
Software Configuration Management 

When we develop software, the product (software) undergoes many changes in their 
maintenance phase; we need to handle these changes effectively. 

Several individuals (programs) works together to achieve these common goals. This individual 
produces several work product (SC Items) e.g., Intermediate version of modules or test data 
used during debugging, parts of the final product. 

The elements that comprise all information produced as a part of the software process are 
collectively called a software configuration. 

As software development progresses, the number of Software Configuration elements (SCI's) 
grow rapidly. 

These are handled and controlled by SCM. This is where we require software configuration 
management. 

A configuration of the product refers not only to the product's constituent but also to a 
particular version of the component. 

Therefore, SCM is the discipline which 

o Identify change 

o Monitor and control change 

o Ensure the proper implementation of change made to the item. 

o Auditing and reporting on the change made. 

Configuration Management (CM) is a technic of identifying, organizing, and controlling 
modification to software being built by a programming team. 

The objective is to maximize productivity by minimizing mistakes (errors). 

CM is used to essential due to the inventory management, library management, and updation 
management of the items essential for the project. 

Why do we need Configuration Management? 

Multiple people are working on software which is consistently updating. It may be a method 
where multiple version, branches, authors are involved in a software project, and the team is 
geographically distributed and works concurrently. It changes in user requirements, and policy, 
budget, schedules need to be accommodated. 



Importance of SCM 

It is practical in controlling and managing the access to various SCIs e.g., by preventing the two 
members of a team for checking out the same component for modification at the same time. 

It provides the tool to ensure that changes are being properly implemented. 

It has the capability of describing and storing the various constituent of software. 

SCM is used in keeping a system in a consistent state by automatically producing derived 
version upon modification of the same component. 

SCM Process 

It uses the tools which keep that the necessary change has been implemented adequately to the 
appropriate component. The SCM process defines a number of tasks: 

o Identification of objects in the software configuration 

o Version Control 

o Change Control 

o Configuration Audit 

o Status Reporting 

Identification 

Basic Object: Unit of Text created by a software engineer during analysis, design, code, or test. 

Aggregate Object: A collection of essential objects and other aggregate objects. Design 
Specification is an aggregate object. 

Each object has a set of distinct characteristics that identify it uniquely: a name, a description, a 
list of resources, and a "realization." 

The interrelationships between configuration objects can be described with a Module 
Interconnection Language (MIL). 

Version Control 

Version Control combines procedures and tools to handle different version of configuration 
objects that are generated during the software process. 



Clemm defines version control in the context of SCM: Configuration management allows a 
user to specify the alternative configuration of the software system through the selection of 
appropriate versions. This is supported by associating attributes with each software version, and 
then allowing a configuration to be specified [and constructed] by describing the set of desired 
attributes. 

Change Control 

James Bach describes change control in the context of SCM is: Change Control is Vital. But the 
forces that make it essential also make it annoying. 

We worry about change because a small confusion in the code can create a big failure in the 
product. But it can also fix a significant failure or enable incredible new capabilities. 

We worry about change because a single rogue developer could sink the project, yet brilliant 
ideas originate in the mind of those rogues, and 

A burdensome change control process could effectively discourage them from doing creative 
work. 

A change request is submitted and calculated to assess technical merit; potential side effects, 
the overall impact on other configuration objects and system functions, and projected cost of 
the change. 

The results of the evaluations are presented as a change report, which is used by a change 
control authority (CCA) - a person or a group who makes a final decision on the status and 
priority of the change. 

The "check-in" and "check-out" process implements two necessary elements of change control-
access control and synchronization control. 

Access Control governs which software engineers have the authority to access and modify a 
particular configuration object. 

Synchronization Control helps to ensure that parallel changes, performed by two different 
people, don't overwrite one another. 

Configuration Audit 

SCM audits to verify that the software product satisfies the baselines requirements and ensures 
that what is built and what is delivered. 

SCM audits also ensure that traceability is maintained between all CIs and that all work requests 
are associated with one or more CI modification. 



SCM audits are the "watchdogs" that ensures that the integrity of the project's scope is 
preserved. 

Status Reporting 

Configuration Status reporting (sometimes also called status accounting) providing accurate 
status and current configuration data to developers, testers, end users, customers and 
stakeholders through admin guides, user guides, FAQs, Release Notes, Installation Guide, 
Configuration Guide, etc. 

Software Maintenance Cost Factors 

There are two types of cost factors involved in software maintenance. 

These are 

o Non-Technical Factors 

o Technical Factors 

Non-Technical Factors 

1. Application Domain 

o If the application of the program is defined and well understood, the system 
requirements may be definitive and maintenance due to changing needs minimized. 

o If the form is entirely new, it is likely that the initial conditions will be modified 
frequently, as user gain experience with the system. 

2. Staff Stability 

o It is simple for the original writer of a program to understand and change an application 
rather than some other person who must understand the program by the study of the 
reports and code listing. 

o If the implementation of a system also maintains that systems, maintenance costs will 
reduce. 

o In practice, the feature of the programming profession is such that persons change jobs 
regularly. It is unusual for one user to develop and maintain an application throughout 
its useful life. 

3. Program Lifetime 



o Programs become obsolete when the program becomes obsolete, or their original 
hardware is replaced, and conversion costs exceed rewriting costs. 

4. Dependence on External Environment 

o If an application is dependent on its external environment, it must be modified as the 
climate changes. 

o For example: 

o Changes in a taxation system might need payroll, accounting, and stock control 
programs to be modified. 

o Taxation changes are nearly frequent, and maintenance costs for these programs are 
associated with the frequency of these changes. 

o A program used in mathematical applications does not typically depend on humans 
changing the assumptions on which the program is based. 

5. Hardware Stability 

o If an application is designed to operate on a specific hardware configuration and that 
configuration does not changes during the program's lifetime, no maintenance costs due 
to hardware changes will be incurred. 

o Hardware developments are so increased that this situation is rare. 

o The application must be changed to use new hardware that replaces obsolete 
equipment. 

Technical Factors 

Technical Factors include the following: 



 

Module Independence 

It should be possible to change one program unit of a system without affecting any other unit. 

Programming Language 

Programs written in a high-level programming language are generally easier to understand than 
programs written in a low-level language. 

Programming Style 

The method in which a program is written contributes to its understandability and hence, the 
ease with which it can be modified. 

Program Validation and Testing 

o Generally, more the time and effort are spent on design validation and program testing, 
the fewer bugs in the program and, consequently, maintenance costs resulting from 
bugs correction are lower. 

o Maintenance costs due to bug's correction are governed by the type of fault to be 
repaired. 

o Coding errors are generally relatively cheap to correct, design errors are more expensive 
as they may include the rewriting of one or more program units. 



o Bugs in the software requirements are usually the most expensive to correct because of 
the drastic design which is generally involved. 

Documentation 

o If a program is supported by clear, complete yet concise documentation, the functions of 
understanding the application can be associatively straight-forward. 

o Program maintenance costs tends to be less for well-reported systems than for the 
system supplied with inadequate or incomplete documentation. 

Configuration Management Techniques 

o One of the essential costs of maintenance is keeping track of all system documents and 
ensuring that these are kept consistent. 

o Effective configuration management can help control these costs. 

 


