Gram-Schmidt Thorem: Let W be a non-null subspace of a finite dimensional Euclidean space V. Then it possesses an orthonormal basis.

Proof: Let $\{\alpha_1, \alpha_2, ..., \alpha_r\}$ be a basis of W where $\alpha_i \neq 0$ for all i of the new basis where $\beta_1 = \alpha_1$.

Let $\beta_2 = \alpha_2 - c_1 \beta_1$ where $c_1 \beta_1$ is the projection of α_2 upon β_i .

Then
$$\langle \alpha_2 - c_1 \beta_1, \beta_1 \rangle = 0$$
 or $\langle \beta_2, \beta_1 \rangle = 0$ and $c_1 = \frac{\langle \alpha_2, \beta_1 \rangle}{\langle \beta_1, \beta_1 \rangle}$

 $\therefore \quad \beta_2 \text{ is orthogonal to } \beta_1 \text{ and } L\{\beta_1, \beta_2\} = L\{\beta_1, \alpha_2\} = L\{\alpha_1, \alpha_2\}$

$$\beta_2 = \alpha_2 - \frac{\langle \alpha_2, \beta_1 \rangle}{\langle \beta_1, \beta_2 \rangle}$$

and $\alpha_3 \notin L\{\beta_1, \beta_2\}$

Let $\beta_3 = \alpha_3 - r_1\beta_1 - r_2\beta_2$ where $r_1\beta_1$, $r_2\beta_2$ are the projections of α_3 upon

$$\beta_1, \beta_2$$
 respectively and $r_1 = \frac{\langle \alpha_3, \beta_1 \rangle}{\langle \beta_1, \beta_2 \rangle}, \quad r_2 = \frac{\langle \alpha_3, \beta_2 \rangle}{\langle \beta_2, \beta_2 \rangle}$

Then β_3 is also orthogonal to β_1 , β_2 and $L\{\beta_1, \beta_2, \beta_3\} = L\{\beta_1, \beta_2, \alpha_3\} = L\{\alpha_1, \alpha_2, \alpha_3\}$.

$$\beta_3 = \alpha_3 - \frac{\langle \alpha_3, \beta_1 \rangle}{\langle \beta_1, \beta_1 \rangle} \beta_1 - \frac{\langle \alpha_3, \beta_2 \rangle}{\langle \beta_2, \beta_2 \rangle} \beta_2$$

Since V is a finite dimensional Euclidean space, this process stops after finite number of steps and we get after rth step,

$$\beta_{r} = \alpha_{r} - \frac{\langle \alpha_{r}, \beta_{1} \rangle}{\langle \beta_{1}, \beta_{1} \rangle} \beta_{1} - \frac{\langle \alpha_{r}, \beta_{2} \rangle}{\langle \beta_{2}, \beta_{2} \rangle} \beta_{2} - \dots - \frac{\langle \alpha_{r}, \beta_{r-1} \rangle}{\langle \beta_{r-1}, \beta_{r-1} \rangle} \beta_{r-1}$$

and $\{\beta_1, \beta_2, \beta_r\}$ is an orthogonal basis of W and the corresponding orthonormal basis of W is

$$\left\{ \frac{\beta_{1}}{\|\beta_{1}\|}, \frac{\beta_{2}}{\|\beta_{2}\|}, \frac{\beta_{3}}{\|\beta_{3}\|}, \dots, \frac{\beta_{r}}{\|\beta_{r}\|} \right\}$$

Example: Apply Gram-Schmidt process to obtain an orthonormal basis of the subspace of the Euclidean space \mathbb{R}^4 with standard inner product spanned by the vectors (1, 1, 0, 1), (1, -2, 0, 0), (1, 0, -1, 2)

Solution: Let $\alpha_1 = (1, 1, 0, 1)$, $\alpha_2 = (1, -2, 0, 0)$ and $\alpha_3 = (1, 0, -1, 2)$ then the vectors $\{\alpha_1, \alpha_2, \alpha_3\}$ is linearly independent and the basis of \mathbb{R}^4 .

Let $\beta_1 = \alpha_1$ and $\beta_2 = \alpha_2 - c_1\beta_1$ where $c_1\beta_1$ is the projection α_2 upon β_1 . Then β_2 is orthogonal to β_1 and $L\{\beta_1, \beta_2\} = L\{\beta_1, \alpha_2\} = L\{\alpha_1, \alpha_2\}$.

$$\therefore c_1 = \frac{\langle \alpha_2, \beta_1 \rangle}{\langle \beta_1, \beta_1 \rangle} = \frac{-1}{3}$$

$$\beta_2 = \alpha_2 + \frac{1}{3} \beta_1 = \alpha_2 + \frac{1}{3} \alpha_1 = (1, -2, 0, 0) + \frac{1}{3} (1, 1, 0, 1)$$
$$= \frac{1}{3} (4, -5, 0, 1)$$

Let $\beta_3 = \alpha_3 - r_1\beta_1 - r_2\beta_2$ where $r_1\beta_1$, $r_2\beta_2$ are the projections of α_3 upon β_1 and β_2 respectively. Then β_3 is orthogonal to β_1 , β_2 and $L\{\beta_1, \beta_2, \beta_3\} = L\{\alpha_1, \alpha_2, \alpha_3\}$

$$\therefore \quad r_1 = \frac{\langle \alpha_3, \beta_1 \rangle}{\langle \beta_1, \beta_1 \rangle} = \frac{3}{3} = 1$$

and $r_2 = \frac{\langle \alpha_3, \beta_2 \rangle}{\langle \beta_2, \beta_2 \rangle} = \frac{6/3}{14/3} = \frac{6}{14} = \frac{3}{7}$

$$\beta_3 = \alpha_3 - \beta_1 - \frac{1}{5}\beta_2 = (1, 0, -1, 2) - (1, 1, 0, 1) \frac{-3}{7} \cdot \frac{1}{3} (4, -5, 0, 1)$$

$$= (0, -1, -1, 1) - \frac{1}{7} (4, -5, 0, 1)$$

$$= \frac{1}{7} (-4, -2, -7, 6)$$

:. The orthogonal basis of the subspace is

$$\{(1,1,0,1), \frac{1}{3}, (4,-5,0,1), \frac{1}{7}, (-4,-2,-7,6)\}$$

and the corresponding orthonormal basis is

$$\left\{ \frac{1}{\sqrt{3}}(1,1,0,1), \frac{1}{\sqrt{42}}(4,-5,0,1), \frac{1}{\sqrt{105}}(-4,-2,-7,6) \right\}$$

Example: Use Gram-Schmidt process to obtain an orthogonal basis from the basis set $\{(1, 1, 0), (0, 1, 1), (1, 0, 1)\}$ of the Euclidean space \mathbb{R}^3 with standard inner product.

Solution: Let $\alpha_1 = (1, 1, 0), \alpha_2 = (0, 1, 1)$ and $\alpha_3 = (1, 0, 1)$

Let $\beta_1 = \alpha_1$ and $\beta_2 = \alpha_2 - c_1 \beta_1$ where $c_1 \beta_1$ is the projection of α_2 upon β_1 .

Then β_2 is orthogonal to β_1 and $L\{\beta_1, \beta_2\} = L\{\alpha_1, \alpha_2\}$.

$$\therefore c_1 = \frac{\langle \alpha_2, \beta_1 \rangle}{\langle \beta_1, \beta_1 \rangle} = \frac{1}{2}$$

$$\beta_2 = \alpha_2 - \frac{1}{2}\beta_1 = (0, 1, 1) - \frac{1}{2}(1, 1, 0) = \frac{1}{2}(-1, 1, 2)$$

Let $\beta_3 = \alpha_3 - r_1\beta_1 - r_2\beta_2$ where $r_1\beta_1$ and $r_2\beta_2$ are the projections of α_3 upon β_1 , β_2 respectively.

Then β_3 is orthogonal to β_1 , β_2 and $L\{\beta_1, \beta_2, \beta_3\} = L\{\alpha_1, \alpha_2, \alpha_3\}$

$$r_1 = \frac{\langle \alpha_3, \beta_1 \rangle}{\langle \beta_1, \beta_1 \rangle} = \frac{1}{2}$$

and

$$r_2 = \frac{\langle \alpha_3, \beta_2 \rangle}{\langle \beta_2, \beta_2 \rangle} = \frac{1/2}{3/2} = \frac{1}{3}$$

$$\beta_3 = \alpha_3 - \frac{1}{2}\beta_1 - \frac{1}{3}\beta_2 = (1,0,1) - \frac{1}{2}(1,1,0) - \frac{1}{3} \cdot \frac{1}{2}(-1,1,2)$$
$$= \frac{1}{2}(1,-1,2) - \frac{1}{6}(-1,1,2) = \frac{1}{6}(4,-4,3) = \frac{1}{3}(2,-2,2)$$

Hence, the orthogonal basis is $\left\{(1,1,0), \frac{1}{2}(-1,1,2), \frac{1}{3}(2,-2,2)\right\}$.