mmnﬂ"

fmcu‘oﬂ

normalization

83

SHCTION 34 Flonting. Point Representation

2t -l"~l9“'-t.h.‘,l{’,!),9l_“_t Representation S
The “"“““H‘Pnlnt re et e

represents g signed, |

———

presentation of a number has two parts. The first part
designates the mululx"d'p"int number called the mantissa, The second part
exponent, The F on of the decimal (or binary) point and is called the

¢ fixed-point mantissa may be a fraction or an integer, For exam-

dle, the
;rncli ,t decimal number F6132.789 is represented in floating-point with a
on and an exponent as follows;

Fraction Exponent 4
10.6132789 +04

The value

is four positions to the right of the indicated decimal point in the fraction. This
representation is equivalent to the scientific notation +0,6132789 x 10*4,

Floating-point is always interpreted to represent a number in the follow-

of the exponent indicates that the actual position of the decimal point ‘
ing form:]
|

m %y

Only the mantissa m and the exponent ¢ are physically represented in the
register (including their signs). The radix r and the radix-point position of the
mantissa are always assumed. The circuits that manipulate the floating-point
numbers in registers conform with these two assumptions in order to provide
the correct computational results.

A floating-point binary number is represented in a similar manner except
that it uses base 2 for the exponent. For example, the binary number +1001.11
is represented with an 8-bit fraction and 6-bit exponent as follows:

Fraction Exponent
01001110 000100

The fraction has a 0 in the leftmost position to denote positive. The binary point
of the fraction follows the sign bit but is not shown in the register. The exponent
has the equivalent binary number +4. The floating-point number is equivalent

to
m X 2° = +(.1001110), x 2*4

A floating-point number is said to be normalized if the most significant
digit of the mantissa is nonzero. For example, the decimal number 350 is
normalized but 00035 is not. Regardless of where the position of the radix point
is assumed to be in the mantissa, the number is normalized only if its leftmost
digit is nonzero. For example, the 8-bit binary number 00011010 is not normal-

overflow detection

e T m——

SECTION 3-3 Fixed-Point Representation 81

igned numbers are added, the sign bit is treated

An overflow cann t end carry does not indicate an overflow.
Ot occur after an addition if one nlr)mber is positive and

the other i i : .
produces asr're‘:\flatt:ﬁe’t since adding a positive number tp a negative number
An overflow ma as ‘smaller than the larger of the tivo original numbers.
regativesT see)l’-locc‘:; .1f the two numbers added are both positive or both
signed:binam n?;v 1s can happen, consider the following example. Two
range of nu:nybe thers' +70 and +80, are stored in two 8-bit registers. The
o rs that each register can accommodate is from binary +127 to
of thry Ko ince the sum of the two numbers is +150, it exceeds the capacity
e 8-bit register. This is true if the numbers are both positive or both

negative. The two additi in bi :
e e 1tions in binary are shown below together with the last

carries: 0 1 carries: 1 0
+70 0 1000110 -70 1 0111010
+80 0 1010000 —80 1 0110000
+150 1 0010110 —-150 0 1101010

Note that the 8-bit result that should have been positive has a negative sign
bit and the 8-bit result that should have been negative has a positive sign bit.
If, however, the carry out of the sign bit position is taken as the sign bit of the
result, the 9-bit answer so obtained will be correct. Since the answer cannot be
accommodated within 8 bits, we say that an overflow occurred.

An overflow condition can be detected by observing the carry into the
sign bit position and the carry out of the sign bit position. If these two carries
are not equal, an overflow condition is produced. This is indicated in the
examples where the two carries are explicitly shown. If the two carries are
applied to an exclusive-OR gate, an overflow will be detected when the output

of the gate is equal to 1.

Decimal Fixed-Point Representation

The representation of decimal numbers in registers is a function of the binary
code used to represent a decimal digit. A 4-bit decimal code requires four
flip-flops for each decimal digit. The representation of 4385 in BCD requires 16
flip-flops, four flip-flops for each digit. The number will be represented in a

register with 16 flip-flops as follows:

0100 0011 1000 0101

By representing numbers in decimal we are wasting a considergble
amount of storage space since the number of bits needed to store a dec1mal
number in a binary code is greater than the number of bits needed for its

82 CHAPTER THREE Data Representation

equivalent binary representation. Also, the circuits required to perform. degi
mal arithmetic are more complex. However, there are some advantages in the
use of decimal representation because computer input and output data gy,
generated by people who use the decimal system. Somf: apph.catlons, such ay
business data processing, require small amounts of anthmghc computatiop,
compared to the amount required for input and output of decimal data. For th
reason, some computers and all electronic calculators perform anth'mgtm Oper
ations directly with the decimal data (in a binary code) and thus eliminate ¢
need for conversion to binary and back to decimal. Some compute.r System,
have hardware for arithmetic calculations with both binary an.d d'ec1_mal data

The representation of signed decimal numbers in .BCD is similar to tp,
representation of signed numbers in binary. We can either use the .famﬂia]
signed-magnitude system or the signed-complement system. Th.e sign of ;
decimal number is usually represented with four bits to conform with the 4-};
code of the decimal digits. It is customary to designate a plus with four 0's an,
a minus with the BCD equivalent of 9, which is 1001.

The signed-magnitude system is difficult to use with computers, T,
signed-complement system can be either the 9's or the 10’s complement, by
the 10’s complement is the one most often used. To obtain the 10’s complemen,
of a BCD number, we first take the 9’s complement and then add one to the
| least significant digit. The 9's complement is calculated from the subtraction
4 | of each digit from 9.
| The procedures developed for the signed-2’s complement system apply
i | also to the signed-10’s complement system for decimal numbers. Addition is
| done by adding all digits, including the sign digit, and discarding the end
{ carry. Obviously, this assumes that all negative numbers are in 10's comple-

| ment form. Consider the addition (+375) + (—240) = +135donein the signed-
f 10’s complement system.

0 375 (0000 0011 0111 0101)gep

+9 760 (1001 0111 0110 0000)scp

0 135 (0000 0001 0011 0101)pcp

jI'he 9 in' the leftmost position of the second number indicates that the number
1$ negative. 9760 is the 10’s complement of 0240, The two numbers are added
and dthe 1n;:nd carry is discarded to obtain +135, Of course, the decimal numbers
inside the computer must be in BCD, including the sign digits. The addition
is done with BCD adders (see Fig. 10-18). ‘ g #

The subtraction of decimal numbers either unsigned or in the signed-10's

complement system is the same as in the binary case. Take the 10's complement

,,w:ﬁssa

aponent

fraction

normalization

SECTION 3-4 Floating-Point Representation 83
3-4 _Floating-Point Representation

The floating-poi)

rePresenttls:1 g srio;r:etcireffi);esent?tmn of a number has two parts. The first part

designates theg os:ti ed-point nun.'lber called the mantissa. The second part

exponent. Th ﬁi 3 an of the_dECImal (or binary) point and is called the
+ 1he fixed-point mantissa may be a fraction or an integer. For exam-

Ple, the decimal number +6132 i :
: .789 is re ted i ing-poi i
fraction and an exponent as follows: B el oating pofnt with 8

Fraction Expdnen t
+0.6132789 +04

:l"he value 9f the exponent indicates that the actual position of the decimal point
is four positions to the right of the indicated decimal point in the fraction. This
representa.tion is equivalent to the scientific notation +0.6132789 x 10**.

. Floatmg—point is always interpreted to represent a number in the follow-
ing form:

m X rt

Only the mantissa m and the exponent e are physically represented in the
register (including their signs). The radix r and the radix-point position of the
mantissa are always assumed. The circuits that manipulate the floating-point
numbers in registers conform with these two assumptions in order to provide

the correct computational results.
A floating-point binary number is represented in a similar manner except

that it uses base 2 for the exponent. For example, the binary number +1001.11
is represented with an 8-bit fraction and 6-bit exponent as follows:

Fraction Exponent
01001110 000100

The fraction has a 0in the leftmost position to denote positive. The binary point
of the fraction follows the sign bit but is not shown in the register. The exponent
has the equivalent binary number +4. The floating-point number is equivalent

to
m x 2¢ = +(.1001110), x 2**

oint number is said to be normalized if the most signiﬁcar?t
digit of the mantissa is nonzero. For example, the decimal number 350 is

normalized but 00035 is not. Regardless of where the position of the radix point
is assumed to be in the mantissa, the number is normalized only if its leftmost

digit is nonzero. For example, the 8-bit binary number 00011010 is not normal-

A floating-p

84 cuarmr THREE Data Representation

Gray code

ized because of the three leading g's. '1'1:; nurtr}:l;elg «;adr;:ge glzrgfg}l;:l?‘nblylf]*{gg&g
it three positions to the left and discarding :
The threpe shifts multiply the number :Jy 2 T 1? 1::1 ll;::;;it t:; Sg;m; ‘;l:;f:f i;::i
floating-point number, the exponent must be) P i
1 aximum possible precision for the floating-poin num.
g:rm Re;Zr%n::;\(rotth}feﬁormalizeg because it dogs not have a nomi‘ero digit. I
is usually represented in floating-point by all_ 0’s in the mantissa an explc;nem‘
Arithmetic operations with floating-point numbers are more cox:;p cated
than arithmetic operations with fixed-point numbers and thelr_ execution takes
longer and requires more complex hardware. However, floatlng_-pomt repre.
sentation is a must for scientific computations because of the scaling problen}s
involved with fixed-point computations. Many computers and-all EI_eCtmn}C
calculators have the built-in capability of performing floam"lg-pou}t arithmetic
operations. Computers that do not have hardware for ﬂoatmg-po.n.\t computa-
tions have a set of subroutines to help the user program scxephﬁc Problems
with floating-point numbers. Arithmetic operations with floating-point num.
bers are discussed in Sec. 10-5.

3-5 Other Binary Codes

In previous sections we introduced the most common types of binary-coded
data found in digital computers. Other binary codes for decimal numbers and
alphanumeric characters are sometimes used. Digital computers also employ
other binary codes for special applications. A few additional binary codes
encountered in digital computers are presented in this section.

Gray Code ‘

Digital systems can process data in discrete form only. Many physical systems
supply continuous output data. The data must be converted into digital form
before they can be used by a digital computer. Continuous, or analog, infor-
mation is converted into digital form by means of an analog-to-digital con-
verter. The reflected binary or Gray code, shown in Table 3-5, is sometimes used
for the converted digital data. The advantage of the Gray code over straight
binary numbers is that the Gray code changes by only one bit as it sequences
from one number to the next. In other words, the change from any number
to the next in sequence is recognized by a change of only one bit from 0 to 1
or from 1 to 0. A typical application of the Gray code occurs when the analog
data are represented by the continuous change of a shaft position. The shaft
is partitioned into segments with each segment assigned a number. If adjacent
segments are made to correspond to adjacent Gray code numbers, ambiguity
is reduced when the shaft position is in the line that separates any two
segments.

Gray code counters are sometimes used to provide the timing sequences

