
Software Design 

Software design is a mechanism to transform user requirements into some suitable 

form, which helps the programmer in software coding and implementation. It deals 

with representing the client's requirement, as described in SRS (Software 

Requirement Specification) document, into a form, i.e., easily implementable using 

programming language. 

The software design phase is the first step in SDLC (Software Design Life Cycle), 

which moves the concentration from the problem domain to the solution domain. In 

software design, we consider the system to be a set of components or modules with 

clearly defined behaviors & boundaries. 

 

Objectives of Software Design 

Following are the purposes of Software design: 



 

1. Correctness:Software design should be correct as per requirement. 

2. Completeness:The design should have all components like data structures, 

modules, and external interfaces, etc. 

3. Efficiency:Resources should be used efficiently by the program. 

4. Flexibility:Able to modify on changing needs. 

5. Consistency:There should not be any inconsistency in the design. 

6. Maintainability: The design should be so simple so that it can be easily 

maintainable by other designers. 

Software Design Principles 

Software design principles are concerned with providing means to handle the 

complexity of the design process effectively. Effectively managing the complexity will 

not only reduce the effort needed for design but can also reduce the scope of 

introducing errors during design. 



Following are the principles of Software Design 

 

Problem Partitioning 

For small problem, we can handle the entire problem at once but for the significant 

problem, divide the problems and conquer the problem it means to divide the 

problem into smaller pieces so that each piece can be captured separately. 

For software design, the goal is to divide the problem into manageable pieces. 

Benefits of Problem Partitioning 

1. Software is easy to understand 

2. Software becomes simple 

3. Software is easy to test 

4. Software is easy to modify 

5. Software is easy to maintain 

6. Software is easy to expand 

These pieces cannot be entirely independent of each other as they together form the 

system. They have to cooperate and communicate to solve the problem. This 

communication adds complexity. 



Difference between JDK, JRE, and JVM 

Note: As the number of partition increases = Cost of partition and complexity increases 

 

Abstraction 

An abstraction is a tool that enables a designer to consider a component at an 

abstract level without bothering about the internal details of the implementation. 

Abstraction can be used for existing element as well as the component being 

designed. 

Here, there are two common abstraction mechanisms 

1. Functional Abstraction 

2. Data Abstraction 

Functional Abstraction 

i. A module is specified by the method it performs. 

ii. The details of the algorithm to accomplish the functions are not visible to the 

user of the function. 

Functional abstraction forms the basis for Function oriented design approaches. 

Data Abstraction 

Details of the data elements are not visible to the users of data. Data Abstraction 

forms the basis for Object Oriented design approaches. 

 

Modularity 

Modularity specifies to the division of software into separate modules which are 

differently named and addressed and are integrated later on in to obtain the 

completely functional software. It is the only property that allows a program to be 

intellectually manageable. Single large programs are difficult to understand and read 

due to a large number of reference variables, control paths, global variables, etc. 

The desirable properties of a modular system are: 



o Each module is a well-defined system that can be used with other 

applications. 

o Each module has single specified objectives. 

o Modules can be separately compiled and saved in the library. 

o Modules should be easier to use than to build. 

o Modules are simpler from outside than inside. 

Advantages and Disadvantages of Modularity 

In this topic, we will discuss various advantage and disadvantage of Modularity. 

 

Advantages of Modularity 

There are several advantages of Modularity 

o It allows large programs to be written by several or different people 

o It encourages the creation of commonly used routines to be placed in the 

library and used by other programs. 

o It simplifies the overlay procedure of loading a large program into main 

storage. 

o It provides more checkpoints to measure progress. 

o It provides a framework for complete testing, more accessible to test 

o It produced the well designed and more readable program. 



Disadvantages of Modularity 

There are several disadvantages of Modularity 

o Execution time maybe, but not certainly, longer 

o Storage size perhaps, but is not certainly, increased 

o Compilation and loading time may be longer 

o Inter-module communication problems may be increased 

o More linkage required, run-time may be longer, more source lines must be 

written, and more documentation has to be done 

Modular Design 

Modular design reduces the design complexity and results in easier and faster 

implementation by allowing parallel development of various parts of a system. We 

discuss a different section of modular design in detail in this section: 

1. Functional Independence: Functional independence is achieved by developing 

functions that perform only one kind of task and do not excessively interact with 

other modules. Independence is important because it makes implementation more 

accessible and faster. The independent modules are easier to maintain, test, and 

reduce error propagation and can be reused in other programs as well. Thus, 

functional independence is a good design feature which ensures software quality. 

It is measured using two criteria: 

o Cohesion: It measures the relative function strength of a module. 

o Coupling: It measures the relative interdependence among modules. 

2. Information hiding: The fundamental of Information hiding suggests that 

modules can be characterized by the design decisions that protect from the others, 

i.e., In other words, modules should be specified that data include within a module is 

inaccessible to other modules that do not need for such information. 

The use of information hiding as design criteria for modular system provides the 

most significant benefits when modifications are required during testing's and later 

during software maintenance. This is because as most data and procedures are 



hidden from other parts of the software, inadvertent errors introduced during 

modifications are less likely to propagate to different locations within the software. 

 

Strategy of Design 

A good system design strategy is to organize the program modules in such a 

method that are easy to develop and latter too, change. Structured design methods 

help developers to deal with the size and complexity of programs. Analysts generate 

instructions for the developers about how code should be composed and how 

pieces of code should fit together to form a program. 

To design a system, there are two possible approaches: 

1. Top-down Approach 

2. Bottom-up Approach 

1. Top-down Approach: This approach starts with the identification of the main 

components and then decomposing them into their more detailed sub-components. 

 

2. Bottom-up Approach: A bottom-up approach begins with the lower details and 

moves towards up the hierarchy, as shown in fig. This approach is suitable in case of 

an existing system. 



 

 

 


