
Software Requirement Specifications 

The production of the requirements stage of the software development process 

is Software Requirements Specifications (SRS) (also called a requirements 

document). This report lays a foundation for software engineering activities and is 

constructing when entire requirements are elicited and analyzed. SRS is a formal report, 

which acts as a representation of software that enables the customers to review whether 

it (SRS) is according to their requirements. Also, it comprises user requirements for a 

system as well as detailed specifications of the system requirements. 

The SRS is a specification for a specific software product, program, or set of applications 

that perform particular functions in a specific environment. It serves several goals 

depending on who is writing it. First, the SRS could be written by the client of a system. 

Second, the SRS could be written by a developer of the system. The two methods create 

entirely various situations and establish different purposes for the document altogether. 

The first case, SRS, is used to define the needs and expectation of the users. The second 

case, SRS, is written for various purposes and serves as a contract document between 

customer and developer. 



Characteristics of good SRS 

 

Following are the features of a good SRS document: 

1. Correctness: User review is used to provide the accuracy of requirements stated in 

the SRS. SRS is said to be perfect if it covers all the needs that are truly expected from 

the system. 

20.6M 

478 

Features of Java - Javatpoint 

2. Completeness: The SRS is complete if, and only if, it includes the following elements: 

(1). All essential requirements, whether relating to functionality, performance, design, 

constraints, attributes, or external interfaces. 



(2). Definition of their responses of the software to all realizable classes of input data in 

all available categories of situations. 

Note: It is essential to specify the responses to both valid and invalid values. 

(3). Full labels and references to all figures, tables, and diagrams in the SRS and 

definitions of all terms and units of measure. 

3. Consistency: The SRS is consistent if, and only if, no subset of individual 

requirements described in its conflict. There are three types of possible conflict in the 

SRS: 

(1). The specified characteristics of real-world objects may conflicts. For example, 

(a) The format of an output report may be described in one requirement as tabular but 

in another as textual. 

(b) One condition may state that all lights shall be green while another states that all 

lights shall be blue. 

(2). There may be a reasonable or temporal conflict between the two specified actions. 

For example, 

(a) One requirement may determine that the program will add two inputs, and another 

may determine that the program will multiply them. 

(b) One condition may state that "A" must always follow "B," while other requires that "A 

and B" co-occurs. 

(3). Two or more requirements may define the same real-world object but use different 

terms for that object. For example, a program's request for user input may be called a 

"prompt" in one requirement's and a "cue" in another. The use of standard terminology 

and descriptions promotes consistency. 

4. Unambiguousness: SRS is unambiguous when every fixed requirement has only one 

interpretation. This suggests that each element is uniquely interpreted. In case there is a 

method used with multiple definitions, the requirements report should determine the 

implications in the SRS so that it is clear and simple to understand. 

5. Ranking for importance and stability: The SRS is ranked for importance and 

stability if each requirement in it has an identifier to indicate either the significance or 

stability of that particular requirement. 



Typically, all requirements are not equally important. Some prerequisites may be 

essential, especially for life-critical applications, while others may be desirable. Each 

element should be identified to make these differences clear and explicit. Another way 

to rank requirements is to distinguish classes of items as essential, conditional, and 

optional. 

6. Modifiability: SRS should be made as modifiable as likely and should be capable of 

quickly obtain changes to the system to some extent. Modifications should be perfectly 

indexed and cross-referenced. 

7. Verifiability: SRS is correct when the specified requirements can be verified with a 

cost-effective system to check whether the final software meets those requirements. The 

requirements are verified with the help of reviews. 

8. Traceability: The SRS is traceable if the origin of each of the requirements is clear 

and if it facilitates the referencing of each condition in future development or 

enhancement documentation. 

There are two types of Traceability: 

1. Backward Traceability: This depends upon each requirement explicitly referencing 

its source in earlier documents. 

2. Forward Traceability: This depends upon each element in the SRS having a unique 

name or reference number. 

The forward traceability of the SRS is especially crucial when the software product enters 

the operation and maintenance phase. As code and design document is modified, it is 

necessary to be able to ascertain the complete set of requirements that may be 

concerned by those modifications. 

9. Design Independence: There should be an option to select from multiple design 

alternatives for the final system. More specifically, the SRS should not contain any 

implementation details. 

10. Testability: An SRS should be written in such a method that it is simple to generate 

test cases and test plans from the report. 

11. Understandable by the customer: An end user may be an expert in his/her explicit 

domain but might not be trained in computer science. Hence, the purpose of formal 



notations and symbols should be avoided too as much extent as possible. The language 

should be kept simple and clear. 

12. The right level of abstraction: If the SRS is written for the requirements stage, the 

details should be explained explicitly. Whereas,for a feasibility study, fewer analysis can 

be used. Hence, the level of abstraction modifies according to the objective of the SRS. 

Properties of a good SRS document 

The essential properties of a good SRS document are the following: 

Concise: The SRS report should be concise and at the same time, unambiguous, 

consistent, and complete. Verbose and irrelevant descriptions decrease readability and 

also increase error possibilities. 

Structured: It should be well-structured. A well-structured document is simple to 

understand and modify. In practice, the SRS document undergoes several revisions to 

cope up with the user requirements. Often, user requirements evolve over a period of 

time. Therefore, to make the modifications to the SRS document easy, it is vital to make 

the report well-structured. 

Black-box view: It should only define what the system should do and refrain from 

stating how to do these. This means that the SRS document should define the external 

behavior of the system and not discuss the implementation issues. The SRS report 

should view the system to be developed as a black box and should define the externally 

visible behavior of the system. For this reason, the SRS report is also known as the black-

box specification of a system. 

Conceptual integrity: It should show conceptual integrity so that the reader can merely 

understand it. Response to undesired events: It should characterize acceptable 

responses to unwanted events. These are called system response to exceptional 

conditions. 

Verifiable: All requirements of the system, as documented in the SRS document, should 

be correct. This means that it should be possible to decide whether or not requirements 

have been met in an implementation. 

 

 


