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There is no end carry

Answer is negative 59282 = 10’s complement of 40718

Since we are dealing with unsigned numbers, there is really no way to
get an unsigned result for the second example. When working with paper and
pencil, we recognize that the answer must be changed to a signed negative
number. When subtracting with complements, the negative answer is recog-
nized by the absence of the end carry and the complemented result.

Subtraction with complements is done with binary numbers in a similar
manner using the same procedure outlined above. Using the two binary

numbers X = 1010100 and Y = 1000011, we perform the subtraction X — Y ~—
and Y — X using 2’s complements:

X = 1010100
2’s complement of Y = +0111101

Sum = 10010001
Discard end carry 27 = —10000000
Answer: X — Y = 0010001

Y = 1000011
2's complement of X = +0101100

Sum = 1101111
There is no end carry

Answer is negative 0010001 = 2's complement of 1101111

3-3 Fixed-Point Representation

Positive integers, including zero, can be represented as unsigned numbers.
However, to represent negative integers, we need a notation for negative
values. In ordinary arithmetic, a negative number is indicated by a minus sign
and a positive number by a plus sign. Because of hardware limitations, com-
puters must represent everything with 1’s and 0's, including the sign of a
number. As a consequence, it is customary to represent the sign with a bit
placed in the leftmost position of the number. The convention is to make the
sign bit equal to 0 for positive and to 1 for negative.

In addition to the sign, a number may have a binary (or decimal) point.

The position of the binary point is needed to represent fractions, integers, or

mixgd integer-fraction numbers. The representation of the binary point in a
register is complicated by the

fact that it is characterized by a position in the
register. There are two ways of specifying the position of the binary point in
a register: by giving it a fixed position or by employing a floating-point repre-
sentation. The fixed-point method assumes that the binary point is always

binary point
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Arithmetic Addition

;l)';\e adc!dmon of two numbers in the signed-magnitude system follows the rules

ordinary arithmetic. If the signs are the same, we add the two magnitudes
and give the sum the common sign. If the signs are different, we subtract the
smalhi,-r magnitude from the larger and give the result the sign of the larger
magnitude. For example, (+25) + (—37) = —(37 — 25) = —12 and is done by
subtrgcting the smaller magnitude 25 from the larger magnitude 37 and using
the sign of 37 for the sign of the result. This is a process that requires the
comparison of the signs and the magnitudes and then performing either
addition or subtraction. (The procedure for adding binary numbers in signed-
magnitude representation is described in Sec. 10-2.) By contrast, the rule for
adding numbers in the signed-2’s complement system does not require a
comparison or subtraction, only addition and complementation. The proce-
dure is very simple and can be stated as follows: Add the two numbers,
including their sign bits, and discard any carry out of the sign (leftmost) bit
position. Numerical examples for addition are shown below. Note that nega-
tive numbers must initially be in 2’s complement and that if the sum obtained

after the addition is negative, it is in 2’s complement form.

+6 00000110 -6 11111010
+13 00001101 +13 00001101
+19 00010011 +7 00000111
+6 00000110 -6 11111010
-13 11110011 -13 11110011
=7 11111001 -19 11101101

In each of the four cases, the operation performed is always addition, including
the sign bits. Any carry out of the sign bit position is discarded, and negative

results are automatically in 2’s complement form. N
The complement form of representing negative numbers is unfamiliar to
people used to the signed-magnitude system. To determine the value of a

negative number when in signed-2’s complement, it is necessary to convert it
to a positive number to place it in a more familiar form. For example, the signed

binary number 11111001 is negative because the leftmost bit is 1. Its 2's com-
plement is 00000111, which is the binary equivalent of +7. We therefore
recognize the original negative number to be equal to —7.
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is demonstrated by the following relationship:

(A4) =~ (+B) = (+A) +(-B)
(xA) — (-B) = (xA) + (+B)

But changing a positive number to a negative number is easily done by taking
its 2's complement. The reverse is also true because t.he comple_n}ent of 2
negative number in complement form produces the equn_ralent pf)sm\.re num-
ber. Consider the subtraction of (—6) — (—13) = +7. In binary with eight bit
this is written as 11111010 — 11110011. The subtraction is changed to addition
by taking the 2’s complement of the subtrahend (—13) to give (+13). In binary
this is 11111010 + 00001101 = 100000111. Removing the end carry, we obtain
: the correct answer 00000111 (+7).

It is worth noting that binary numbers in the signed-2's complement
system are added and subtracted by the same basic addition and subtraction
rules as unsigned numbers. Therefore, computers need only one common
hardware circuit to handle both types of arithmetic. The user
must interpret the results of such addition or subtracti
on whether it is assumed that the numbers are sig

Or programmer
on differently depending
ned or unsigned.
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The detection of an overflow after the addition of two binary numbe’
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When two unsigned numbers are added, an overflow is detected from the €"
carry out of the most significant position. In the case of signed numbers, tk}
leftmost bit always represents the sign, and negative numbers are in



