Composition of Linear Mapping

Definition: If ¢ : ¥ — Wand ¥ : W — T are two linear mappings (i.e
transformations) where ¥, W and T are vector spaces, then the composité
mapping ¥ 0 from ¥V to T is defined as Y io(x) = Y (9(x)), x € V, called the
product of the mappings ¢ and P.
Note that the composite mapping ¥,¢ : ¥ — T'is linear.
To see this, we take x, y € V, o, B € F, the common scalar field clearly,
oo (ox + By) = Y(o(ox + By))
= Y(ad(x) + Pd(y)), since ¢ is linear
= oP(p(x)) + BY (¢(») since ¥ is linear
= oY 0)x) + B(Fod) )
Hence ¥ ¢ is linear. -
Remark 1: If V= W =T, then ¢, is also defined.
It is straightforward to prove ¢,¥ # ‘¥
We give an example below:
Let V=W=T=R?and F = R?.
Let O(x), X,) = (x5, 2x;) and ¥(x, x,) = (x| + x,, X,)
It is easy to check that ¢ and ¥ are linear.
Now o,V (x, x5) = 0(F(x;, x,) = Q(x; + x,, X,) = (x,, 2x|, 2x,)

Wod(x;, x,) = W(d(x, x,)) = ¥(x,, 2x) = (x, + 2x, 2x,)
clearly, ¢,¥ # (0.

Remark 2: If @ : V> W,¥Y : W— T,y : T— § are linear mappings where V,
W, T and S are vector spaces over the same field, then i

oY) ¢ = x,(‘Yyd) [Associative Property]
The proof of the above routine.
We can now prove the following.

Theorem: Let ¢ : ¥ — ¥ be a linear mapping and i, : ¥ — V be the identity
mapping i (x) =x forallxe V.

Than the following are true.

(i) If @ is bijective, then there is a unique linear mapping ¥ : ¥ — ¥ such
that ,'¥ =¥ 0 =i,

(if) Ifalinear mapping ‘¥ exists and @,¥ =¥ ;0 = i , then @ is bijective. “
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Proof: () Since @ is onto, there exists x € ¥ such that o(y)=x.
As @ is one-one, 50 y is unique.
Clearly 'Y(x) =y ifand only if ¢(y) = x VxeV,
Then for each x € ¥ there exists unique y € ¥ such that Y(x)=y.
Hence ¥ is a mapping from Vto ¥ and

(F0)0)=¥(()=Yx)=y Vye V.

This means Yoo=i.
Similarly  (@¥)™) =(¥Y(x)=90()=x Vxe V.
This means QY =i

(if) Suppose @ is not one-one.
Then forsomex,y € V,x#y, o(x)=@(y)=xV V.
we have FoP =i
(Pd)(x) =i (x) implies W(@(x)) = x),ie., P(x)=y
and  (¥o0)(») =i,(v) implies ¥($(»)) =y, i.e., ¥(x) =y
This means that ‘¥ is not a mapping which is a contradiction.
Hence ¢ is one-one.

Next suppose ¢ is not onto i.e., there exists an element x € ¥ such that x is
not the image of any element of ¥ under ¢.

We have 9, =i, ie., (9, ¥)x)=i(x)=x VxeV
i.e., oY (x)) =x

¥(x) € V. So x is the image of an element of ¥ under ¢. This is a
contradiction. Hence @ is onto.

To prove uniqueness, we assume that there exists a mapping x : V — V,
such that x,0 = @,x =i,

Let x be an arbitrary element of V.

Since @ is onto, these exists y € V such that ¢(y) = x.

Now ¥(x) =Y(() = (¥ ®)0) =i, 0) =y

and () = X(00)) = (LDO) =i, 0) =y

Thus W¥(x)=y(x), x arbitrary. So ¥ = . Hence ¥ is unique.

Inverse of a Linear Mapping

Definition: Let ¢ : ¥ — W be a linear mapping where ¥ and W vector spaces
over F. Amapping ¥ : W — Vs called an universe of ¢ if o'V =i , ¥ 0 =i .
It is usually denoted by @1, If a linear mapping @ : ¥ — W has an inverse, it
is called invertible.

We can prove the following.
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Theorem: If Vand W are vector spaces over the same field F, a linear mapping
¢ : ¥ — Wis invertible, then
(?) ¢ 'islinear
(it) @is bijective
(#ii) @ is unique.
Proof: Let W : W — V be a mapping such that ¥ =i , Yo =1,
Letw , w, € Wand y(w,)=v,, ¥(w,) =v,, v, v, € VW, w, € Wclearly
@(¥(w))) = @(v,) implies i,, (w)) = 0(v), i.e., w = d(v))
Similarly, w, = ¢(v,).
Since ¢ is linear.
@(av, + bv)) = a ¢(v)) + bo(v,), a, bare scalars, implies
o(av, + bv,) =aw, + bw,
Y(@(av, + bv,)) = Y(aw, + bw,)
Thisimplies i (av, + bv,) = ¥(aw, + bw,)
av, + bv, =¥ (aw, + bw,) [+ av|+bv, e V]
ie., a¥(w,)) + bY (bw) =¥ (aw, + bw,)
But this means that ¥ is linear i.e., ¢ is linear.
(i) Let ¢ : ¥V — W be invertible. Then there exists ¥ : W — V such that
Oo¥ =i,and Yo =1,
Let vy, v, € Vand ¢(v)) = 6(v,).
Then F(o(v))) = ¥ (0(v)
J i(vp)=ifv,) or v, =v,
Therefore ¢ is one-one. '
Let w e W.Then ¢(y(w)) =i (w)=w, ¥(w) e V.
w, is the image of ‘¥(w) under ¢. This implies ¢ is onto.
Thus ¢ is one-one and onto, i.e., bijective.
(iii) If possible, let there be two inverses W : W — V and y : W — V.
Then Q¥ =i,=0,¥ and Y o=i =x0
Let w e W be arbitrary.
Since ¢ is onto, there exists v € ¥ such that ¢(v) = w.

Now Y(w) = P(0() = (Y d)(v) =i, (v)) = v
and XW) = X(@()) = (ed)(V) = i (v) = v
' Y(w) = x(w)

As wis arbitrary, ¥ = y. This proves the uniqueness of ¢.
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Example 1: If ¢ : :R*— R be defined as g(x, , z) = (2x, 4x — y, 2x + 3yz) then show
that @ is invertible.

Solution: Let (x, y, z) € ker ¢. Then ¢(x, y, z) = (0, 0, 0). This gives 2x = 0, 4x
~-y=0,2x+3y-z=0.

This system has only the trivial solution (0,0,0),i.e.,ker o= {0}.
Hence ¢ is one-one. As ¢ is onto also, ¢ is invertible.

To find out the inverse of ¢, we take ¢(x, y, z) = (7, s, ), say
Then 2x=r,4x—y=s and 2x+3y-z=t

or x=rl2,y=2r-s,z=Tr—3s—1t

Hence o \(r,s, )=@/2,2r—s,Tr—3s—1)

Example 2: If S and T are linear operators on R? defined as S(x, y) = (, x),
T(x, ¥) = (0, x), find ST, TS, S? and T>.

Solution: We see
(ST) (x, ) = S(T(x, »)) = 8(0, x) = (x, 0)
(TS) (x, y) = T(S(x, »)) = T(», x) = (0, )
§%(x, ) = S(S(x, ¥)) = S, x) = (x, )
T*(x, y) = T(T(x, y)) = T(0, x) = (0, 0)
Note that ST # TS and S§%= .



