
White Box Testing

The box testing approach of software testing consists of black box testing and white box
testing. We are discussing here white box testing which also known as glass box
is testing, structural testing, clear box testing, open box testing and transparent
box testing. It tests internal coding and infrastructure of a software focus on checking of
predefined inputs against expected and desired outputs. It is based on inner workings of
an application and revolves around internal structure testing. In this type of testing
programming skills are required to design test cases. The primary goal of white box
testing is to focus on the flow of inputs and outputs through the software and
strengthening the security of the software.

The term 'white box' is used because of the internal perspective of the system. The clear
box or white box or transparent box name denote the ability to see through the
software's outer shell into its inner workings.

Developers do white box testing. In this, the developer will test every line of the code of
the program. The developers perform the White-box testing and then send the
application or the software to the testing team, where they will perform the black box
testing and verify the application along with the requirements and identify the bugs and
sends it to the developer.

The developer fixes the bugs and does one round of white box testing and sends it to
the testing team. Here, fixing the bugs implies that the bug is deleted, and the particular
feature is working fine on the application.

Here, the test engineers will not include in fixing the defects for the following reasons:

o Fixing the bug might interrupt the other features. Therefore, the test engineer
should always find the bugs, and developers should still be doing the bug
fixes.

o If the test engineers spend most of the time fixing the defects, then they may
be unable to find the other bugs in the application.

The white box testing contains various tests, which are as follows:

o Path testing
o Loop testing
o Condition testing
o Testing based on the memory perspective
o Test performance of the program

Path testing

In the path testing, we will write the flow graphs and test all independent paths. Here
writing the flow graph implies that flow graphs are representing the flow of the program
and also show how every program is added with one another as we can see in the
below image:

https://www.javatpoint.com/black-box-testing
https://www.javatpoint.com/black-box-testing

And test all the independent paths implies that suppose a path from main() to function G,
first set the parameters and test if the program is correct in that particular path, and in
the same way test all other paths and fix the bugs.

Loop testing

In the loop testing, we will test the loops such as while, for, and do-while, etc. and also
check for ending condition if working correctly and if the size of the conditions is enough.

For example: we have one program where the developers have given about 50,000
loops.

1. {
2. while(50,000)
3. ……
4. ……
5. }

We cannot test this program manually for all the 50,000 loops cycle. So we write a small
program that helps for all 50,000 cycles, as we can see in the below program, that test P
is written in the similar language as the source code program, and this is known as a
Unit test. And it is written by the developers only.

1. Test P
2. {
3. ……
4. …… }

As we can see in the below image that, we have various requirements such as 1, 2, 3, 4.
And then, the developer writes the programs such as program 1,2,3,4 for the parallel
conditions. Here the application contains the 100s line of codes.

The developer will do the white box testing, and they will test all the five programs line by
line of code to find the bug. If they found any bug in any of the programs, they will
correct it. And they again have to test the system then this process contains lots of time
and effort and slows down the product release time.

Now, suppose we have another case, where the clients want to modify the requirements,
then the developer will do the required changes and test all four program again, which
take lots of time and efforts.

These issues can be resolved in the following ways:

In this, we will write test for a similar program where the developer writes these test code
in the related language as the source code. Then they execute these test code, which is
also known as unit test programs. These test programs linked to the main program and
implemented as programs.

Therefore, if there is any requirement of modification or bug in the code, then the
developer makes the adjustment both in the main program and the test program and
then executes the test program.

Condition testing

In this, we will test all logical conditions for both true and false values; that is, we will
verify for both if and else condition.

For example:

1. if(condition) - true
2. {
3. …..
4. ……
5. ……
6. }
7. else - false
8. {
9. …..
10. ……
11. ……
12. }

The above program will work fine for both the conditions, which means that if the
condition is accurate, and then else should be false and conversely.

Testing based on the memory (size) perspective

The size of the code is increasing for the following reasons:

o The reuse of code is not there: let us take one example, where we have
four programs of the same application, and the first ten lines of the program
are similar. We can write these ten lines as a discrete function, and it should
be accessible by the above four programs as well. And also, if any bug is
there, we can modify the line of code in the function rather than the entire
code.

o The developers use the logic that might be modified. If one programmer
writes code and the file size is up to 250kb, then another programmer could
write a similar code using the different logic, and the file size is up to 100kb.

o The developer declares so many functions and variables that might never
be used in any portion of the code. Therefore, the size of the program will
increase.

For example,

1. Int a=15;
2. Int b=20;
3. String S= "Welcome";
4. ….
5. …..
6. …..
7. ….
8. …..
9. Int p=b;

10. Create user()
11. {
12. ……
13. ……
14. ….. 200's line of code
15. }

In the above code, we can see that the integer a has never been called anywhere in the
program, and also the function Create user has never been called anywhere in the
code. Therefore, it leads us to memory consumption.

We cannot remember this type of mistake manually by verifying the code because of the
large code. So, we have a built-in tool, which helps us to test the needless variables and
functions. And, here we have the tool called Rational purify.

Suppose we have three programs such as Program P, Q, and R, which provides the
input to S. And S goes into the programs and verifies the unused variables and then
gives the outcome. After that, the developers will click on several results and call or
remove the unnecessary function and the variables.

This tool is only used for the C programming language and C++ programming language;
for another language, we have other related tools available in the market.

o The developer does not use the available in-built functions; instead they write
the full features using their logic. Therefore, it leads us to waste of time and
also postpone the product releases.

Test the performance (Speed, response time) of the program

The application could be slow for the following reasons:

o When logic is used.
o For the conditional cases, we will use or & and adequately.
o Switch case, which means we cannot use nested if, instead of using a switch

case.

https://www.javatpoint.com/c-programming-language-tutorial
https://www.javatpoint.com/cpp-tutorial

As we know that the developer is performing white box testing, they understand that the
code is running slow, or the performance of the program is also getting deliberate. And
the developer cannot go manually over the program and verify which line of the code is
slowing the program.

To recover with this condition, we have a tool called Rational Quantify, which resolves
these kinds of issues automatically. Once the entire code is ready, the rational quantify
tool will go through the code and execute it. And we can see the outcome in the result
sheet in the form of thick and thin lines.

Here, the thick line specifies which section of code is time-consuming. When we double-
click on the thick line, the tool will take us to that line or piece of code automatically,
which is also displayed in a different color. We can change that code and again and use
this tool. When the order of lines is all thin, we know that the presentation of the program
has enhanced. And the developers will perform the white box testing automatically
because it saves time rather than performing manually.

Test cases for white box testing are derived from the design phase of the software
development lifecycle. Data flow testing, control flow testing, path testing, branch testing,
statement and decision coverage all these techniques used by white box testing as a
guideline to create an error-free software.

White box testing follows some working steps to make testing manageable and easy to
understand what the next task to do. There are some basic steps to perform white box
testing.

Generic steps of white box testing

o Design all test scenarios, test cases and prioritize them according to high
priority number.

o This step involves the study of code at runtime to examine the resource
utilization, not accessed areas of the code, time taken by various methods
and operations and so on.

o In this step testing of internal subroutines takes place. Internal subroutines
such as nonpublic methods, interfaces are able to handle all types of data
appropriately or not.

o This step focuses on testing of control statements like loops and conditional
statements to check the efficiency and accuracy for different data inputs.

o In the last step white box testing includes security testing to check all possible
security loopholes by looking at how the code handles security.

Reasons for white box testing

o It identifies internal security holes.
o To check the way of input inside the code.
o Check the functionality of conditional loops.
o To test function, object, and statement at an individual level.

Advantages of White box testing

o White box testing optimizes code so hidden errors can be identified.
o Test cases of white box testing can be easily automated.
o This testing is more thorough than other testing approaches as it covers all

code paths.
o It can be started in the SDLC phase even without GUI.

Disadvantages of White box testing

o White box testing is too much time consuming when it comes to large-scale
programming applications.

o White box testing is much expensive and complex.
o It can lead to production error because it is not detailed by the developers.
o White box testing needs professional programmers who have a detailed

knowledge and understanding of programming language and implementation.

Techniques Used in White Box Testing

Data Flow Testing

Data flow testing is a group of testing
strategies that examines the control flow
of programs in order to explore the
sequence of variables according to the
sequence of events.

Control Flow Testing Control flow testing determines the
execution order of statements or

https://www.javatpoint.com/data-flow-testing-in-white-box-testing
https://www.javatpoint.com/control-flow-testing-in-white-box-testing

instructions of the program through a
control structure. The control structure of
a program is used to develop a test case
for the program. In this technique, a
particular part of a large program is
selected by the tester to set the testing
path. Test cases represented by the
control graph of the program.

Branch Testing

Branch coverage technique is used to
cover all branches of the control flow
graph. It covers all the possible
outcomes (true and false) of each
condition of decision point at least once.

Statement Testing

Statement coverage technique is used to
design white box test cases. This
technique involves execution of all
statements of the source code at least
once. It is used to calculate the total
number of executed statements in the
source code, out of total statements
present in the source code.

Decision Testing

This technique reports true and false
outcomes of Boolean expressions.
Whenever there is a possibility of two or
more outcomes from the statements like
do while statement, if statement and
case statement (Control flow
statements), it is considered as decision
point because there are two outcomes
either true or false.

Difference between white-box testing and black-box
testing

Following are the significant differences between white box testing and black box
testing:

White-box testing white box testing Bla black box testing ck box testing

https://www.javatpoint.com/branch-coverage-testing-in-white-box-testing
https://www.javatpoint.com/statement-coverage-testing-in-white-box-testing
https://www.javatpoint.com/decision-coverage-testing-in-white-box-testing

The developers can perform white box
testing.

The test engineers perform the black box
testing.

To perform WBT, we should have an
understanding of the programming
languages.

To perform BBT, there is no need to have
an understanding of the programming
languages.

In this, we will look into the source code
and test the logic of the code.

In this, we will verify the functionality of
the application based on the requirement
specification.

In this, the developer should know about
the internal design of the code.

In this, there is no need to know about
the internal design of the code.

Black box testing

Black box testing is a technique of software testing which examines the functionality of
software without peering into its internal structure or coding. The primary source of black
box testing is a specification of requirements that is stated by the customer.

In this method, tester selects a function and gives input value to examine its
functionality, and checks whether the function is giving expected output or not. If the
function produces correct output, then it is passed in testing, otherwise failed. The test
team reports the result to the development team and then tests the next function. After
completing testing of all functions if there are severe problems, then it is given back to
the development team for correction.

Generic steps of black box testing

o The black box test is based on the specification of requirements, so it is
examined in the beginning.

o In the second step, the tester creates a positive test scenario and an adverse
test scenario by selecting valid and invalid input values to check that the
software is processing them correctly or incorrectly.

o In the third step, the tester develops various test cases such as decision table,
all pairs test, equivalent division, error estimation, cause-effect graph, etc.

o The fourth phase includes the execution of all test cases.
o In the fifth step, the tester compares the expected output against the actual

output.
o In the sixth and final step, if there is any flaw in the software, then it is cured

and tested again.

Test procedure

The test procedure of black box testing is a kind of process in which the tester has
specific knowledge about the software's work, and it develops test cases to check the
accuracy of the software's functionality.

It does not require programming knowledge of the software. All test cases are designed
by considering the input and output of a particular function.A tester knows about the
definite output of a particular input, but not about how the result is arising. There are
various techniques used in black box testing for testing like decision table technique,
boundary value analysis technique, state transition, All-pair testing, cause-effect graph
technique, equivalence partitioning technique, error guessing technique, use case
technique and user story technique. All these techniques have been explained in detail
within the tutorial.

Test cases

Test cases are created considering the specification of the requirements. These test
cases are generally created from working descriptions of the software including
requirements, design parameters, and other specifications. For the testing, the test
designer selects both positive test scenario by taking valid input values and adverse test
scenario by taking invalid input values to determine the correct output. Test cases are
mainly designed for functional testing but can also be used for non-functional testing.
Test cases are designed by the testing team, there is not any involvement of the
development team of software.

Techniques Used in Black Box Testing

Decision Table Technique

Decision Table Technique is a
systematic approach where various input
combinations and their respective
system behavior are captured in a
tabular form. It is appropriate for the
functions that have a logical relationship
between two and more than two inputs.

Boundary Value Technique

Boundary Value Technique is used to
test boundary values, boundary values
are those that contain the upper and

https://www.javatpoint.com/decision-table-technique-in-black-box-testing
https://www.javatpoint.com/boundary-value-analysis-in-black-box-testing

lower limit of a variable. It tests, while
entering boundary value whether the
software is producing correct output or
not.

State Transition Technique

State Transition Technique is used to
capture the behavior of the software
application when different input values
are given to the same function. This
applies to those types of applications that
provide the specific number of attempts
to access the application.

All-pair Testing Technique

All-pair testing Technique is used to test
all the possible discrete combinations of
values. This combinational method is
used for testing the application that uses
checkbox input, radio button input, list
box, text box, etc.

Cause-Effect Technique

Cause-Effect Technique underlines the
relationship between a given result and
all the factors affecting the result.It is
based on a collection of requirements.

Equivalence Partitioning Technique

Equivalence partitioning is a technique of
software testing in which input data
divided into partitions of valid and invalid
values, and it is mandatory that all
partitions must exhibit the same
behavior.

Error Guessing Technique

Error guessing is a technique in which
there is no specific method for identifying
the error. It is based on the experience of
the test analyst, where the tester uses
the experience to guess the problematic
areas of the software.

Use Case Technique

Use case Technique used to identify the
test cases from the beginning to the end
of the system as per the usage of the
system. By using this technique, the test

https://www.javatpoint.com/state-transition-technique-in-black-box-testing
https://www.javatpoint.com/all-pairs-testing-technique-in-black-box-testing
https://www.javatpoint.com/cause-and-effect-graph-technique-in-black-box-testing
https://www.javatpoint.com/equivalence-partitioning-technique-in-black-box-testing
https://www.javatpoint.com/error-guessing-technique-in-black-box-testing
https://www.javatpoint.com/use-case-technique-in-black-box-testing

team creates a test scenario that can
exercise the entire software based on the
functionality of each function from start to
end.

GreyBox Testing

Greybox testing is a software testing method to test the software application with partial
knowledge of the internal working structure. It is a combination of black box and white
box testing because it involves access to internal coding to design test cases as white
box testing and testing practices are done at functionality level as black box testing.

GreyBox testing commonly identifies context-specific errors that belong to web systems.
For example; while testing, if tester encounters any defect then he makes changes in
code to resolve the defect and then test it again in real time. It concentrates on all the
layers of any complex software system to increase testing coverage. It gives the ability
to test both presentation layer as well as internal coding structure. It is primarily used in
integration testing and penetration testing.

Why GreyBox testing?

Reasons for GreyBox testing are as follows

o It provides combined benefits of both Blackbox testing and WhiteBox testing.
o It includes the input values of both developers and testers at the same time to

improve the overall quality of the product.
o It reduces time consumption of long process of functional and non-functional

testing.
o It gives sufficient time to the developer to fix the product defects.
o It includes user point of view rather than designer or tester point of view.
o It involves examination of requirements and determination of specifications by

user point of view deeply.

GreyBox Testing Strategy

Grey box testing does not make necessary that the tester must design test cases from
source code. To perform this testing test cases can be designed on the base of,
knowledge of architectures, algorithm, internal states or other high -level descriptions of
the program behavior. It uses all the straightforward techniques of black box testing for
function testing. The test case generation is based on requirements and preset all the
conditions before testing the program by assertion method.

Generic Steps to perform Grey box Testing are:

1. First, select and identify inputs from BlackBox and WhiteBox testing inputs.
2. Second, Identify expected outputs from these selected inputs.
3. Third, identify all the major paths to traverse through during the testing period.
4. The fourth task is to identify sub-functions which are the part of main functions to perform

deep level testing.
5. The fifth task is to identify inputs for subfunctions.
6. The sixth task is to identify expected outputs for subfunctions.
7. The seventh task includes executing a test case for Subfunctions.
8. The eighth task includes verification of the correctness of result.

The test cases designed for Greybox testing includes Security related, Browser related,
GUI related, Operational system related and Database related testing.

Techniques of Grey box Testing

Matrix Testing

This testing technique comes under Grey Box testing. It defines all the used variables of
a particular program. In any program, variable are the elements through which values
can travel inside the program. It should be as per requirement otherwise, it will reduce
the readability of the program and speed of the software. Matrix technique is a method
to remove unused and uninitialized variables by identifying used variables from the
program.

Regression Testing

Regression testing is used to verify that modification in any part of software has not
caused any adverse or unintended side effect in any other part of the software. During
confirmation testing, any defect got fixed, and that part of software started working as
intended, but there might be a possibility that fixed defect may have introduced a
different defect somewhere else in the software. So, regression testing takes care of
these type of defects by testing strategies like retest risky use cases, retest within a
firewall, retest all, etc.

Orthogonal Array Testing or OAT

The purpose of this testing is to cover maximum code with minimum test cases. Test
cases are designed in a way that can cover maximum code as well as GUI functions
with a smaller number of test cases.

Pattern Testing

Pattern testing is applicable to such type of software that is developed by following the
same pattern of previous software. In these type of software possibility to occur the
same type of defects. Pattern testing determines reasons of the failure so they can be
fixed in the next software.

Usually, automated software testing tools are used in Greybox methodology to conduct
the test process. Stubs and module drivers provided to a tester to relieve from manually
code generation.

