266 CHAPTER EIGHT Central Processing Unit

set of
basic operations

TABLE 8-4 Tabular List of Numerical Example

/
Addressing Effective Content
Mode Address of AC

/

Direct address 500 800
Immediate operand 201 500
Indirect address 800 300
Relative address 702 325
Indexed address 600 900
Register ; 400
Register indirect 400 700
Autoincrement 400 700
Autodecrement 399 450

6" Data Transfer and Manipulation

,C_o’mputers provide an extensive set of instructions to give the user

bility to carry out various computational tasks. The instruction set of ity
computers differ from each other mostly in the way the operand Cifer
med from the address and mode fields. The actual operations ava?l a;e o,
instruction set are not very different from one computer to anotah -,
.hapPen§ that the binary code assignments in the operation code field e
ent in different computers, even for the same operation. It may al lidlﬁﬂ
that the SYII-‘IbO!iC name given to instructions in the assembly lan 4 a R
is d1ff§rent in different computers, even for the same instructiong;e%e :tﬁhhm
there is a set of basic operations that most, if not all, computers incl ; | e:;ss_
instruction repertoire. The basic set of operations available in . 'i;ln :
puter is the subject covered in this and the next section D

Most computer instructions can be classified into three categories

1. Data transfer instructions
2. Data manipulation instructions
3. Program control instructions

<

SE
CTION 8-6 Dara Transfer and Manipulation 267

Data Transfer Instructions

b ; .
» between processor registers and input or

e or .
of eight data transfer in Sguﬁc?ssor registers themselves. Table 8-5 gives a list
ctions used in many computers. Accompanying

each instruction is a :
| mnemonic _symbol. It must be realized that different

emory to a pro j
g:esignlg:es a tl:anzfees: ?rro:galts ;i:;;::suoarlly s R, L inSt-ruCﬁon
dans ias Dseny used frie : I'Eglstl?r into memory. The move instruc-

L computers with multiple CPU registe designate a

transfer from one register to anoth 4 . e i
saten CPY Hekiin er. It has also been used for data transters
_ -gisters and memory or between twa memory words. The

change instructi ' - *y
exchang on swaps information between two registers or a register and
amemory word. T!‘e input and output instructions transfer data among proces-
sor registers and input or output terminals. The push and pop instructions
transfer data between processor registers and a memory stack.

It must be realized that the instructions listed in Table 8-5, as well as In
§ubsequent tables in this section, are often associated with a variety of address-
ing modes. Some assembly language conventions modify the mnemonic sym-
bol to differentiate between the different addressing modes. For example, the
mnemonic for load immediate becomes LDI. Other assembly language conven-
tions use a special character to designate the addressing mode. For example,
the immediate mode is recognized from a pound sign # placed before the
operand. In any case, the important thing is to realize that each instruction can
occur with a variety of addressing modes. As an example, consider the load to
accumulator instruction when used with eight different addressing modes.

TABLE 8-5 Typical Data Transter

[nstructions
Name Mnemonic
Load LD
Store ST
Move MOV
Exchange XCH
Input IN
Output OUT
POP

Pop

268 CHAPTER EIGHT Central Processing Unit

TABLE 8-6 Eight Addressing Modes for the Load Instructiop

Assembly : e
Mode Convention Register Transfer
Direct address LD ADR 4C «— M[ADR] =~
Indirect address LD @ADR AC « - M[M[ADRY])
Relative address LD SADR AC «— M[PC + ADR)
Immediate operand LD #NBR AC «— NBR
Index addressing [D ADR(X) AC<— M[ADR + XR)
Register LD RI AC «— Rl
Register indirect LD (R1) AC «+— M[R1]
Autoincrement LD (R1) + AC «— M[R1], Rl «— R y
> s

commended assembly languagt_e convention apq }
d in each case. ADR stands tor an address, NBft{

dex register, R1is a processor register, apq ,
is the accumulator register. The (@ character symbolizes an indirect addres
The $ character before an address makes the address relative to the Progr;
counter PC. The # character precedes the operand in an immediate-p,
instruction. An indexed mode instruction 18 recognized by a register thy
placed in parentheses after the symbolic address. The register mode is symfy
ized by giving the name of a processor register. n the register indirect mg
the name of the register that holds the memory address is enclosed in pare
theses. The autoincrement mode 1s distinguished from the register indir
mode by placing a plus after the parenthesized register. The autodecreme
1ode would use a minus instead. To be able to write assembly langua
programs for a computer, it 1s necessary to know the type of instructio
available and also to be familiar with the addressing modes used in the part

ular computer.

Table 8-6 shows the re
actual transfer accomplishe
2 number or operand, X is an in

Data Manipulation Instructions

Data manipulation instructions perform operations on data and PI’O‘{id“
computational capabilities for the computer. The data manipulation NS
tions in a typical computer are usually divided into three basic type>

1. Arithmetic instructions
2. Logical and bit manipulation instructions
3. Shift instructions

he I
ke o

h p

A list of data manipulation instructions will look very much 1
_nucrooperations given in Chap. 4. It must be realized, however, |
instruction when executed in the computer must go through

—————————-—4

the fet¢

269

SECTIO 95 |
N 8.0 Data Transter and Manipulation

to read its binary code value f

into processor registers lz:lct::(t)r?jm memory. The operands must also be brought

mode. The last step is to exe Cr - . t'j’ the rules of the instruction addressing

is implemented by means ;fte the instruction in the processor. This last step

through an ALU and shift Tlcrouperatiuns as explained in Chap. 4 or

instructions need speci =l 3_‘5 Shown in Fig. 8-2. Some of the arithmetic
pecial circuits for their implementation.

Arithmetic Instructions

The four basic arithmet; -
1C " . o ke i
| diisiaion, Mot eom Opteranons are addition, subtraction, multiplication,
Gomnie-inall-c puters provide instructions for all four operations.
omputers have only additi j jon i

tions. The multiplicati y addition and possibly subtraction instruc-
: plication and division mfust then be enerated by means of

software subroutines. The f b ad - E 4 -
e dntine solof CLREI0ur basic arithmetic operations are sufficient tor
. g solutions to scientific problems when expressed in terms of nu-
merical analysis methods.
_ A]:ISt of typical arithmetic instructions is given in Table 8-7. The increment
instruction adds 1‘ to the value stored in a register or memory word. One
conﬁumon Fharadenshc of the increment operations when executed in processor
registers is that a binary number of all 1’s when incremented produces a result
of all 0’s. The decrement instruction subtracts 1 from a value stored ina register
or memory word. A number with all 0’s, when decremented, produces a

number with all 1's.
The add, subtract, multiply, and divide instructions may be available for

different types of data. The data type assumed to be in processor registers
during the execution of these arithmetic operations s included in the definition
of the operation code. An Jrithmetic instruction may specify fixed-point Or

floating-point data, binary Or decimal data, single-precision Or double-prec

sion data. The various data types are presented 1n Chap. 3.
ters with three or more add instruc-

It is not uncommon to find compu

TABLE 8-7 Typical Arithmetic [nstructions

Name Mnemonic
PIT R me-ee
Increment INC
Decrement DEC
Add ADD
Subtract SUB
Multiply MUL
Divide DIV
Add with carry ADDC
Subtract with borrow SUBB
NEG

270 CHAPTER EIGHT Central Processing Unit

clear selected bits

dictate that a binary variable ANDed with a 0 produces a 0; but th

one for floating-point operands, . o 8
s for three add instructions that Og ¢

tions: one for binary integers,
"
SPegie

: iC
decimal operands. The mnemoni
different data types are shown below.

ADDI Add two binary integer numbers

- int numbers
Add two floating-po
:ggg Add twoO decimal numbers in BCD

Algorithms for integer, floating-point, and decimal arithmetic OPeratiy, ¢

: in Chap. 10. . .
dev el%::zdnl:lmber% f bits in any register is of finite length and the

results of arithmetic operations are (_Jf finite precision. Some COmMputers
hardware double-precision operations where the length of each OPeran
taken to be the length of two memory words:. .Most §mall computers Provit
special instructions to facilitate double-premspn anthn}etlc. A. Specia| 3
flip-flop is used to store the carry from an operation. The instruction dd vt
carry”’ performs the addition on two operailds plus thg value of the carry f,
the previous computation. Similarly, the “subtract with borrow” inggy,
subtracts two words and a borrow which may have resulted from j -
subtract operation. The negate instruction forms the 2's complemep of
number, effectively reversing the sign of an integer when representeq iy 4

signed-2’s complement form.

Pl'u 1t.

Logical and Bit Manipulation Instructions

Logical instructions perform binary operations on strings of bits stored
registers. They are useful for manipulating individual bits or a group of bi
that represent binary-coded information. The logical instructions consid
each bit of the operand separately and treat it as a Boolean variable. By prop
application of the logical instructions it is possible to change bit values, to cl
a group of bits, or to insert new bit values into operands stored in registers
memory words. f

Some typical logical and bit manipulation instructions are listed in la!
8-8. The clear instruction causes the specified operand to be replaced by
T_he complement instruction produces the 1’s complement by inverting alld
bits of the operand. The AND, OR, and XOR instructions produce the %
sponding logical operations on individual bits of the operands. Although '
perforrrf Boolean operations, when used in computer instructions, thé l0p)

| ion i ts
The AND Instruction is used to clear a bit or a selected group of

an operand. For any Boolean variable x, the relationships x b0 = 0and x::iﬂ
eV

cgected bits

ﬂmt selected

SECTION 8.6 Data Transfer and Manipulation 271

:;\B‘LE 8-8 Typical Logical and Bit
anipulation Instructions
. Name Mnemonic

Clear
Complement ggi’
AND AND
OR OR
Exclusive-OR XOR
Clear carry CLRC
Set carry SETC
Complement carry COMC
Enable Interrupt EI
Disable Interrupt DI

f!ﬂes not change in value when ANDed with a 1. Therefore, the AND instruc-
tion can be used to clear bits of an operand selectively by ANDing the operand
with another operand that has 0’s in the bit positions that must be cleared. The

AND instruction is also called a mask because it masks or inserts (s in a selected
portion of an operand.

The OR instruction is used to set a bit or a selected group of bits of an
operand. For any Boolean variable x, the relationshipsx + 1 = landx + 0 = x
dictate that a binary variable ORed with a 1 produces a 1; but the variable does
not change when ORed with a 0. Therefore, the OR instruction can be used
to selectively set bits of an operand by ORing it with another operand with 1’s
in the bit positions that must be set to 1.

Similarly, the XOR instruction is used to selectively complement bits of
an operand. This is because of the Boolean relationships x®1 = x’ and
x®0 = x. Thus a binary variable is complemented when XORed with a 1 but
does not change in value when XORed with a 0. Numerical examples showing

the three logic operations are given in Sec. 4-5.
A few other bit manipulation instructions are included in Table 8-8.

Individual bits such as a carry can be cleared, set, or complemented with
appropriate instructions. Another example is a flip-flop that controls the inter-
rupt facility and is either enabled or disabled by means of bit manipulation

Instructions.

Shift Instructions

Instructions to shift the content of an operand are quite useful and are often
provided in several variations. Shifts are operations in which the bits of a word
are moved to the left or right. The bit shifted in at the end of the word
determines the type of shitt used. Shift instructions may specify either logical

A

272 CHAPTER EIGHT Central Processing Unit

tic shifts, or rotate-type operatl

" . ons. In either case the shig \
shifts, anthm y

be to the right or to the left of shift instructions. The logical shig in

Table 8-9 lists four types on is the leftmost bit for shjf i Sertsu

. i on. The end posit : \ g t

to the end bit position. e+ left. Arithmetic shifts a
the rightmost bit position for the shift le Su:ly 4
3

. / ment numbers. These]
form with the rule:s for sngne:i}f:_:i cil?il::setruction et rbadive th:sSi
in Sec. 4-6. The i:-'ll:lthmEth S b tg shifted to the right together Withgn bitin
the leftmost position. The sign b1 1S _ S cbeamondt PHE Fhe Ie
ber, but the sign bit itself remains u ged. 1hus 1S a shjf. . X
of thet?l;mwitl‘; the end bit remaining the same. The arithmetic Shift-legg-hl
ggzl;atioi inserts 0 to the end position and is identical to Fl;e logigl Shiftl:t
instruction. For this reason many comput_ers doﬁ not fpr}’m € a‘dlstinq i
metic shift-left instruction when the logical shift-left instruction i al; %
avaﬂa’?l{nee' rotate instructions produce a circular shift. Bits shifted out at o, .
of the word are not lost as in a logical shift but are cuculatefl back into ths uthd
end. The rotate through carry instruction treats a carry bit as an e"tEHSionE
the register whose word is being rotated. Thus a rotate-left through
instruction transfers the carry bit into the rightmost bit position of the register
transfers the leftmost bit position into the carry, and at the same time, Shlfui
the entire register to the left. |
Some computers have a multiple-field format for the shift instryctip,
One field contains the operation code and the others specify the type of shi
and the number of times that an operand is to be shifted. A possible instryct

code format of a shift instruction may include five fields as follows:
OF - REG,...TYPE . .RL . _ COUNT

Here' OP is the operation code field; REG is a register address that specifiest
location of the operand; TYPE is a 2-bit field specifying the four different typ

c:f shifts; I:'(L.is a 1-bit field specifying a shift right or left; and COUNT isak?
field specifying up to 2* — 1 shifts. With such a format, it is possible to sped

the type of shift, the direction, and the number of shifts, all in one instruct

gi'fen

TABLE 8-9 Typical Shift Instructions

iU R D019 o b y
g Name Mnemonic
Logical shift right T SHR Al
Lo_gical shift left SHL
Arfthmctic shift right SHRA
Arithmetic shift left SHLA
Rotate right R
Rotate Jeft R(())[Il, i
Rotate right throy i
) Rotate left thmughghca:;ry :85(: I

__--_H-_h—-—-

273

SECTION 8.7 Program Control

_S—LEW/
[nstructions are always st |

essed in the CPU, tl{e inosrtjjcltr-‘ successive memory locations. When pro¢”
locations and executed. Each tin:: ol fetc.hed from consecutive memory
_progran_l counter 1s incremented an instruction 1 fetched from memory, the
instruction in sequence. After th SO that. it contains the address of the next
ulation instruction, control retur: execution of a data transfer or data man P
containing the address of the insﬁ?l::.the fetch cycle with the program counter
a program control type of instruction IOII-. next in sequence. On the other hand,
value in the program counter and , when executed, may change the address
other words, program control instriau.s e the ﬂo_w of cor}t.rol to be altelred. In
i tent of. the program ctions specify conditions for altering the

. ‘p & : _Counter, while data transfer and manipulation 1n-
structions specify conditions for data-processi ions. The ch in
value of the program counter as a resflt i hmg Oper'atlons. e change 1
trol instruction causes a break in the s B R et B ({%n
B eeiaat tatrein die equence of 1n§tmcnon execution. 1h1S

p ure in igital computers, as it provides control over the flow
of program execution and a capability for branching to different program
segments.

Some typical program control instructions are listed in Table 8-10. The
branch and jump instructions are used interchangeably to mean the same
thing, but sometimes they are used to denote different addressing modes. The
branch is usually a one-address . truction. It is written in assembly language
as BR ADR, where ADR 1s 2 symbolic name for an address. When executed,
the branch instruction causes a transfer of the value of ADR into the program

counter. Since the program counter contains the address of the instruction to

be executed, the next instruction will come from location ADR.
' ' jons may be conditional or unconditional. An

unconditional branch instruction causes a branch to the specified address with-
out any conditions. The conditional branch instruction specifies a condition
such as branch if positive Or branch if zero. If the condition is met, the program
counter is loaded with the branch address and the next instruction is taken

TABLE 8-10 Typical Program Control Instructions

Name Mnemonic
Branch JB]:;P
Jump SKP
Skip
Call CALL
Return k' \ 25111-’

by subtraction
Compare (DY ToT

Test (by ANDIng)

276 CHAPTER EIGHT Central Processing Unit
8-11 Conditional Branch Instructions

TABLE
Mnemonic Branch condition Tested condition
BZ Branch if zero Z =1
BNZ Branch if not zero Z =0
BC Branch if carry i
BNC Branch if no carry C=0
BP Branch if plus S=0
BM Branch if minus S =1
BV Branch if overflow V =1
BNV Branch if no overflow V=20
Unsigned compare conditions (A — B)
BHI Branch if higher A> B
BHE Branch if higher or equal A>B
BLO Branch if lower A<B
BLOE Branch if lower or equal A<B
BE Branch if equal A=B
BNE Branch if not equal A#* B
Signed compare conditions (4 — B)
BGT Branch if greater than A> B
BGE Branch if greater or equal A> B
BLT Branch if less than A < B
BLE Branch if less or equal A<B
BE Branch if equal i
BNE Branch if not equal A+ B

- ——— —

g = e ——
D —

ms:;\r]ted to define the 0 state. Thus BC is Branch on Carry, and BNC is Bran
fl?e a(;l iae;rsy.s If tl:l;::: sc;ated condition 1S true, program control is transferred

instruction thgte ? ;f o instruction. If not, control continues with

with the jump sl?i Ovzsi] The conditional instructions can be associated
The zero ’st tf , b'a Tl (ks program control instructions.

atus bit 1s used for testing if the result of an ALU operati

is equal to zero or not. The { FatYY
. §a . car blt IS u » . t
the most Sﬁlgmflcant bit Positionr}(;f the ALSI(.eId R e P AT

