10.14 EIGEN VALUES AND EIGEN VECTORS

Let us consider a 2 × 2 matrix

$$A = \begin{pmatrix} x^2 + x + 1 & 3x^3 + 2x \\ 3x^3 + x & 4x^2 + 3 \end{pmatrix}$$

whose elements are real polynomials in x. A can be expressed as the polynomials in x.

$$\begin{pmatrix} 0 & 3 \\ 3 & 0 \end{pmatrix} x^3 + \begin{pmatrix} 1 & 0 \\ 0 & 4 \end{pmatrix} x^2 + \begin{pmatrix} 1 & 2 \\ 1 & 0 \end{pmatrix} x + \begin{pmatrix} 1 & 0 \\ 0 & 3 \end{pmatrix}$$

whose coefficients are real matrices of order 2×2 .

Such a polynomial whose coefficients are matrices of the same order is called a *matric polynomial*. The degree of the matric polynomial is the degree of the constituent polynomial of highest degree appearing in the matrix A.

In general, if A be an $n \times n$ matrix whose elements are real (complex) polynomials in x, then A can be expressed as a matric polynomial whose coefficients are $n \times n$ real (complex) matrices.

Definition: Let A be an $n \times n$ matrix. Then det $(A - xI_n)$ is called the characteristic polynomial of A and is denoted by $\psi_A(x)$. The equation $\psi_A(x) = 0$ is called the characteristic equation of A.

Let
$$A = (a_{ij})_{n+n} = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{bmatrix}$$

Then
$$\psi_{A}(x) = \det (A - xI_{n}) = \begin{bmatrix} a_{11} - x & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} - x & \dots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} - x \end{bmatrix}$$

The degree of the characteristic equation is same as the order of the matrix A.

We now state without proof a very useful theorem:

Definition: A root of the characteristic equation of a square matrix A is said to be a *characteristic root* or *latent root* or an *eigen value* of A.

Note 1: 0 is an eigen value of a singular matrix.

Note 2: The eigen values of a diagonal matrix are its diagonal elements.

Note 3: If λ be an eigen value of a non-singular matrix A, then λ^{-1} is an eigen value of A^{-1} .

Proof: Since A is non-singular, $\lambda \neq 0$.

 $\therefore \lambda^{-1}$ exists then A^{-1} also exists.

Let the order of A be n.

Now det
$$(A^{-1} - \lambda^{-1} I_n) = \frac{1}{\lambda^n} \det(\lambda A^{-1} - I_n)$$

$$= \frac{1}{\lambda^n \det A} \det[(\lambda A^{-1} - I_n)A]$$

$$= \frac{1}{\lambda^n \det A} \det[\lambda I_n - A]$$

$$= 0, \text{ since det } (A - \lambda I_n) = 0$$

This proves that λ^{-1} is an eigen value of A^{-1} .

Example 1: Find the eigen values of the following matrices:

(i)
$$A = \begin{pmatrix} 1 & 3 \\ 4 & 5 \end{pmatrix}$$
 (ii) $A = \begin{pmatrix} 1 & -1 & 0 \\ 1 & 2 & -1 \\ 3 & 2 & -2 \end{pmatrix}$.

Solution: (i) The characteristic equation of A is given by

$$\det (A - \lambda I_2) = \begin{vmatrix} 1 - \lambda & 3 \\ 4 & 5 - \lambda \end{vmatrix} = 0$$

or
$$(1-\lambda)(5-\lambda)-12=0$$
 or $5-\lambda-5\lambda+\lambda^2-12=0$
or $\lambda^2-6\lambda-7=0$ or $\lambda^2-7\lambda+\lambda-7=0$
or $\lambda(\lambda-7)+1(\lambda-7)=0$ or $(\lambda-7)(\lambda+1)=0$ or $\lambda=7,-1$
The eigen values of A are $-1, 7$.

(ii) The characteristic equation of A is given by

$$\det (A - \lambda I_3) = 0 \quad \text{or} \quad \begin{vmatrix} 1 - \lambda & -1 & 0 \\ 1 & 2 - \lambda & -1 \\ 3 & 2 & -2 - \lambda \end{vmatrix} = 0$$
or $(1 - \lambda) [-(2 - \lambda) (2 + \lambda) + 2] + 1 [-(2 + \lambda) + 3] + 0 [2 - 3 (2 - \lambda)] = 0$
or $(1 - \lambda) [\lambda^2 - 4 + 2] + (1 - \lambda) = 0$
or $(1 - \lambda) [\lambda^2 - 2 + 1] = 0 \quad \text{or} \quad (1 - \lambda) (\lambda^2 - 1) = 0$

$$\therefore \qquad \lambda = 1, 1, -1$$

 \therefore The eigen values of A are 1, 1, -1

Definition: Let A be $n \times n$ matrix over \mathbb{R} . A non-null vector X belonging to $V_n(\mathbb{R})$ is said to be an eigen vector or a characteristic vector of A if there exists a $\lambda \in (\mathbb{R})$ such that

$$AX = \lambda X$$
 holds, where λ is an eigen value of A .

Let A be an $n \times n$ matrix over \mathbb{R} and λ be an eigen value belonging to \mathbb{R} . A result of importance is that to each \mathbb{R} such eigen value of A there corresponds at least one eigen vector.

Example 2: Find the eigen vectors of the matrix $A = \begin{pmatrix} 1 & 3 \\ 4 & 5 \end{pmatrix}$.

Solution: The eigen value of A are -1, 7.

or

and

Let $X = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$ be the eigen vector corresponding to -1, then

$$AX = -X \text{ gives}$$

$$\begin{pmatrix} 1 & 3 \\ 4 & 5 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = -\begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$

$$x_1 + 3x_2 = -x_1 \quad \text{or } 2x_1 + 3x_2 = 0$$

$$4x_1 + 5x_2 = -x_2 \quad \text{or } 4x_1 + 6x_2 = 0$$

The equivalent system is $x_1 + \frac{3}{2}x_2 = 0$

Let $x_2 = k$, then $x_1 = -\frac{3}{2}k$.

.. The solution of the system is $\left(-\frac{3k}{2}, k\right)$ where k is an arbitrary real number.

.. The eigen vectors are $k \binom{-3/2}{1}$ or $c \binom{3}{-2}$ where c is a non-zero-real number.

Let $X = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$ be an eigen vector corresponding to 7, then

$$AX = 7X$$

or
$$\begin{pmatrix} 1 & 3 \\ 4 & 5 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = 7 \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$
or
$$x_1 + 3x_2 = 7x_1 \quad \text{or } -6x_1 + 3x_2 = 0$$
and
$$4x_1 + 5x_2 = 7x_2 \quad \text{or } 4x_1 - 2x_2 = 0$$

The system is equivalent to $x_1 - \frac{1}{2}x_2 = 0$.

Let $x_1 = c$, then $x_2 = 2c$ where c is an arbitrary real number.

 \therefore The eigen vectors are $c \binom{1}{2}$ where c is a non-zero real number.

Example 3: Find the eigen values and corresponding eigen vectors of the matrix

$$A = \begin{pmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 0 & 0 & 1 \end{pmatrix}.$$

Solution: The characteristic equation of A is given by det $(A - \lambda I_3) = 0$

or
$$\begin{vmatrix} 2-\lambda & 1 & 1 \\ 1 & 2-\lambda & 1 \\ 0 & 0 & 1-\lambda \end{vmatrix} = 0$$

or
$$(2-\lambda)[(2-\lambda)(1-\lambda)-0]-1[(1-\lambda)-0]+1[0-0]=0$$

or $(2-\lambda)^2(1-\lambda)-(1-\lambda)=0 \Rightarrow (1-\lambda)[4-4\lambda+\lambda^2-1]=0$
or $(1-\lambda)(\lambda^2-4\lambda+3)=0 \Rightarrow (1-\lambda)(\lambda^2-3\lambda-\lambda+3)=0$
or $(1-\lambda)\{\lambda(\lambda-3)-1(\lambda-3)\}=0 \Rightarrow (1-\lambda)(\lambda-1)(\lambda-3)=0$
 $\therefore \lambda=1,1,3$

.. The eigen values are 1, 1, 3.

Let $X = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$ be the eigen vector corresponding to the eigen value 3, then

$$AX = 3X \quad \text{or} \quad \begin{pmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = 3 \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$$
or
$$2x_1 + x_2 + x_3 = 3x_1$$

$$x_1 + 2x_2 + x_3 = 3x_2$$

$$x_3 = 3x_3$$
or
$$-x_1 + x_2 + x_3 = 0$$

$$x_1 - x_2 + x_3 = 0$$

$$-2x_3 = 0$$

which gives $x_3 = 0$,

$$\begin{array}{ccc} \therefore & -x_1+x_2=0 \\ \text{and} & x_1-x_2=0 & \Rightarrow x_1=x_2 \end{array}$$

Let $x_2 = c$ be any arbitrary real number, then $x_1 = c$

 $\therefore \text{ The eigen vectors are } \begin{pmatrix} c \\ c \\ 0 \end{pmatrix} = c \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} \text{ where } c \text{ is an arbitrary real number.}$

Let $X = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$ be the eigen vector corresponding to the eigen value 1, then

$$AX = X$$
 or $\begin{pmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$

or
$$2x_{1} + x_{2} + x_{3} = x_{1}$$

$$x_{1} + 2x_{2} + x_{3} = x_{2}$$

$$x_{3} = x_{3}$$
or
$$x_{1} + x_{2} + x_{3} = 0$$

$$x_{1} + x_{2} + x_{3} = 0$$

$$x_{1} + x_{2} + x_{3} = 0$$

$$x_{3} = x_{3}$$

$$\vdots$$

$$x_{1} = -(x_{2} + x_{3})$$

Let $x_3 = c$ and $x_2 = k$ be the arbitrary real numbers, then

$$x_1 = -\left(k + c\right)$$

$$\therefore \text{ The eigen vectors are } \begin{pmatrix} -(k+c) \\ k \\ c \end{pmatrix} = k \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix} + c \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix} \text{ where } k \text{ and } c$$

are arbitrary real numbers.

Example 4: Find the eigen values and the corresponding eigen vectors of the matrix

$$A = \begin{pmatrix} 1 & -1 & 2 \\ 2 & -2 & 4 \\ 3 & -3 & 6 \end{pmatrix}.$$

Solution: The characteristic equation of A is given by det $(A - \lambda I_3) = 0$

or
$$\begin{vmatrix} 1-\lambda & -1 & 2 \\ 2 & -2-\lambda & 4 \\ 3 & -3 & 6-\lambda \end{vmatrix} = 0$$

or
$$(1 - \lambda) [-(2 + \lambda) (6 - \lambda) + 12] + 1 [2 (6 - \lambda) - 12] + 2 [-6 + 3(2 + \lambda)] = 0$$

or $(1 - \lambda) (-12 + 2\lambda - 6\lambda + \lambda^2 + 12) + 12 - 2\lambda - 12 + 2 [-6 + 6 + 3\lambda] = 0$
or $(1 - \lambda) (\lambda^2 - 4\lambda) - 2\lambda + 6\lambda = 0$
or $\lambda[(1 - \lambda) (\lambda - 4) + 4] = 0$ or $\lambda[\lambda - 4 - \lambda^2 + 4\lambda + 4] = 0$
or $\lambda[-\lambda^2 + 5\lambda] = 0$ or $\lambda^2 (-\lambda + 5) = 0$
 $\lambda = 0, 0, 5$

:. The eigen values are 0, 0, 5.

Let $X = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$ be the eigen vector corresponding to the eigen value 0, then

$$AX = 0X \Rightarrow \begin{pmatrix} 1 & -1 & 2 \\ 2 & -2 & 4 \\ 3 & -3 & 6 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

or
$$x_1 - x_2 + 2x_3 = 0$$

$$2x_1 - 2x_2 + 4x_3 = 0$$

$$3x_1 - 3x_2 + 6x_3 = 0$$

which gives

$$x_1 - x_2 + 2x_3 = 0$$

$$x_1 - x_2 + 2x_3 = 0$$

$$x_1 - x_2 + 2x_3 = 0$$

Let $x_3 = c$ and $x_2 = d$ be the arbitrary real numbers, then $x_1 = x_2 - 2x_3 = d - 2c$

: The eigen vectors are $\begin{pmatrix} d-2c \\ d \\ c \end{pmatrix} = d \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} + c \begin{pmatrix} -2 \\ 0 \\ 1 \end{pmatrix}$ where c and d are arbitrary real numbers, i.e., d(1, 1, 0) and $c(-2, 0, 1)^t$

Let $X = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$ be the eigen vector corresponding to the eigen value 5, then

Now
$$AX = 5X$$
 gives $\begin{pmatrix} 1 & -1 & 2 \\ 2 & -2 & 4 \\ 3 & -3 & 6 \end{pmatrix} = 5 \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$

or
$$x_1 - x_2 + 2x_3 = 5x_1$$

 $2x_1 - 2x_2 + 4x_3 = 5x_2$
 $3x_1 - 3x_2 + 6x_3 = 5x_3$
or $-4x_1 - x_2 + 2x_3 = 0$...(1)
 $2x_1 - 7x_2 + 4x_3 = 0$...(2)
 $3x_1 - 3x_2 + x_3 = 0$...(3)

Now eliminating x_3 from these equations, we get

$$(1) \times 2 - (2) \implies -10x_1 + 5x_2 = 0 \implies x_2 = 2x_1$$

$$(1) - 2 \times (3) \implies -10x_1 + 5x_2 = 0 \implies x_2 = 2x_1$$

Let $x_1 = c$ be any arbitrary real number, then $x_2 = 2c$

and
$$x_3 = -3x_1 + 3x_2 = -3c + 6c = 3c$$

The eigen vectors are
$$\begin{pmatrix} c \\ 2c \\ 3c \end{pmatrix} = c \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$$
 where c is an arbitrary real number.