Number Representation and Arithmetic Operations 1.4.1 Integers Consider an n-bit vector : $B = bn-1 \dots b1b0$ where bi = 0 or 1 for $0 \le i \le n-1$.

 $V(B) = b_{n-1} \times 2^{n-1} + \dots + b_1 \times 2^1 + b_0 \times 2^0$

We need to represent both positive and negative numbers. Three systems are used for representing such numbers:

• Sign-and-magnitude

- 1's-complement
- 2's-complement

In all three systems, the leftmost bit is 0 for positive numbers and 1 for negative numbers.

В	1	values represented	-	In <i>1's-complement</i> representation, negative values are obtained by complementing each
$b_{3}b_{2}b_{1}b_{0}$ 0 1 1 1 0 1 1 0 0 1 0 1 0 1 0 1 0 1 0 1	Sign and magnitude + 7 + 6 + 5 + 4	1's complement + 7 + 6 + 5 + 4	2's complement + 7 + 6 + 5 + 4	bit of the corresponding positive number. Thus, the representation for -3 is obtained by complementing each bit in the vector 0011 to yield 1100. In the 2's-complement system, forming the
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	+3 +2 +1 +0 -0 -1 -2 -3 -4 -5 -6	+3 +2 +1 +0 -7 -6 -5 -4 -3 -2 -1	+3 +2 +1 +0 -8 -7 -6 -5 -4 -3 -2	 2's-complement of an <i>n</i>-bit number is done by subtracting the number from 2<i>n</i>. Hence, the 2's-complement of a number is obtained by adding 1 to the 1's-complement of that number. There are distinct representations for +0 and -0 in both the sign-and magnitude and 1's-
1111	- 7	-0	- 1	complement systems, but the 2's-complement system has only one representation for 0.

Addition of Unsigned Integers

The sum of 1 and 1 is the 2-bit vector 10, which represents the value 2. We say that the *sum* is 0 and the *carry-out* is 1. We add bit pairs starting from the low-order (right) end of the bit vectors, propagating carries toward the high-order (left) end. The carry-out from a bit pair becomes the *carry-in* to the next bit pair to the left.

0	1	0	1
+ 0	+ 0	+ 1	+ 1
0	1	1	10
			t
			Carry-out

Addition and Subtraction of Signed Integers

The 2's-complement system is the most efficient method for performing addition and subtraction operations.

Unsigned integers mod N is a circle with the values 0 through N - 1. The decimal values 0 through 15 are represented by their 4-bit binary values 0000 through 1111.

1111 0000 0001	The operation (7 + 5) mod 16 yields the value 12. To
1110 0010	perform this operation graphically, locate 7 (0111) on the
1101, -2 +2 0011	outside of the circle and then move 5 units in the clockwise
-3 +3	direction to arrive at the answer 12 (1100).
1100 4 + 4 - 0100	Similarly, $(9 + 14) \mod 16 = 7$; this is modeled on the circle
-5 +5	by locating 9 (1001) and moving 14 units in the clockwise
1011 - 6 + 6 0101	direction past the zero position to arrive at the answer
1010 -7 -8 $+7$ 0110	7 (0111).
1001 0111	Apply the mod 16 addition technique to the example of
1000	adding +7 to -3. The 2's-complement representation for
(b) Mod 16 system for 2's-complement numbers	these numbers is 0111 and 1101, respectively.

To *add* two numbers, add their *n*-bit representations, ignoring the carry-out bit from the most significant bit (MSB) position. The sum will be the algebraically correct value in 2's-complement representation if the actual result is in the range- 2^{n-1} through+ $2^{n-1}-1$.

To *subtract* two numbers X and Y, that is, to perform X - Y, form the 2's-complement of Y, then add it to X using the *add* rule. Again, the result will be the algebraically correct value in 2's-complement representation if the actual result is in the range -2^{n-1} through $+2^{n-1} - 1$.

0010	(+2)	(b)	0100	(+4)
+0011	(+3)		+ 1010	(-6)
0101	(+5)		1110	(-2)
1011	(-5)	(d)	0111	(+7)
+ 1110	(-2)		+ 1101	(-3)
1001	(-7)		0100	(+4)

Floating-Point Numbers

If we use a full word in a 32-bit word length computer to represent a signed integer in 2's-complement representation, the range of values that can be represented is -2^{31} to $+2^{31}-1$.

Since the position of the binary point in a floating-point number varies, it must be indicated explicitly in the representation. For example, in the familiar decimal scientific notation, numbers may be written as 6.0247×10^{23} , 3.7291×10^{-27} , -1.0341×10^2 , -7.3000×10^{-14} . these numbers have been given to 5 *significant digits* of precision.

A binary floating-point number can be represented by:

 $\cdot\,$ a sign for the number

 $\cdot\,$ some significant bits

 $\cdot\,$ a signed scale factor exponent for an implied base of 2

Character Representation

Bit positions			Bit	position	s 654				The most common encoding scheme for characters is ASCI (American Standard Code for Information Interchange)
3210	000	001	010	011	100	101	110	111	Alphanumeric characters, operators, punctuation symbols
0000	NUL	DLE	SPACE	0	æ	Р	1	р	and control characters are represented by 7-bit codes. It is
0001	SOH	DC1	1	1	Α	Q	а	q	convenient to use an 8-bit byte to represent and store a
0010	STX	DC2	**	2	В	R	ь	r	character.
0011	ETX	DC3	#	3	С	S	с	S	The code occupies the low-order seven bits. The high-order
0100	EOT	DC4	\$	4	D	т	d	t	bit is usually set to 0. This facilitates sorting operations or
0101	ENQ	NAK	%	5	Е	U	e	u	5
0110	ACK	SYN	&	6	F	v	f	v	alphabetic and numeric data.
0111	BEL	ETB	,	7	G	w	g	w	The low-order four bits of the ASCII codes for the decima
1000	BS	CAN	(8	н	х	h	х	digits 0 to 9 are the first ten values of the binary number
1001	HT	EM)	9	I	Y	i	у	system.
1010	LF	SUB	•	1	1	Z	j	z	This 4-bit encoding is referred to as the binary-coded
1011	VT	ESC	+	;	K]	k	{	decimal (BCD) code.
1100	FF	FS	,	<	L	/	1	1.1	
1101	CR	GS	-	=	Μ	1	m	}	
1110	SO	RS		>	Ν	^	n	~	
1111	SI	US	1	?	0		0	DEL	

COA - Dept of IT