of const keyword, friends of a class, empty classes,
nested classes, local classes, abstract classes, container classes, bit fields and classes.

Section 1: Object-Oriented Programming Concepts

1.1 Introduction to OOP

Object-Oriented Programming (OOP) is a programming paradigm that uses classes and
objects for designing and implementing software. It is based on the principles of
encapsulation, inheritance, abstraction and polymorphism. It emphasizes the
encapsulation of data (variable) and behavior (function) within objects, promoting
reusability, modularity, and maintainability.

1. Improved code organization: OOP organizes code around objects and classes,
making it easier to understand and maintain.

2. Modularity: OOP promotes the development of modular components, allowing for
easier tfroubleshooting and updates.

3. Reusability: Objects can be reused across different parts of a program or in
different programs, leading to faster development and fewer errors.

Aspect Procedural Programming Object-Oriented Programming

Focuses on functions and Focuses on classes and objects that

Primary Focus procedure. encapsulate data and behavior.

Emphasizes encapsulation, data
hiding, and object-oriented design
principles. Data hiding is achieved

through access modifiers.

Data is typically global and
Data Handling | can be accessed by any part
of the program.

Programs are structured around
objects and classes, promoting
modularity and code reusability.

Programs are structured

Organization around functions.




NotesNeo

Code
Reusability

Code reuse is limited to
functions.

Encourages the reuse of classes and
objects through inheritance and
composition.

Maintainabillity

Managing complexity
becomes challenging as the
program grows in size.

Provides better organization and
easier maintenance through
modularization and encapsulation.

Encapsulation

Not a primary concern; data
and functions are loosely
connected.

Encourages bundling data and
methods into a single unit (class),
promoting data hiding and
abstraction.

Inheritance

Not supported or limited
(e.g., through library
functions).

Supports inheritance, allowing new
classes to inherit properties and
behaviors from existing classes,

promoting code reusability.

Polymorphism

Achieved through functions
with the same name but
different parameters.

Achieved through method overriding
and dynamic dispatch, allowing
objects to be treated as instances of
their parent class.

Abstraction

Limited; focuses more on
procedural logic.

Promotes abstraction by simplifying
complex systems through modeling
classes based on essential features.

Example
Languages

C, Pascal, BASIC

Java, C++, Python

1.2 Basic Concept of OOP

Classes:

e Aclass is a blueprint or template for creating objects. It defines the properties
(attributes) and behaviors (methods) that objects of that class will have.

e A class encapsulates data members (attributes) and member functions (methods)
that operate on the data.

e Classes facilitate code reusability and promote modularity by organizing related
data and functions into a single unit.

e Classes act as user-defined data types.

e In C++, aclass is declared using the class keyword, followed by the class name and
a pair of curly braces containing class members.

e Syntax:

MyClass {

// Class members (attributes and methods)

¥,




