
 

 

Column Standardization 

Column standardization is a preprocessing technique used in machine learning to 
scale each feature (column) so that it has a mean of 0 and a standard deviation of 1. 
This transformation, also called Z-score standardization or Z-score normalization, 
makes data values comparable across different features. Standardization is 
especially helpful in algorithms sensitive to the scale of features, such as linear 
regression, logistic regression, and neural networks. 

 

How Column Standardization Works 

Given a data matrix Xwith m observations (rows) and n features (columns), we 
standardize each feature j as follows: 

For each feature (column) j: 

1. Calculate the Mean (μj): Find the average value of all entries in column j. 
2. Calculate the Standard Deviation (σj): Measure the spread of values around 

the mean for column j. 
3. Apply Standardization Formula:  



 

After standardization: 

● Each column will have a mean of 0. 
● Each column will have a standard deviation of 1. 

 

Example of Column Standardization 

Consider a simple data matrix with two features, Age and Income: 

 

 
 

 

When to Use Column Standardization 



● Algorithms Sensitive to Scale: Many machine learning algorithms (e.g., 
gradient-based optimizations, k-means clustering) perform better with 
standardized data. 

● When Data is Not Normally Distributed: Standardization brings features to a 
common scale without distorting differences in variances, even if the original 
data is not normally distributed. 

● Feature Comparability: When features have different units or scales, 
standardization ensures that each feature contributes equally. 

 

Covariance of a Data Matrix 

In a data matrix, covariance measures the degree to which two features (variables) 
vary together. For any two features, a positive covariance indicates that as one 
feature increases, the other tends to increase, while a negative covariance indicates 
that as one feature increases, the other tends to decrease. When the covariance is 
close to zero, it suggests that the features are independent or uncorrelated. 

Covariance is useful in understanding relationships between features and is 
especially valuable in techniques like Principal Component Analysis (PCA) for 
dimensionality reduction. 

 

Covariance Matrix 

For a dataset with m observations (rows) and n features (columns), we can calculate 
an n×n covariance matrix, denoted as Σ, where each element σij represents the 
covariance between features i and j. 

Covariance Formula 

For two features X and Y, the covariance is calculated as: 

 

Where: 

● xk are values of features X and Y for the k-th observation. 
● μX are the means of features X and Y. 
● m is the total number of observations. 


