microoperation

15 LN
lll.-i

_ ‘-_Jr _hw. 3 : | :.-‘ L.. | e I |
‘#.:Ifc P -l.-.i"‘ ¥ Val . . :
! « CHAPTER FOUR

V. l-. a

B WY T L
' '-."‘4':!:':L LI ; ! :
AL
- -..._:.::. ; - L]
g b
"D E 1
Wy 3
i " L)
--. i - .hl.‘_ -1‘-- 4
-I‘. L F
L . ¥
""1' : .-"'! f} { !l-" E (0
bR ;
a i o '
N L \.,'-\.M % S . X 5 | [1
L ':‘ix."'i?.., LIt Y b LI] :
] » ."'.".'_ k3
: i B L]
2)]
.\.:it\. ""i_ ‘. :. X : .\: u 5
L '\..- qll- Y . - . L ':.
N T 1 : - A .
o e T i s N LY 3 ’
R . N ; AR R S i, 3 1 .
1~~..-.;.-~'-Cf“-‘.'t'w;"‘..'.-r'"?‘"--"“ o o L : ¢l M Lol
R Rkt R R Kogiall b ; 4 Pk o WL)
3 L .x”.. :l"‘:x{h ‘Q\,] o s i B 5 '\.'\-_,! ke _..I'. ¥
e ey i T B AT A i b T
i oy - R ‘*-.I * K ! E |
[-\. o

IN THIS CHAPTER

4-1 Register Transfer Language
4-2 Register Transfer

4-3 Bus and Memory Transfers
4-4 Arithmetic Microoperations
4-5 Logic Microoperations

4.6 Shift Microoperations

4-7 Arithmetic Logic Shift Unit

4-1 Register Transfer Language

A digital system is an interconnection of digital hardware modules that accom-
plish a specific information-processing task. Digital systems vary in size and
complexity from a few integrated circuits to a complex of interconnected and
interacting digital computers. Digital system design irwa‘n.ably uses a modular
approach. The modules are constructed from such dl_gltal comppnents as
registers, decoders, arithmetic elements, and control logic. The various x_m?d-
ules are interconnected with common data and control paths to form a digital

computer system.
Digital modules are best de

operations that are performed on the d
executed on data stored in registers are ca

ation is an elementary operation performe ' _
or more registers. The result of the operation may replace the previous binary

information of a register or may be transferred to another register. E_xamples
of microoperations are shift, count, clear, and load. Some of {he digital com-
ponents introduced in Chap. 2 are registers that implement microoperations.
For example, a counter with parallel load is capable of performing the micro-

fined by the registers they contain and the
ata stored in them. The operations
lled microoperations. A microoper-
d on the information stored in one

94 CHAPTER FOUR Register Transfer and Microoperations

operations increment and load. A bidirectional shift register 1S capable ¢

ift ri ' ' tions.
erforming the shift right and shift left microopera _ |
' The i%ntemal hard%vare organization of a digital computer 1S best definegy

by specifying:

1. The set of registers it contains and their function. | |
2. The sequence of microoperations performed on the binary informatiop,

stored in the registers. |
3. The control that initiates the sequence of microoperations.

It is possible to specify the sequence of m_icrooperations Ina computer by
explaining every operation in words, but this proce_dure usually mvol}'es a
lengthy descriptive explanation. It is more convenient to adc_)pt a suitable
symbology to describe the sequence of transfers between registers and the
various arithmetic and logic microoperations associated with the transfers. The
use of symbols instead of a narrative explanation provides an organized and
concise manner for listing the microoperation sequences in registers and the
control functions that initiate them.

The symbolic notation used to describe the microoperation transfers
among registers is called a register transfer language. The term “register
transfer” implies the availability of hardware logic circuits that can perform a
stated microoperation and transfer the result of the operation to the same or
another register. The word “language” is borrowed from programmers, who
apply this term to programming languages. A programming language is a
IR SRR 10 g Rach.A glish is a system for writing symbols and

g 0 words and sentences for the purpose of communication

between people. A register transfer language is a system for expressing in

symbolic form the microoperation sequences among the registers of a digital
the internal organization of digital

design process of digital systems.

The register transfer language adopted here s believed to be as simple

as possible, so it should not take very lon :
L] t L4
deﬁn? symbols for various types Ofl'Y = 8 Orr:;:::;nze. We will procegd to

quent chapters to specify the register transfe micr
. rs"]
control functions that describe the internal harthe RSO, anc} t-he

computers. Other symbology in use

has become familiar, for most of the differences betw
languages consist of variations in detail rather than in

95

SECTION 4.2 Register Transfer

4-2 Register Transfer

—D S AIINIC
e —

Computer register . 8 .
numerals) to ﬁenotseat;ee ‘:::llcgt?ated by capital letters (sometimes followed by
holds an address for the me on of thg rgglster. For example, the register that
register and is desi mory unit is usually called a memory address
PC (t esignated by the name MAR. Other designations for registers
are PC (for program counter), IR (for instructi ist - d R1(f .
register). The individual flip-fl _ on register, an (for processor
quence from 0 through 7 —Pl Ops in an n-bit register are numbered in se-
increasing the numbg T 7ile starting frc:m 0 in the rightmost position and
of regletens.fo. Block clis oward the left. Figure 4-1 shows the representation
register is by a Ock diagram form. The most common way to represent a
Fio. 4-1 Ty _rec_taﬂglﬂar'box with the name of the register inside, as in
g .(a). he .1nclw1dual bits can be distinguished as in (b). The numbering
of bl_ts In a 16-!::1t register can be marked on top of the box as shown in (c). A
16-bit register is partitioned into two parts in (d). Bits 0 through 7 are assigned
the Sxmb()l L (for low byte) and bits 8 through 15 are assigned the symbol H
(for high byte). The name of the 16-bit register is PC. The symbol PC(0-7) or
PC(L) refers to the low-order byte and PC(8-15) or PC(H) to the high-order

byte.

Information transfer from one register to another is designated in sym-
bolic form by means of a replacement operator. The statement

R2 « Rl

2 transfer of the content of register R1 into register R2. It designates
ent of R2 by the content of R1. By definition, the

ter R1 does not change after the transfer.
A statement that specifies a register transfer implies that circuits are

available from the outputs of the source register to the inputs of the destination
register and that the destination register has a parallel load capability. Nor-

denotes
a replacement of the cont

content of the source regis

Figure 4-1 Block diagram of register.

(a) Register R (b) Showing individual bits

15 0 15 8 7 0
~ T T

(c) Numbering of bits (d) Divided into two parts

96 CHAPTER FOUR Register Transfer and Microoperations

mally, we want the transfer to occur only uqder a predeterrtmned CONtry,
condition. This can be shown by means of an if-then statement.

If (P = 1) then (R2 « R1)

where P is a control signal generated in the control sgcﬁon. It is sometin_]es
convenient to separate the control variables f-rorft tht_e register transfg Operatiop
control function by specifying a control function. A control function is a Boolean variable that
equal to 1 or 0. The control function is included in the statement as follows

P: \R2 « 'Rl

The control condition is terminated with a colon. It symbolizes the requiremen;
that the transfer operation be executed by the hardware only if P = 1,
Every statement written in a register transfer notation implies a hardware
construction for implementing the transfer. Figure 4-2 shows the block dia-
gram that depicts the transfer from R1 to R2. The n outputs of register R1 are
connected to the n inputs of register R2. The letter n will be used to indicate
any number of bits for the register. It will be replaced by an actual number
when the length of the register is known. Register R2 has a load input that is
activated by the control variable P. It is assumed that the control variable is
synchronized with the same clock as the one applied to the register. As shown

Figure 4.2 Transfer from R1 to R? when P = 1|,

Clock

Transfer occurs here J

SECTION 4.3 Bus and Memory Transfers 97

finds the load in :
register in paraﬂzll_n; cnt::; agdbathi data inP_uts of R2 are then loaded into the
will occur with every (:h::ckg ul e 0_ at time ¢ + 1; otherwise, the transfer
Note that the dlock ; puise transition while P remains active.
statements. It is assumed tli l';f;tn included as a variable in the register transfer
Even though the contro] atall transfers occur duringa clock edge transition.
e it Eaalts iods ;t;rtldmon sucl_1 as P becomes active just after time {,
positive transition of the Clocicg:rﬁnu?eh: :1_1(; 'reglster is triggered by the next
Regisf;hr: '::‘;:mbglz of the register transfer notation are listed in Table 4-1.
Sl ed by capital letters, and numerals may follow the letters.
:'-.\ren BSE§ aire used to denote a part of a I‘Eg]'.ster by spedfying the range of
bits or by s - symbol name to a portion of a register. The arrow denotes
a transfer of information and the direction of transfer. A comma is used to
separate two or more operations that are executed at the same time. The

statement

T: R2 « R1, R1 « R2

denotes an operation that exchanges the contents of two registers during one
common clock pulse provided that T = 1. This simultaneous operation is

possible with registers that have edge-triggered flip-flops.

TABLE 4-1 Basic Symbols for Register Transfers

f—_—
E

Symbol Description xamples
B Pirat S ool SR ERANE 0 e e o ey
Letters Denotes a register MAR, R2
(and numerals) |
Parentheses () Denotes a part of a register R2(0-7), R2(L)
Arrow « Denotes transfer of information R2 « Kl
R2 « R1, R1 « R2

Separates two microoperations

isters, and paths must be provided to
ther. The number of wires will be

. used between each register and all other registers

re efficient scheme for transferring information between
' .0 is a common bus system. A bus

- .ster configuration
registers in a multiple-Tég!s oy _one for each bit of a register,
.« transferred one at a time. Control signals

26(0) CHAPTER EIGHT Central Processing Unit

9 @
W\
R

j —

, B-,S’%ddressing Modes
_______—__———'————/ . l

to the use of load and | - "
ory and CPU. All other instructions are executed within the register mem‘;

CPU without refe

tational-type inst |
address, and COmPY Lo The following is a program to ey, With.

all three specifying processor sl
X = (A + B)*(C + D) e

LOAD R1, A R1«M[A]
LOAD Re, B R «M([B]
LOAD R3, C R3I«M[C]

R4 «—M[D]

LOAD R4, D
R1, R1l, Rc Rl <Rl + Rc

ADD
ADD R3, R3, R& R3I<R3 + R4
MUL R1, Rl, R3 R1«<R1*R3
STORE X, Rl M[X] <R1

r the operands from memory to CPU registere
are executed with data in the re gisf:l"
13

ult of the computations is then stored jp

The load instructions transfe
The add and multiply operations

without accessing memory. The res
memory with a store instruction.

A

“The operation field of an instruction specifies the operation to be |
This operation must be executed on some data storepd in computer Eee;::er;l:dl
memory words. The way the operands are chosen during program executi |
is dependent on the addressing mode of the instruction. The addressing m "
specifies a rule for interpreting or modifying the address field of the instructi
before the operand is actually referenced. Computers use addressing m
techniques for the purpose of accommodating one or both of the follow '

provisions:

1. To give programming versatility to the user by providing such facilit

pointers to memory, counters for loop con : :
0 ¢ p control, in
program relocation. l, indexing of data,

2. To reduce the number of bits in the addressing field of the instruct?

The availabili :
language P‘;Ogr:ﬂ:fftlheiaflt_hessmg modes gives the experienced asser’
with respect to th r Texibility for writing programs that are more effici
To I:1".1et'uzlersta::':ln:;ll-lmher ?f instructions and execution time.
section, it is imPerativeet;i:rlous addressing modes to be presented in
t we understand the basic operation cycle o

Vel

SECTION 8.5 Addressing Modes 261

1. Fetch the instruction from memo
2. Decode the instruction
3. Execute the instruction.

ry.

There is one register in the computer called the

keeps track of t.he 1nStI:UCt10nS In the program stored in memory. PC holds the
address of the instruction to be executed next S i '
; v cdd and is incremented each time an
instruction is fetched from memory. The decoding done in step 2 determines
the operation to be performed, the addressi Aprreda’l s sovaig
ocation of the o 3 ' ressing mode of the instruction, and the
oca perands. The computer then executes the instruction and
returns to step 1 to fetch the next instruction in sequence.

~ In some computers the addressing mode of the instruction is specified
with a distinct binary code, just like the operation code is specified. Other
computers use a single binary code that designates both the operation and the
mode of the instruction. Instructions may be defined with a variety of address-
ing modes, and sometimes, two or more addressing modes are combined in
one instruction.

An example of an instruction format with a distinct addressing mode field
is shown in Fig. 8-6. The operation code specifies the operation to be per-
formed. The mode field is used to locate the operands needed for the opera-
tion. There may or may not be an address field in the instruction. If there is
an address field, it may designate a memory address or a processor register.
Moreover, as discussed in the preceding section, the instruction may have
more than one address field, and each address field may be associated with
its own particular addressing mode.

Although most addressing modes modify the address field of the instruc-
tion, there are two modes that need no address field at all. These are the

implied and immediate modes.

program counter or PC that

Implied Mode: In this mode the operands are specified implicitly in the
definition of the instruction. For example, the instruction ”con}plement accu-
mulator” is an implied-mode“instruction becau_se the oPerand in the accumu-
lator register is implied in the definition of the mSE’I’LlCt'fOII. In facft, all reglster
reference instructions that use an accumulator are implied-mode instructions.

Figure 8-6 Instruction format with mode field.

Opcode

262 CHAPTER EIGHT Central Processing Unit

organized computer are impljeq

. instructions in a stack-
Zero-address ins lied to be on top of the stac)

. Mog.
instructions since the operands are imp |
In this mode the operand is specified in the instr, |

Immediate Mode: . Lo 14 Ctigy
A immediate-mode instruction has an operap, M
itself. In other words, an 1 and field contains the actua]

rather than an address field. The operal conta ' . Pfl‘and
be used in conjunction with the operation specified in the instructiop .

diate-mode instructions are useful for initializing registers to a constap; Va3

It was mentioned previously that the address field of an instructin ,

specify either a memory word or a processor register. When the addy, S8 i, 1

specifies a processor register, the instruction is said to be in the registe, Modd

~Régister Mode: In this mode the operands are in reg.isters'that‘ reside wj
the CPU. The particular register is selected from a register field in the inst

tion. A k-bit field can specify any one of 2° registers. ‘*
'légister Indirect Mode: In this mode the instruction specifies a register in the
CPU whose contents give the address of the operand in memory. I o
words, the selected register contains the address of the operand rather thy
the operand itself. Before using a register indirect mode instruction, the prg
grammer must ensure that the memory address of the operand is placed in i
processor register with a previous instruction. A reference to the registerj
then equivalent to specifying a memory address. The advantage of a regis
indirect mode instruction is that the address field of the instruction uses fews

bits to select a register than would have been required to specify a memq
address directly. i

Autoincrement or Autodecrement Mode: This is similar to the register if
direct mode except that the register is incremented or decremented after (c
before) its value is used to access memory. When the address stored in
register refers to a table of data in memory, it is necessary to increment |

decrement the register after every access to the table. This can be achieved !
using the increment or decrement instruction. However, because it is suctt

common requirement, some computers Incorporate a special mode that au

matically increments or decrements the content of the register after dataacce

The address field of an instruction is used by the control unit in the U

to obt'am the operand from memory. Sometimes the value given in the addr

field is the address of the operand, but sometimes it is just an address

whfch the address of the operand is calculated. To differentiate among

various addfessing modes it is necessary to distinguish between the addre

part of the instruction and the effective address used by the control Wh

effective address executing thtj Instruction. The effective address is defined to be the mem™
addre_s',s obtained from the computation dictated by the given addre

mode. The effective address is the address of the operand in a computa®’

SECTION 8.5 Addressing Modes 263

type instruction. It j
S the address where control branches in response to a

branch-type instruction. W
- We have already def; - j
Chap. 5. They are summarized here for Eefeigzss st S

‘/ﬁct Addres : -
g s Mode: In this mode the effective address is equal to the

address part : :

o givenpdire{zfclthebmsttﬁuctlon. The F)perand resides in memory and its address

St o Yddy e address field of the instruction. In a branch-type
-address field specifies the actual branch address.

/’ﬁ:rect Address Mode: In this mode the address field of the instruction

gives the at_:ldress *.jahere the effective address is stored in memory. Control
fetches fhe Instruction from memory and uses its address part to access mem-
ory again -to read the effective address. The indirect address mode is also
explained in Sec. 5-1 in conjunction with Fig. 5-2.

A few addressing modes require that the address field of the instruction
be added to the content of a specific register in the CPU. The eftective address

in these modes is obtained from the following computation:
effective address = address part of instruction + content of CPU register

The CPU register used in the computation may be the program counter, an
index register, or a base register. In either case we have a different addressing

mode which is used for a different application.

Rﬂﬁve Address Mode: In this mode the content of the program counter is
added to the address part of the instruction in order to obtain the effective

address. The address part of the instruction is usually a signed number (in 2's
complement representation) which can be either positive or negative. When
this number is added to the content of the program counter, the result pro-
duces an effective address whose position in memory is relative to the address
of the next instruction. To clarify with an example, assume that the program
counter contains the number 825 and the address part of the instruction
contains the number 24. The instruction at location 825 is read from memory

during the fetch phase and the program counter is then incremented by one

to 826. The effective address computation for the relative address mode 1s
826 + 24 = 850. This is 24 memory locations forward from the address of the

next instruction. Relative addressing is often used with branch-type instruc-
tions when the branch address is in the area surrounding the instruction word
itself. It results in a shorter address field in the instruction format since the
relative address can be specified with a smaller number of bits compared to the

number of bits required to designate the entire memory address.

In this mode the content of an index register is

Addressing Mode:
}nﬂgxed ddressing tion to obtain the effective address. The

added to the address part of the instruc

264 CHAPTER EIGHT Central Processing Unit

index register is a special CPU re{gister that §0n_tamzdi;‘l Index Valye
address field of the instruction defines ﬂ?e beginrung address of a gy, a:rh,
in memory. Each operand in the array 1S storec;e in ;?:E:mydmaﬁve . 3
beginning‘ address. The distance between thfed 'gIthe E‘ da dre3§ ang \
address of the operand is the index va'lue stored In . ex re81§ter_ Ar”
operand in the array can be accessed with the s;tme ';'nh v ON Provigeg N
the index register contains the correct index value. : ;\] ex register Can
incremented to facilitate access to consecuftive opefar} s. Note that 1'f an inde;
type instruction does not include an address field in its format, the msh’uctinl
converts to the register indirect mode of on:ranon. |

Some computers dedicate one C P_U. register to function solely as a
register. This register is involved implicitly when.the index-mode ing
is used. In computers with many processor registers, any one of t
registers can contain the index numbef. l'n such a case *the register
specified explicitly in a register field within the instruction tormat.

n inda
tl’uctiq,
he R
Mmust N

/y{e Register Addressing Mode: In this mode the cpntent of a base regisz
1s added to the address part of the instruction to obtain the effective addreq
This is similar to the indexed addressing mode except that the register i ne
called a base register instead of an index regster. The difference betweep 1
two modes is in the way they are used rather than in the way that they 4
computed. An index register is assumed to hold an index number thy |
relative to the address part of the instruction. A base register is assumed to
a base address and the address field of the instruction gives a displacemg
relative to this base address. The base register addressing mode is used|
computers to facilitate the relocation of programs in memory. When progras
and data are moved from one segment of memory to another, as required

multiprogramming svstems, the address values of instructions must refl
this change of position. With a base register, the displacement values

instructions do not have to change. Only the value of the base register requ

updating to reflect the beginning of a new memory segment.

Numerical Example

To show the differences between the various modes, we will show the eff
of the addressing modes on the instruction defined in Fig. 8-7. The two-t
instruction at address 200 and 201 is a “load to AC"’ instruction with an addr
tield equal to 500. The first word of the Instruction specifies the operation¢

and mode, and the second word speciies the address part. PC has the v&
200 for fetching this instruction. The content of processor register K s #

and _the content of an index register XR is 100. AC receives the operand ?
the instruction is executed. The figure lists a few pertinent addresses ¢
shows the memory content at each of these addresses.

