Composition of Linear Mapping

Definition: If $\varphi: V \to W$ and $\Psi: W \to T$ are two linear mappings (i.e, transformations) where V, W and T are vector spaces, then the composite mapping $\Psi_0 \varphi$ from V to T is defined as $\Psi_0 \varphi(x) = \Psi(\varphi(x))$, $x \in V$, called the product of the mappings φ and Ψ .

Note that the composite mapping $\Psi_0 \phi : V \to T$ is linear.

To see this, we take $x, y \in V$, $\alpha, \beta \in F$, the common scalar field clearly,

$$Ψ_0φ (αx + βy) = Ψ(φ(αx + βy))$$

$$= Ψ(αφ(x) + βφ(y)), since φ is linear$$

$$= αΨ(φ(x)) + βΨ (φ(y) since Ψ is linear$$

$$= α(Ψ_0φ)(x) + β(Ψ_0φ) (y)$$

Hence $\Psi_0 \phi$ is linear.

Remark 1: If V = W = T, then $\phi_0 \Psi$ is also defined.

It is straightforward to prove $\phi_0 \Psi \neq \Psi_0 \phi$

We give an example below:

Let
$$V = W = T = \mathbb{R}^2$$
 and $F = \mathbb{R}^2$.

Let
$$\varphi(x_1, x_2) = (x_2, 2x_1)$$
 and $\Psi(x_1, x_2) = (x_1 + x_2, x_2)$

It is easy to check that ϕ and Ψ are linear.

Now
$$\varphi_0 \Psi(x_1, x_2) = \varphi(\Psi(x_1, x_2)) = \varphi(x_1 + x_2, x_2) = (x_2, 2x_1, 2x_2)$$

 $\Psi_0 \varphi(x_1, x_2) = \Psi(\varphi(x_1, x_2)) = \Psi(x_2, 2x) = (x_2 + 2x_1, 2x_1)$

clearly, $\phi_0 \Psi \neq \Psi_0 \phi$.

Remark 2: If $\varphi: V \to W$, $\Psi: W \to T$, $\chi: T \to S$ are linear mappings where V, W, T and S are vector spaces over the same field, then

$$(\chi_0 \Psi) \phi = \chi_0(\Psi_0 \phi)$$
 [Associative Property]

The proof of the above routine.

We can now prove the following.

Theorem: Let $\phi: V \to V$ be a linear mapping and $i_v: V \to V$ be the identity mapping $i_v(x) = x$ for all $x \in V$.

Than the following are true.

- (i) If φ is bijective, then there is a unique linear mapping $\Psi: V \to V$ such that $\varphi_0 \Psi = \Psi_0 \varphi = i_v$
- (ii) If a linear mapping Ψ exists and $\varphi_0 \Psi = \Psi_0 \varphi = i_v$, then φ is bijective.

Proof: (i) Since φ is onto, there exists $x \in V$ such that $\varphi(y) = x$.

As φ is one-one, so y is unique.

Clearly $\Psi(x) = y$ if and only if $\phi(y) = x$ $\forall x \in V$.

Then for each $x \in V$, there exists unique $y \in V$ such that $\Psi(x) = y$.

Hence Ψ is a mapping from V to V and

$$(\Psi_0 \phi)(y) = \Psi(\phi(y)) = \Psi(x) = y \quad \forall y \in V.$$

This means

$$\Psi_0 \phi = i_{\nu}$$

Similarly

$$(\varphi_0 \Psi)(x) = \varphi(\Psi(x)) = \varphi(y) = x \quad \forall x \in V.$$

This means

$$\varphi_0 \Psi = i_v$$

(ii) Suppose φ is not one-one.

Then for some $x, y \in V, x \neq y, \varphi(x) = \varphi(y) = x \forall V$.

we have

$$\Psi_0 \varphi = i_v$$

$$\therefore \qquad (\Psi_0 \phi)(x) = i_v(x) \text{ implies } \Psi(\phi(x)) = x_1, \text{ i.e., } \Psi(x) = y$$

and
$$(\Psi_0 \phi)(y) = i_v(y)$$
 implies $\Psi(\phi(y)) = y$, i.e., $\Psi(x) = y$

This means that Ψ is not a mapping which is a contradiction.

Hence φ is one-one.

Next suppose ϕ is not onto i.e., there exists an element $x \in V$ such that x is not the image of any element of V under ϕ .

We have
$$\varphi_0 \Psi = i_v$$
, i.e., $(\varphi_0 \Psi)(x) = i_v(x) = x \quad \forall x \in V$
i.e., $\varphi(\Psi(x)) = x$

 \therefore $\Psi(x) \in V$. So x is the image of an element of V under ϕ . This is a contradiction. Hence ϕ is onto.

To prove uniqueness, we assume that there exists a mapping $\chi: V \to V$, such that $\chi_0 \varphi = \varphi_0 \chi = i_v$.

Let x be an arbitrary element of V.

Since φ is onto, these exists $y \in V$ such that $\varphi(y) = x$.

Now
$$\Psi(x) = \Psi(\phi(y)) = (\Psi_0 \phi)(y) = i_y(y) = y$$

and
$$\chi(x) = \chi(\phi(y)) = (\chi_0 \phi)(y) = i_y(y) = y$$

Thus $\Psi(x) = \chi(x)$, x arbitrary. So $\Psi = \chi$. Hence Ψ is unique.

Inverse of a Linear Mapping

Definition: Let $\varphi: V \to W$ be a linear mapping where V and W vector spaces over F. A mapping $\Psi: W \to V$ is called an universe of φ if $\varphi_0 \Psi = i_w$, $\Psi_0 \varphi = i_v$. It is usually denoted by φ_{-1} . If a linear mapping $\varphi: V \to W$ has an inverse, it is called invertible.

We can prove the following.

Theorem: If V and W are vector spaces over the same field F, a linear mapping $\varphi: V \to W$ is invertible, then

- (i) φ^{-1} is linear
- (ii) φ is bijective
- (iii) ϕ is unique.

Proof: Let $\Psi: W \to V$ be a mapping such that $\phi \Psi = i_w$, $\Psi \phi = i_v$.

Let $w_1, w_2 \in W$ and $\psi(w_1) = v_1, \Psi(w_2) = v_2, v_1, v_2 \in V, w_1, w_2 \in W$ clearly $\varphi(\Psi(w_1)) = \varphi(v_1)$ implies $i_w(w_1) = \varphi(v)$, i.e., $w_1 = \varphi(v_1)$

Similarly, $w_2 = \phi(v_2)$.

Since ϕ is linear.

$$\varphi(av_1 + bv_2) = a \varphi(v_1) + b\varphi(v_2),$$
 a, b are scalars, implies $\varphi(av_1 + bv_2) = a w_1 + bw_2$

$$\therefore \quad \Psi(\varphi(av_1 + bv_2)) = \Psi(aw_1 + bw_2)$$

This implies $i_v(av_1 + bv_2) = \Psi(aw_1 + bw_2)$

$$av_1 + bv_2 = \Psi (aw_1 + bw_2)$$
 [: $av_1 + bv_2 \in V$]

i.e.,
$$a \Psi(w_1) + b \Psi (bw) = \Psi (aw_1 + bw_2)$$

But this means that Ψ is linear i.e., φ^{-1} is linear.

(ii) Let $\phi: V \to W$ be invertible. Then there exists $\Psi: W \to V$ such that $\phi_0 \Psi = i_w$ and $\Psi_0 \phi = i_v$

Let

$$v_1, v_2 \in V \text{ and } \phi(v_1) = \phi(v_2).$$

Then

$$\Psi(\phi(v_1)) = \Psi(\phi(v_2))$$

:
$$i_{v}(v_{1}) = i_{v}(v_{2})$$
 or $v_{1} = v_{2}$

Therefore ϕ is one-one.

Let $w \in W$. Then $\phi(\psi(w)) = i_w(w) = w$, $\Psi(w) \in V$.

 \therefore w_1 is the image of $\Psi(w)$ under ϕ . This implies ϕ is onto.

Thus ϕ is one-one and onto, i.e., bijective.

(iii) If possible, let there be two inverses $\Psi: W \to V$ and $\gamma: W \to V$.

Then
$$\varphi_0 \Psi = i_w = \varphi_0 \Psi$$
 and $\Psi_0 \varphi = i_v = \chi \varphi$

Let $w \in W$ be arbitrary.

Since ϕ is onto, there exists $v \in V$ such that $\phi(v) = w$.

Now
$$\Psi(w) = \Psi(\phi(v)) = (\Psi_0 \phi)(v) = i_v(v_1) = v$$

and
$$\chi(w) = \chi(\varphi(v)) = (\chi_0 \varphi)(v) = i_v(v) = v$$

$$\therefore \qquad \Psi(w) = \chi(w)$$

As w is arbitrary, $\Psi = \chi$. This proves the uniqueness of ϕ .

Example 1: If $\phi : \mathbb{R}^3 \to \mathbb{R}^3$ be defined as $\phi(x, y, z) = (2x, 4x - y, 2x + 3yz)$ then show that ϕ is invertible.

Solution: Let $(x, y, z) \in \ker \phi$. Then $\phi(x, y, z) = (0, 0, 0)$. This gives 2x = 0, 4x - y = 0, 2x + 3y - z = 0.

This system has only the trivial solution (0, 0, 0), i.e., $\ker \phi = \{0\}$.

Hence ϕ is one-one. As ϕ is onto also, ϕ is invertible.

To find out the inverse of ϕ , we take $\phi(x, y, z) = (r, s, t)$, say

Then
$$2x = r, 4x - y = s$$
 and $2x + 3y - z = t$
or $x = r/2, y = 2r - s, z = 7r - 3s - t$

Hence $\varphi^{-1}(r, s, t) = (r/2, 2r - s, 7r - 3s - t)$

Example 2: If S and T are linear operators on \mathbb{R}^2 defined as S(x, y) = (y, x), T(x, y) = (0, x), find ST, TS, S^2 and T^2 .

Solution: We see

$$(ST) (x, y) = S(T(x, y)) = S(0, x) = (x, 0)$$

$$(TS) (x, y) = T(S(x, y)) = T(y, x) = (0, y)$$

$$S^{2}(x, y) = S(S(x, y)) = S(y, x) = (x, y)$$

$$T^{2}(x, y) = T(T(x, y)) = T(0, x) = (0, 0)$$

Note that $ST \neq TS$ and $S^2 = i$.