10.12 ORTHOGONAL MATRIX

Definition: A matrix A is called *orthogonal* if $AA^t = I$.

For example,

the matrix
$$\begin{bmatrix} \frac{1}{2} & \frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & \frac{1}{2} \end{bmatrix}$$
 is orthogonal since
$$\begin{bmatrix} \frac{1}{2} & \frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & \frac{1}{2} \end{bmatrix} \begin{bmatrix} \frac{1}{2} & -\frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & \frac{1}{2} \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}.$$

Note that identity matrix is always orthogonal.

Theorem: (1) The determinant of an orthogonal matrix is either 1 or -1, and hence A is non-singular.

- (2) If A is orthogonal, then $A^{-1} = A^{t}$.
- (3) If A is orthogonal, then A^{-1} is also orthogonal.

Proof: (1) Let A be an orthogonal matrix, then

$$AA^{t} = I.$$
 $\therefore |AA^{t}| = |I| = 1.$

or
 $|A| |A^{t}| = 1.$
 $|A| |A| = 1.$
 $|A| |A| = 1$
 $|A| |A| = 1$
 $|A|^{2} = 1 \therefore |A| = \pm 1.$
 $|A|^{2} = 1 \therefore |A| = \pm 1.$

Hence, A is non-singular.

(2) Since A is orthogonal, $AA^t = I$.

Again, as A is non-singular, A^{-1} exists and $AA^{-1} = A^{-1}A = I$.

So premultiplying $AA^{t} = I$ by A^{-1} we get

$$A^{-1}(AA^{t}) = A^{-1}I$$

or $(A^{-1}A)A^{t} = A^{-1}I$
or $IA^{t} = A^{-1}$ or $A^{t} = A^{-1}$.
(Note from $AA^{-1} = A^{-1}A = I$ it follows $A^{t}A = I$).

(3) Let A be orthogonal. Then

$$(A^{-1})(A^{-1})^t = A^t (A^t)^{-1} = I$$

[Since $A^{-1} = A^t$ and $(A^{-1})^t = (A^t)^{-1}$.]

Hence, A^{-1} is orthogonal.

10.16 DIAGONALISABLE MATRIX

A square matrix A of order n is said to be be diagonalisable if A is similar to a diagonal matrix D of order n. Then we say A is diagonalisable to D.

Necessary and sufficient condition for diagonalisability of $n \times n$ matrix: A square matrix A of order n is diagonalisable if and only if there exists n eigen vectors of A which are linearly independent.

Theorem: (i) Let A be a square matrix of order n. If the eigen values of A be all distinct, then A is diagonalisable.

(ii) If a square matrix A of order n has n eigen values λ_1 , λ_2 , λ_3 , ... λ_n , then A is diagonalisable to the diagonal matrix

$$egin{pmatrix} \lambda_1 & 0 & 0 & ... & 0 \ 0 & \lambda_2 & 0 & ... & 0 \ ... & ... & ... & ... \ 0 & 0 & 0 & \lambda_n \ \end{pmatrix}$$

(iii) If
$$A = PDP^{-1}$$
 where $D = \begin{pmatrix} \lambda_1 & 0 & 0 & \dots & 0 \\ 0 & \lambda_2 & 0 & \dots & 0 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & \lambda_n \end{pmatrix}$ then i^{th} column of $0 = \begin{pmatrix} d_1 & 0 & 0 & \dots & 0 \\ 0 & d_2 & 0 & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots & d_n \end{pmatrix}$

P is an eigen vector of A corresponding to the eigen value d_i of A.

Example 1: Diagonalise the following matrix: $A = \begin{pmatrix} 2 & 0 \\ 1 & 3 \end{pmatrix}$.

Solution: The characteristic equation of A is det $(A - \lambda I_2) = 0$

or
$$\begin{vmatrix} 2-\lambda & 0 \\ 1 & 3-\lambda \end{vmatrix} = 0 \implies (2-\lambda)(3-\lambda) = 0 \implies \lambda = 2, 3.$$

 \therefore The eigen values of A are 2, 3.

Let $X = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$ be the eigen vector corresponding to the eigen value 2, then

$$AX = 2X$$
 or $\begin{pmatrix} 2 & 0 \\ 1 & 3 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = 2 \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$

or
$$\begin{cases} 2x_1 = 2x_1 \\ x_1 + 3x_2 = 2x_2 \end{cases}$$
 or $\begin{cases} x_1 = x_1 \\ x_1 + x_2 = 0 \end{cases}$

Let $x_1 = c$ be any arbitrary real number, then $x_2 = -c$.

Then the eigen vector is
$$\begin{pmatrix} c \\ -c \end{pmatrix} = c \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$
.

Let $X = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$ be the eigen vector corresponding to the eigen values 3, then

$$AX = 3X \Rightarrow \begin{pmatrix} 2 & 0 \\ 1 & 3 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = 3 \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$

or

$$\begin{vmatrix} 2x_1 = 3x_1 \\ x_1 + 3x_2 = 3x_2 \end{vmatrix} \Rightarrow \begin{vmatrix} x_1 = 0 \\ x_1 = 0 \end{vmatrix}$$

Let $x_2 = c$ be any arbitrary real number.

$$\therefore \text{ The eigen vector is } \begin{pmatrix} 0 \\ c \end{pmatrix} = c \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

Since two eigen vectors of a square matrix A corresponding two distinct eigen values are linearly independent.

Hence, A is diagonalised and it is diagonalised to $\begin{pmatrix} 2 & 0 \\ 0 & 3 \end{pmatrix}$.

Example 2: Show that the matrix $A = \begin{pmatrix} 1 & 0 \\ 3 & 1 \end{pmatrix}$ is not diagonalisable.

Solution: The characteristic equation of A is det $(A - \lambda I_2) = 0$

or
$$\begin{vmatrix} 1-\lambda & 0 \\ 3 & 1-\lambda \end{vmatrix} = 0 \implies (1-\lambda)(1-\lambda) = 0 \implies \lambda = 1, 1$$

The eigen values of A are 1, 1.

Let $X = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$ be the eigen vector corresponding to the eigen value $\lambda = 1$,

then

$$AX = X \Rightarrow \begin{pmatrix} 1 & 0 \\ 3 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$
$$x_1 = x_1 \qquad \qquad x_1 = x_1$$

$$\Rightarrow \frac{x_1 = x_1}{3x_1 + x_2 = x_2} \Rightarrow \frac{x_1 = x_1}{x_1 = 0}$$

Let $x_2 = c$ be any arbitrary real number.

$$\therefore \text{ The eigen vector is } \begin{pmatrix} 0 \\ c \end{pmatrix} = c \begin{pmatrix} 0 \\ 1 \end{pmatrix} (c \neq 0)$$

In this case, two linearly independent eigen vectors corresponding to the eigen value 1 cannot be found. Therefore, a non-singular matrix P of order 2 having two linearly independent eigen vectors cannot be found and so A cannot be similar to a diagonal matrix.

Hence, A is not diagonalisable.

Example 3: Diagonalise, if possible; the matrix $A = \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}$ and find the matrix which diagonalise it.

Solution: The characteristic equation of A is det $(A - \lambda I_2) = 0$

or
$$\begin{pmatrix} \lambda - 1 & -1 \\ -1 & \lambda - 1 \end{pmatrix} = 0 \Rightarrow (\lambda - 1)^2 - 1 = 0 \Rightarrow \lambda^2 - 2\lambda + 1 - 1 = 0$$
or
$$\lambda^2 - 2\lambda = 0$$

$$\lambda = 0, 2$$

The eigen values are 0 and 2.

Since two eigen vectors of a square matrix A corresponding two distinct eigen values of A are linearly independent.

Hence, the matrix A is diagonalisable.

Let $X = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$ be the eigen vector corresponding to the eigen value 0,

then
$$\begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = 0 \implies x_1 - x_2 = 0 \text{ and } -x_1 + x_2 = 0$$

Let $x_1 = c$ be any arbitrary real number, then $x_2 = c$

$$\therefore \text{ The eigen vector is } \begin{pmatrix} c \\ c \end{pmatrix} = c \begin{pmatrix} 1 \\ 1 \end{pmatrix}.$$

Let $X = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$ be the eigen vector corresponding to the eigen value 2,

Let $x_1 = K$ be any arbitrary real number, then $x_2 = -K$

$$\therefore \text{ The eigen vector is } \binom{K}{-K} = K \binom{1}{-1}$$

So the matrix which diagonalise the given matrix A is

$$P = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$$

where (1, 1), (1, -1) are linearly independent.