
● Algorithms Sensitive to Scale: Many machine learning algorithms (e.g., 
gradient-based optimizations, k-means clustering) perform better with 
standardized data. 

● When Data is Not Normally Distributed: Standardization brings features to a 
common scale without distorting differences in variances, even if the original 
data is not normally distributed. 

● Feature Comparability: When features have different units or scales, 
standardization ensures that each feature contributes equally. 

 

Covariance of a Data Matrix 

In a data matrix, covariance measures the degree to which two features (variables) 
vary together. For any two features, a positive covariance indicates that as one 
feature increases, the other tends to increase, while a negative covariance indicates 
that as one feature increases, the other tends to decrease. When the covariance is 
close to zero, it suggests that the features are independent or uncorrelated. 

Covariance is useful in understanding relationships between features and is 
especially valuable in techniques like Principal Component Analysis (PCA) for 
dimensionality reduction. 

 

Covariance Matrix 

For a dataset with m observations (rows) and n features (columns), we can calculate 
an n×n covariance matrix, denoted as Σ, where each element σij represents the 
covariance between features i and j. 

Covariance Formula 

For two features X and Y, the covariance is calculated as: 

 

Where: 

● xk are values of features X and Y for the k-th observation. 
● μX are the means of features X and Y. 
● m is the total number of observations. 



 

Constructing the Covariance Matrix 

1. Calculate the Mean of Each Feature: Find the mean of each feature across all 
observations. 

2. Compute Pairwise Covariances: For each pair of features i and j, calculate the 
covariance between them. 

3. Arrange in Matrix Form: Organize the covariance values into an n×n matrix, 
where: 

○ Diagonal elements σii represent the variance of each feature. 
○ Off-diagonal elements σij represent the covariance between features i 

and j. 

 

Applications of the Covariance Matrix 

● Understanding Feature Relationships: Covariance matrices help identify how 
features relate to one another, which can aid in feature selection. 

● Dimensionality Reduction: Techniques like PCA use covariance matrices to 
find the principal components that capture the most variance, reducing data 
dimensions. 

Principal Component Analysis (PCA) for 
Dimensionality Reduction 

Principal Component Analysis (PCA) is a widely used technique for dimensionality 
reduction in machine learning and data science. PCA transforms a high-dimensional 
dataset into a lower-dimensional form, while retaining as much of the dataset's 
variation as possible. By focusing on the most significant features, PCA can simplify 
data, reduce computational costs, and improve model performance. 

 

How PCA Works 

PCA converts the original features into new, uncorrelated features called principal 
components. These components are linear combinations of the original features and 
capture the maximum variance within the data. 

Steps in PCA: 

1. Standardize the Data: First, standardize the data to have a mean of 0 and a 
standard deviation of 1 for each feature. This step ensures that all features 
contribute equally to the analysis. 


