
Example of SVM for Binary Classification

Imagine we want to classify emails as spam or not spam based on features such as
word frequency, email length, and sender reputation.

1. Select Hyperplane:
○ SVM will find a hyperplane that separates spam and non-spam emails

with the maximum margin.
2. Support Vectors:

○ Emails closest to the hyperplane act as support vectors.
3. Prediction:

○ New emails are classified based on their position relative to the
hyperplane.

Applications of SVM

● Text Classification: Commonly used for spam detection and sentiment
analysis.

● Image Recognition: SVM is effective for image classification tasks, such as
handwriting recognition.

● Bioinformatics: Used in gene classification, protein structure prediction, and
cancer classification.

● Face Detection: SVMs can classify regions in an image as face or non-face.

Unit 4

Unsupervised Learning

Unsupervised Learning is a type of machine learning where the algorithm learns
from unlabeled data without predefined categories or target outcomes. The goal is
for the model to discover patterns, structures, or relationships within the data
independently. This approach is especially useful when labeled data is unavailable,
and it enables insights into data organization or grouping based on intrinsic
characteristics.

How Unsupervised Learning Works

In unsupervised learning, the model receives data with only input features (no labels
or target values) and tries to make sense of it by organizing or grouping the data
based on similarities and patterns. The main tasks in unsupervised learning include:

1. Clustering: Organizes data into distinct groups (clusters) based on similarities.
2. Association: Identifies rules or associations within data.
3. Dimensionality Reduction: Reduces the number of features while retaining

essential information, improving visualization and simplifying data for further
processing.

Types of Unsupervised Learning Algorithms

1. Clustering Algorithms:
○ K-Means Clustering: Partitions data into a predefined number of

clusters (k) by minimizing the distance between data points and their
cluster centroids.

○ Hierarchical Clustering: Builds a hierarchy of clusters, either by merging
smaller clusters or dividing larger clusters.

○ DBSCAN (Density-Based Spatial Clustering of Applications with Noise):
Forms clusters based on data density, allowing it to identify clusters of
varying shapes and handle noise.

2. Association Rule Learning:
○ Apriori Algorithm: Finds frequent itemsets in data and derives

association rules based on user-defined support and confidence
levels.

○ Eclat Algorithm: An efficient algorithm for frequent itemset mining,
used for association tasks in sparse datasets.

3. Dimensionality Reduction:
○ Principal Component Analysis (PCA): Reduces dimensionality by

projecting data into fewer dimensions while preserving variance.
○ t-SNE (t-Distributed Stochastic Neighbor Embedding): Visualizes

high-dimensional data by reducing dimensions while maintaining
neighborhood structures.

○ Autoencoders: Neural network architectures used for dimensionality
reduction by learning efficient data representations.

Examples of Unsupervised Learning

1. Customer Segmentation: Clustering customers into segments based on
purchase behavior, enabling targeted marketing strategies.

2. Anomaly Detection: Identifying unusual patterns in data (such as fraudulent
transactions) by learning normal behavior and flagging deviations.

3. Market Basket Analysis: Using association rule learning to discover which
items are frequently bought together, guiding inventory management and
sales strategies.

4. Image Compression: Reducing the size of images by dimensionality reduction
without significant loss in quality.

5. Recommendation Systems: Grouping users or products based on behavior
patterns to suggest similar items.

Advantages of Unsupervised Learning

● Handles Large Datasets: Can manage and organize vast amounts of data,
especially when labels are unavailable.

● Reveals Hidden Patterns: Useful for discovering unknown structures, groups,
or patterns in data, leading to new insights.

● No Need for Labeled Data: Reduces the reliance on labeled data, which can
be expensive and time-consuming to acquire.

Challenges in Unsupervised Learning

● Interpretability: The insights generated by unsupervised models can be
difficult to interpret, as there are no labels guiding the outcome.

● Evaluating Model Quality: Evaluating the accuracy and performance of
unsupervised models is challenging without labeled data for validation.

● Sensitive to Initial Parameters: Some algorithms, like K-means, depend
heavily on initial parameters, which can lead to varied results.

Applications of Unsupervised Learning

● Healthcare: Clustering patients based on symptoms or genetic information to
uncover disease patterns and predict outcomes.

● Social Network Analysis: Identifying communities or influential users based
on interaction data.

● Document Classification: Grouping articles, documents, or news into topics
without predefined labels.

● Anomaly Detection in Security: Detecting unusual patterns that may indicate
potential threats in cybersecurity systems.

Clustering in Machine Learning

Clustering is an unsupervised learning technique in machine learning that involves
grouping data points into clusters based on their similarity. It is used when we don't
have labeled data and want to uncover the underlying structure of the data. Each
cluster consists of data points that are more similar to one another than to points in
other clusters. Clustering is widely used in fields such as customer segmentation,
image analysis, document classification, and more.

Types of Clustering

There are several types of clustering methods, each suited to different types of data
and goals:

1. Partition-Based Clustering:
○ Divides the data into non-overlapping clusters.
○ Example: K-Means Clustering groups data into a predetermined

number of clusters (k) by minimizing the distance between points and
their cluster centroids.

2. Hierarchical Clustering:
○ Builds a hierarchy of clusters, either by agglomerative (bottom-up) or

divisive (top-down) methods.
○ Example: Agglomerative Clustering starts with each data point as a

separate cluster and iteratively merges them based on similarity until
one cluster or a specified number of clusters is formed.

3. Density-Based Clustering:
○ Forms clusters based on the density of data points, which is useful for

identifying clusters of varying shapes and sizes.
○ Example: DBSCAN (Density-Based Spatial Clustering of Applications

with Noise) creates clusters based on regions of high data density,
distinguishing between core, border, and noise points.

4. Model-Based Clustering:
○ Assumes the data is generated from a mixture of underlying probability

distributions, using statistical models for clustering.
○ Example: Gaussian Mixture Models (GMM) assumes that data points

come from a combination of Gaussian distributions, which can
capture more complex cluster shapes than K-Means.

Key Applications of Clustering

1. Customer Segmentation: Grouping customers with similar purchasing
behavior for targeted marketing.

2. Image Segmentation: Dividing images into meaningful parts based on color,
texture, or other features.

3. Document Classification: Organizing documents into categories based on
topics without prior labeling.

4. Anomaly Detection: Identifying unusual data points or outliers that don't fit
into any cluster, useful in fraud detection.

5. Social Network Analysis: Grouping users into communities based on
interaction patterns.

Clustering : K-Means

K-Means is one of the most widely used algorithms for clustering, a type of
unsupervised learning where the goal is to group data points into clusters based on
their similarity. K-Means organizes data into a specified number of clusters kkk by
minimizing the distances between data points and the cluster centroids, making it
ideal for segmenting large datasets.

How K-Means Works

The K-Means algorithm follows these steps:

1. Choose the Number of Clusters k :
○ Decide on the number of clusters, k, which will determine how many

distinct groups the algorithm will create.
2. Initialize Centroids:

○ Select k initial points in the dataset as centroids (centers of the
clusters). These can be chosen randomly or by another method.

3. Assign Points to Nearest Centroid:
○ For each data point, calculate the distance to each centroid and assign

the point to the nearest one. This step creates k clusters based on
the current centroid positions.

4. Update Centroids:
○ After assigning points to clusters, compute the new centroid of each

cluster by averaging the points within that cluster. This average
becomes the new position of the centroid.

5. Repeat Until Convergence:
○ Steps 3 and 4 are repeated until the centroids no longer change

significantly, meaning the clusters are stable. This is called
convergence.

The output is k clusters, with each data point assigned to the nearest cluster.

Objective Function (Cost Function)

K-Means aims to minimize the within-cluster sum of squares (WCSS), also known as
inertia, which measures the compactness of the clusters. The cost function is:

where:

● Ci represents the i -th cluster,
● μi is the centroid of the i-th cluster,
● ∥x−μi∥2 is the squared distance between data point x and centroid μi .

The goal is to minimize WCSS by adjusting centroids and cluster assignments.

Choosing the Optimal Number of Clusters

Selecting the best k is essential for good clustering results. Two common
techniques include:

1. Elbow Method:
○ Plot the WCSS for different values of k and look for the “elbow” point,

where the decrease in WCSS slows down. The elbow indicates a good
balance between cluster compactness and the number of clusters.

2. Silhouette Score:
○ This metric measures how similar a point is to its own cluster compared

to other clusters. The silhouette score ranges from -1 to 1, where a
higher score indicates better-defined clusters.

Example of K-Means Clustering

Imagine we want to segment customers into groups based on age and income:

1. Select k: We choose k=3 to create three clusters.
2. Initialize Centroids: Select three random points as initial centroids.
3. Assign Points to Centroids: For each customer, assign them to the nearest

centroid based on their age and income.
4. Update Centroids: Recalculate the centroids for each cluster by averaging the

ages and incomes of customers in each cluster.
5. Repeat Until Convergence: Repeat the assignments and centroid updates

until cluster assignments no longer change.

Advantages of K-Means

● Simple and Efficient: K-Means is computationally efficient, making it suitable
for large datasets.

● Interpretable: The clusters are easy to interpret, as each point belongs to
only one cluster.

● Scales Well: K-Means can handle high-dimensional data with relatively low
complexity.

Disadvantages of K-Means

● Sensitive to Initial Centroids: Initial centroid placement can affect results,
sometimes leading to poor clustering.

● Fixed Number of Clusters: Requires the number of clusters kkk to be
specified in advance, which may not always be obvious.

● Assumes Spherical Clusters: K-Means assumes clusters are spherical and
similar in size, which may not fit all data distributions well.

Applications of K-Means Clustering

● Customer Segmentation: Grouping customers based on behavior for
targeted marketing.

● Image Compression: Reducing image colors by clustering pixels, where each
cluster represents a dominant color.

● Document Classification: Organizing documents into topics based on word
frequency or other features.

● Anomaly Detection: Identifying unusual data points that don't fit into any
cluster.

Ensemble Methods in Machine Learning

Ensemble methods are powerful techniques in machine learning that combine
predictions from multiple models, often referred to as weak learners, to produce a
more accurate, robust, and generalizable model. The main idea behind ensemble
methods is that while a single model might make mistakes, combining multiple
models can balance out errors and improve performance. Ensemble methods are
widely used in both classification and regression tasks and are popular in predictive
analytics and machine learning competitions due to their high accuracy.

Why Use Ensemble Methods?

1. Increased Accuracy: By combining several models, ensemble methods reduce
the variance and bias in predictions, leading to higher accuracy.

2. Robustness: Ensemble methods can handle various data anomalies and
reduce the likelihood of overfitting.

3. Generalization: They often generalize better on unseen data since they blend
predictions from different models, which improves the model's ability to
adapt to new data.

Types of Ensemble Methods

There are several common ensemble techniques, each with different approaches to
combining models:

1. Bagging (Bootstrap Aggregating):
○ Overview: Bagging builds multiple models in parallel on different

subsets of the data and combines their predictions.
○ Method: Each model is trained on a random subset of data (created by

sampling with replacement, called bootstrapping). The final prediction
is made by aggregating predictions from each model, usually by
majority voting for classification or averaging for regression.

○ Popular Example: Random Forest, where multiple decision trees are
trained on different subsets of the data, and the final prediction is an
average or majority vote of the trees.

2. Boosting:
○ Overview: Boosting trains models sequentially, where each model tries

to correct the errors of the previous one.
○ Method: It adjusts weights for each instance, so more focus is put on

instances that previous models misclassified. At each step, a new
model is added to reduce the residual error from previous models.
The final prediction is a weighted combination of all models.

○ Popular Examples: AdaBoost, Gradient Boosting, XGBoost, LightGBM,
and CatBoost.

3. Stacking:
○ Overview: Stacking (or stacked generalization) uses multiple models,

called base learners, and combines them using a meta-model that
learns how to blend their predictions.

○ Method: Base learners are trained on the training dataset, and their
predictions are passed to a meta-learner, which combines the
predictions to make the final prediction. The meta-learner can be any
model, often a linear regression or another type of ensemble.

○ Advantage: Stacking allows using a diverse set of models and can
capture complex patterns by leveraging the strengths of each base
learner.

4. Voting (for Classification) and Averaging (for Regression):

○ Overview: In voting-based ensembles, multiple models’ predictions are
combined through majority voting or averaging.

○ Method: For classification, hard voting takes the majority class
prediction, while soft voting averages the class probabilities and
chooses the class with the highest average probability. For regression,
averaging simply takes the mean of the predictions from all models.

○ Example: An ensemble where different algorithms like decision trees,
logistic regression, and K-nearest neighbors all vote on the
classification.

Key Applications of Ensemble Methods

1. Classification: Used widely in applications like spam detection, fraud
detection, and medical diagnosis for improving accuracy.

2. Regression: Effective in forecasting tasks, such as predicting stock prices, real
estate values, or customer demand.

3. Anomaly Detection: Ensembles help detect unusual data points in
cybersecurity, manufacturing, and network traffic analysis.

4. Recommendation Systems: By combining models, ensembles enhance the
relevance of recommendations for users on streaming or e-commerce
platforms.

Boosting in Machine Learning

Boosting is an ensemble method in machine learning that combines multiple weak
learners to create a strong predictive model. Unlike other ensemble methods where
models are trained independently (like bagging), boosting builds models sequentially,
each new model correcting the errors of the previous ones. Boosting aims to reduce
bias and variance in predictions, making it highly effective for both classification and
regression tasks.

How Boosting Works

Boosting improves prediction accuracy through a process that typically includes the
following steps:

1. Initialize Weights:
○ Begin by assigning equal weights to all instances in the dataset. These

weights represent the significance of each instance in training the
initial weak learner.

2. Train Weak Learner:

