
Example of SVM for Binary Classification 

Imagine we want to classify emails as spam or not spam based on features such as 
word frequency, email length, and sender reputation. 

1. Select Hyperplane: 
○ SVM will find a hyperplane that separates spam and non-spam emails 

with the maximum margin. 
2. Support Vectors: 

○ Emails closest to the hyperplane act as support vectors. 
3. Prediction: 

○ New emails are classified based on their position relative to the 
hyperplane. 

 

Applications of SVM 

● Text Classification: Commonly used for spam detection and sentiment 
analysis. 

● Image Recognition: SVM is effective for image classification tasks, such as 
handwriting recognition. 

● Bioinformatics: Used in gene classification, protein structure prediction, and 
cancer classification. 

● Face Detection: SVMs can classify regions in an image as face or non-face. 

 

 

Unit 4 

Unsupervised Learning 

Unsupervised Learning is a type of machine learning where the algorithm learns 
from unlabeled data without predefined categories or target outcomes. The goal is 
for the model to discover patterns, structures, or relationships within the data 
independently. This approach is especially useful when labeled data is unavailable, 
and it enables insights into data organization or grouping based on intrinsic 
characteristics. 

 

How Unsupervised Learning Works 



In unsupervised learning, the model receives data with only input features (no labels 
or target values) and tries to make sense of it by organizing or grouping the data 
based on similarities and patterns. The main tasks in unsupervised learning include: 

1. Clustering: Organizes data into distinct groups (clusters) based on similarities. 
2. Association: Identifies rules or associations within data. 
3. Dimensionality Reduction: Reduces the number of features while retaining 

essential information, improving visualization and simplifying data for further 
processing. 

 

Types of Unsupervised Learning Algorithms 

1. Clustering Algorithms: 
○ K-Means Clustering: Partitions data into a predefined number of 

clusters (k) by minimizing the distance between data points and their 
cluster centroids. 

○ Hierarchical Clustering: Builds a hierarchy of clusters, either by merging 
smaller clusters or dividing larger clusters. 

○ DBSCAN (Density-Based Spatial Clustering of Applications with Noise): 
Forms clusters based on data density, allowing it to identify clusters of 
varying shapes and handle noise. 

2. Association Rule Learning: 
○ Apriori Algorithm: Finds frequent itemsets in data and derives 

association rules based on user-defined support and confidence 
levels. 

○ Eclat Algorithm: An efficient algorithm for frequent itemset mining, 
used for association tasks in sparse datasets. 

3. Dimensionality Reduction: 
○ Principal Component Analysis (PCA): Reduces dimensionality by 

projecting data into fewer dimensions while preserving variance. 
○ t-SNE (t-Distributed Stochastic Neighbor Embedding): Visualizes 

high-dimensional data by reducing dimensions while maintaining 
neighborhood structures. 

○ Autoencoders: Neural network architectures used for dimensionality 
reduction by learning efficient data representations. 

 

Examples of Unsupervised Learning 

1. Customer Segmentation: Clustering customers into segments based on 
purchase behavior, enabling targeted marketing strategies. 

2. Anomaly Detection: Identifying unusual patterns in data (such as fraudulent 
transactions) by learning normal behavior and flagging deviations. 



3. Market Basket Analysis: Using association rule learning to discover which 
items are frequently bought together, guiding inventory management and 
sales strategies. 

4. Image Compression: Reducing the size of images by dimensionality reduction 
without significant loss in quality. 

5. Recommendation Systems: Grouping users or products based on behavior 
patterns to suggest similar items. 

 

Advantages of Unsupervised Learning 

● Handles Large Datasets: Can manage and organize vast amounts of data, 
especially when labels are unavailable. 

● Reveals Hidden Patterns: Useful for discovering unknown structures, groups, 
or patterns in data, leading to new insights. 

● No Need for Labeled Data: Reduces the reliance on labeled data, which can 
be expensive and time-consuming to acquire. 

 

Challenges in Unsupervised Learning 

● Interpretability: The insights generated by unsupervised models can be 
difficult to interpret, as there are no labels guiding the outcome. 

● Evaluating Model Quality: Evaluating the accuracy and performance of 
unsupervised models is challenging without labeled data for validation. 

● Sensitive to Initial Parameters: Some algorithms, like K-means, depend 
heavily on initial parameters, which can lead to varied results. 

 

Applications of Unsupervised Learning 

● Healthcare: Clustering patients based on symptoms or genetic information to 
uncover disease patterns and predict outcomes. 

● Social Network Analysis: Identifying communities or influential users based 
on interaction data. 

● Document Classification: Grouping articles, documents, or news into topics 
without predefined labels. 

● Anomaly Detection in Security: Detecting unusual patterns that may indicate 
potential threats in cybersecurity systems. 

 

Clustering in Machine Learning 



Clustering is an unsupervised learning technique in machine learning that involves 
grouping data points into clusters based on their similarity. It is used when we don't 
have labeled data and want to uncover the underlying structure of the data. Each 
cluster consists of data points that are more similar to one another than to points in 
other clusters. Clustering is widely used in fields such as customer segmentation, 
image analysis, document classification, and more. 

 

Types of Clustering 

There are several types of clustering methods, each suited to different types of data 
and goals: 

1. Partition-Based Clustering: 
○ Divides the data into non-overlapping clusters. 
○ Example: K-Means Clustering groups data into a predetermined 

number of clusters (k) by minimizing the distance between points and 
their cluster centroids. 

2. Hierarchical Clustering: 
○ Builds a hierarchy of clusters, either by agglomerative (bottom-up) or 

divisive (top-down) methods. 
○ Example: Agglomerative Clustering starts with each data point as a 

separate cluster and iteratively merges them based on similarity until 
one cluster or a specified number of clusters is formed. 

3. Density-Based Clustering: 
○ Forms clusters based on the density of data points, which is useful for 

identifying clusters of varying shapes and sizes. 
○ Example: DBSCAN (Density-Based Spatial Clustering of Applications 

with Noise) creates clusters based on regions of high data density, 
distinguishing between core, border, and noise points. 

4. Model-Based Clustering: 
○ Assumes the data is generated from a mixture of underlying probability 

distributions, using statistical models for clustering. 
○ Example: Gaussian Mixture Models (GMM) assumes that data points 

come from a combination of Gaussian distributions, which can 
capture more complex cluster shapes than K-Means. 

 

Key Applications of Clustering 

1. Customer Segmentation: Grouping customers with similar purchasing 
behavior for targeted marketing. 

2. Image Segmentation: Dividing images into meaningful parts based on color, 
texture, or other features. 

3. Document Classification: Organizing documents into categories based on 
topics without prior labeling. 



4. Anomaly Detection: Identifying unusual data points or outliers that don't fit 
into any cluster, useful in fraud detection. 

5. Social Network Analysis: Grouping users into communities based on 
interaction patterns. 

Clustering : K-Means 

K-Means is one of the most widely used algorithms for clustering, a type of 
unsupervised learning where the goal is to group data points into clusters based on 
their similarity. K-Means organizes data into a specified number of clusters kkk by 
minimizing the distances between data points and the cluster centroids, making it 
ideal for segmenting large datasets. 

 

How K-Means Works 

The K-Means algorithm follows these steps: 

1. Choose the Number of Clusters k : 
○ Decide on the number of clusters,  k, which will determine how many 

distinct groups the algorithm will create. 
2. Initialize Centroids: 

○ Select k  initial points in the dataset as centroids (centers of the 
clusters). These can be chosen randomly or by another method. 

3. Assign Points to Nearest Centroid: 
○ For each data point, calculate the distance to each centroid and assign 

the point to the nearest one. This step creates  k clusters based on 
the current centroid positions. 

4. Update Centroids: 
○ After assigning points to clusters, compute the new centroid of each 

cluster by averaging the points within that cluster. This average 
becomes the new position of the centroid. 

5. Repeat Until Convergence: 
○ Steps 3 and 4 are repeated until the centroids no longer change 

significantly, meaning the clusters are stable. This is called 
convergence. 

The output is k  clusters, with each data point assigned to the nearest cluster. 

 

Objective Function (Cost Function) 

K-Means aims to minimize the within-cluster sum of squares (WCSS), also known as 
inertia, which measures the compactness of the clusters. The cost function is: 



 

where: 

● Ci  represents the i -th cluster, 
● μi  is the centroid of the i-th cluster, 
● ∥x−μi∥2 is the squared distance between data point x  and centroid μi . 

The goal is to minimize WCSS by adjusting centroids and cluster assignments. 

 

Choosing the Optimal Number of Clusters 

Selecting the best k  is essential for good clustering results. Two common 
techniques include: 

1. Elbow Method: 
○ Plot the WCSS for different values of  k and look for the “elbow” point, 

where the decrease in WCSS slows down. The elbow indicates a good 
balance between cluster compactness and the number of clusters. 

2. Silhouette Score: 
○ This metric measures how similar a point is to its own cluster compared 

to other clusters. The silhouette score ranges from -1 to 1, where a 
higher score indicates better-defined clusters. 

 

Example of K-Means Clustering 

Imagine we want to segment customers into groups based on age and income: 

1. Select  k: We choose k=3  to create three clusters. 
2. Initialize Centroids: Select three random points as initial centroids. 
3. Assign Points to Centroids: For each customer, assign them to the nearest 

centroid based on their age and income. 
4. Update Centroids: Recalculate the centroids for each cluster by averaging the 

ages and incomes of customers in each cluster. 
5. Repeat Until Convergence: Repeat the assignments and centroid updates 

until cluster assignments no longer change. 

 

Advantages of K-Means 



● Simple and Efficient: K-Means is computationally efficient, making it suitable 
for large datasets. 

● Interpretable: The clusters are easy to interpret, as each point belongs to 
only one cluster. 

● Scales Well: K-Means can handle high-dimensional data with relatively low 
complexity. 

 

Disadvantages of K-Means 

● Sensitive to Initial Centroids: Initial centroid placement can affect results, 
sometimes leading to poor clustering. 

● Fixed Number of Clusters: Requires the number of clusters kkk to be 
specified in advance, which may not always be obvious. 

● Assumes Spherical Clusters: K-Means assumes clusters are spherical and 
similar in size, which may not fit all data distributions well. 

 

Applications of K-Means Clustering 

● Customer Segmentation: Grouping customers based on behavior for 
targeted marketing. 

● Image Compression: Reducing image colors by clustering pixels, where each 
cluster represents a dominant color. 

● Document Classification: Organizing documents into topics based on word 
frequency or other features. 

● Anomaly Detection: Identifying unusual data points that don't fit into any 
cluster. 

 

Ensemble Methods in Machine Learning 

Ensemble methods are powerful techniques in machine learning that combine 
predictions from multiple models, often referred to as weak learners, to produce a 
more accurate, robust, and generalizable model. The main idea behind ensemble 
methods is that while a single model might make mistakes, combining multiple 
models can balance out errors and improve performance. Ensemble methods are 
widely used in both classification and regression tasks and are popular in predictive 
analytics and machine learning competitions due to their high accuracy. 

 

Why Use Ensemble Methods? 



1. Increased Accuracy: By combining several models, ensemble methods reduce 
the variance and bias in predictions, leading to higher accuracy. 

2. Robustness: Ensemble methods can handle various data anomalies and 
reduce the likelihood of overfitting. 

3. Generalization: They often generalize better on unseen data since they blend 
predictions from different models, which improves the model's ability to 
adapt to new data. 

 

Types of Ensemble Methods 

There are several common ensemble techniques, each with different approaches to 
combining models: 

1. Bagging (Bootstrap Aggregating): 
○ Overview: Bagging builds multiple models in parallel on different 

subsets of the data and combines their predictions. 
○ Method: Each model is trained on a random subset of data (created by 

sampling with replacement, called bootstrapping). The final prediction 
is made by aggregating predictions from each model, usually by 
majority voting for classification or averaging for regression. 

○ Popular Example: Random Forest, where multiple decision trees are 
trained on different subsets of the data, and the final prediction is an 
average or majority vote of the trees. 

2. Boosting: 
○ Overview: Boosting trains models sequentially, where each model tries 

to correct the errors of the previous one. 
○ Method: It adjusts weights for each instance, so more focus is put on 

instances that previous models misclassified. At each step, a new 
model is added to reduce the residual error from previous models. 
The final prediction is a weighted combination of all models. 

○ Popular Examples: AdaBoost, Gradient Boosting, XGBoost, LightGBM, 
and CatBoost. 

3. Stacking: 
○ Overview: Stacking (or stacked generalization) uses multiple models, 

called base learners, and combines them using a meta-model that 
learns how to blend their predictions. 

○ Method: Base learners are trained on the training dataset, and their 
predictions are passed to a meta-learner, which combines the 
predictions to make the final prediction. The meta-learner can be any 
model, often a linear regression or another type of ensemble. 

○ Advantage: Stacking allows using a diverse set of models and can 
capture complex patterns by leveraging the strengths of each base 
learner. 

4. Voting (for Classification) and Averaging (for Regression): 



○ Overview: In voting-based ensembles, multiple models’ predictions are 
combined through majority voting or averaging. 

○ Method: For classification, hard voting takes the majority class 
prediction, while soft voting averages the class probabilities and 
chooses the class with the highest average probability. For regression, 
averaging simply takes the mean of the predictions from all models. 

○ Example: An ensemble where different algorithms like decision trees, 
logistic regression, and K-nearest neighbors all vote on the 
classification. 

 

Key Applications of Ensemble Methods 

1. Classification: Used widely in applications like spam detection, fraud 
detection, and medical diagnosis for improving accuracy. 

2. Regression: Effective in forecasting tasks, such as predicting stock prices, real 
estate values, or customer demand. 

3. Anomaly Detection: Ensembles help detect unusual data points in 
cybersecurity, manufacturing, and network traffic analysis. 

4. Recommendation Systems: By combining models, ensembles enhance the 
relevance of recommendations for users on streaming or e-commerce 
platforms. 

 

Boosting in Machine Learning 

Boosting is an ensemble method in machine learning that combines multiple weak 
learners to create a strong predictive model. Unlike other ensemble methods where 
models are trained independently (like bagging), boosting builds models sequentially, 
each new model correcting the errors of the previous ones. Boosting aims to reduce 
bias and variance in predictions, making it highly effective for both classification and 
regression tasks. 

 

How Boosting Works 

Boosting improves prediction accuracy through a process that typically includes the 
following steps: 

1. Initialize Weights: 
○ Begin by assigning equal weights to all instances in the dataset. These 

weights represent the significance of each instance in training the 
initial weak learner. 

2. Train Weak Learner: 


