11.6 RANK AND NULLITY

If $\phi: V \to W$ is a linear mapping from a vector space V to the vector space W, then there are two important concepts associated with ϕ . These are rank and nullity defined as follows.

Definition: The *rank* of a linear mapping $\phi: V \to W$ is defined to be the dimension of Im(ϕ) and the *nullity* of ϕ is defined to be the demension of ker ϕ .

Note these are defined as $Im(\phi)$ and ker ϕ are vector spaces.

If $\phi : \mathbb{R}^3 \to \mathbb{R}^2$ be defined by $\phi(x, y, z) = (2x + y - z, x + y + z)$ then evidently rank $(\phi) = 2$, nullity $(\phi) = 1$.

A result of prime importance is the following:

Theorem: If $\phi: V \to W$ be a linear mapping from a finite dimensional space V to another space W, then

$$\dim(V) = \operatorname{rank}(\phi) + \operatorname{nullity}(\phi)$$

The proof of this theorem is outside the scope of this book. The reader is advised to verify the theorem for all the linear mappings of the above example.

Example 1: A mapping $\phi : \mathbb{R}^3 \to \mathbb{R}^3$ is defined by $\phi(x_1, x_2, x_3) = (x_1 + x_2 + x_3, x_1 + 2x_2 + x_3), (x_1, x_2, x_3) \in \mathbb{R}^3$. Show that ϕ is a linear mapping. Find ker ϕ and the dimension of ker ϕ , Im(ϕ) and dimension of Im(ϕ).

Solution: Let
$$\alpha = (x_1, x_2, x_3)$$
, $\beta = (y_1, y_2, y_3) \in \mathbb{R}^3$, then
$$\phi(\alpha) = (x_1 + x_2 + x_3, 2x_1 + x_2 + 2x_3, x_1 + 2x_2 + x_3)$$
 ...(1)
$$\phi(\beta) = (y_1 + y_2 + y_3, 2y_1 + y_2 + 2y_3, y_1 + 2y_2 + y_3)$$
 ...(1)
$$\therefore \alpha + \beta = (x_1 + y_1, x_2 + y_2, x_3 + y_3)$$

$$\therefore \phi(\alpha + \beta) = ((x_1 + y_1) + (x_2 + y_2) + (x_3 + y_3), 2(x_1 + y_1) + (x_2 + y_2) + 2(x_3 + y_3),$$

$$(x_1 + y_1) + 2(x_2 + y_2) + (x_3 + y_3)$$

$$= ((x_1 + x_2 + x_3) + (y_1 + y_2 + y_3), (2x_1 + x_2 + 2x_3) + (2y_1 + y_2 + 2y_3),$$

$$(x_1 + 2x_2 + x_3) + (y_1 + 2y_2 + y_3)$$

$$= (x_1 + x_2 + x_3) + (y_1 + y_2 + y_3) + (y_1 + y_2 + y_3)$$

=
$$(x_1 + x_2 + x_3, 2x_1 + x_2 + 2x_3, x_1 + 2x_2 + x_3) + (y_1 + y_2 + y_3, 2y_1 + y_2 + 2y_3, y_1 + 2y_2 + y_3)$$

$$= T(\alpha) + T(\beta) \quad \text{by } (1)$$

Let $c \in \mathbb{R}$, then $c\alpha = (cx_1, cx_2, cx_3)$

$$\therefore \quad \phi(\alpha + \beta) = \phi(\alpha) + \phi(\beta) \text{ for all } \alpha, \beta \in \mathbb{R}^3.$$

and $\phi(c\alpha) = c \phi(\alpha)$ for all $x \in \mathbb{R}$ and $\alpha \in \mathbb{R}^3$.

Hence, ϕ is a linear mapping.

Now,
$$\ker \phi = \{(x_1, x_2, x_3) \in \mathbb{R}^3 : \phi(x_1, x_2, x_3) = (0, 0, 0)\}$$

Let $(x_1, x_2, x_3) \in \ker \phi$, then
$$(x_1 + x_2 + x_3, 2x_1 + x_2 + 2x_3, x_1 + 2x_2 + x_3) = (0, 0, 0)$$

This gives

$$x_1 + x_2 + x_3 = 0$$

$$2x_1 + x_2 + 2x_3 = 0$$

$$x_1 + 2x_2 + x_3 = 0$$

From the first two equations, we get

$$\frac{x_1}{2-1} = \frac{x_2}{2-2} = \frac{x_3}{1-2}$$
 i.e., $\frac{x_1}{1} = \frac{x_2}{0} = \frac{x_3}{-1} = k$ (say)

 \therefore $x_1 = k, x_2 = 0, x_3 = -k$ and the last equation is satisfied.

$$(x_1, x_2, x_3) = k(1, 0, -1), k \in \mathbb{R}$$

Let $\alpha = (1, 0, -1)$, then ker $\phi = L(\alpha)$ and dim ker $\phi = 1$

Let ξ be an arbitrary vector in $Im(\phi)$.

Then
$$\xi = (x_1 + x_2 + x_3, 2x_1 + x_2 + 2x_3, x_1 + 2x_2 + x_3)$$

= $x_1 (1, 2, 1) + x_2 (1, 1, 2) + x_3 (1, 2, 1)$

Thus, ξ is a linear combination of the vectors (1, 2, 1), (1, 1, 2).

Hence,
$$Im(\phi) = L\{(1, 2, 1), (1, 1, 2)\}$$

Then we shall prove that the vectors (1, 2, 1), (1, 1, 2) are linearly independent.

Let us consider the relation $c_1(1, 2, 1) + c_2(1, 1, 2) = (0, 0, 0)$, where $c_1, c_2 \in \mathbb{R}$

$$\Rightarrow$$
 $(c_1 + c_2, 2c_1 + c_2, c_1 + 2c_2) = (0, 0, 0)$

$$\Rightarrow$$
 $c_1 + c_2 = 0$, $2c_1 + c_2 = 0$, $c_1 + 2c_2 = 0$. This gives $c_1 = c_2 = 0$.

Hence, the set $\{(1, 2, 1), (1, 1, 2)\}$ is linearly independent and the dimension of $Im(\phi)$ is 2.

Example 2: A linear mapping $\phi : \mathbb{R}^3 \to \mathbb{R}^4$ is defined by

$$\phi(x_1, x_2, x_3) = (x_2 + x_3, x_3 + x_1, x_1 + x_2, x_1 + x_2 + x_3), (x_1, x_2, x_3) \in \mathbb{R}^3.$$

Find ker ϕ and verify that $\{\phi(\epsilon_1), \phi(\epsilon_2), \phi(\epsilon_3)\}$ is linearly independent set in \mathbb{R}^4 where $\epsilon_1 = (1, 0, 0), \epsilon_2 = (0, 1, 0), \epsilon_3 = (0, 0, 1)$ and also find Im(ϕ) and the dimension of Im(ϕ).

Solution: Now ker $\phi = \{(x_1, x_2, x_3) \in \mathbb{R}^3 : \phi(x_1, x_2, x_3) = (0, 0, 0, 0)\}$

Let
$$(x_1, x_2, x_3) \in \ker \phi$$
, then $\phi(x_1, x_2, x_3) = (0, 0, 0, 0)$

$$\therefore (x_1 + x_3, x_3 + x_1, x_1 + x_2, x_1 + x_2 + x_3) = (0, 0, 0, 0)$$

This gives
$$x_2 + x_3 = 0$$
, $x_3 + x_1 = 0$, $x_1 + x_2 = 0$, $x_1 + x_2 + x_3 = 0$

The solution is $x_1 = x_2 = x_3 = 0$

$$\therefore \quad \ker \phi = \{\theta\}$$

Now
$$\phi(\epsilon_1) = \phi(1, 0, 0) = (0 + 0, 0 + 1, 1 + 0, 1 + 0 + 0) = (0, 1, 1, 1)$$

 $\phi(\epsilon_2) = \phi(0, 1, 0) = (1 + 0, 0 + 0, 0 + 1, 0 + 1 + 0) = (1, 0, 1, 1)$

$$\phi(\in_3) = \phi(0,0,1) = (0+1,1+0,0+0,0+0+1) = (1,1,0,1)$$

Let us consider the relation $c_1 \phi(\epsilon_1) + c_2 \phi(\epsilon_2) + c_3 \phi(\epsilon_3) = \theta$ where c_1 , c_2 , $c_3 \in \mathbb{R}$

or
$$c_1(0, 1, 1, 1) + c_2(1, 0, 1, 1) + c_3(1, 1, 0, 1) = (0, 0, 0, 0)$$

or
$$(c_2 + c_3, c_1 + c_3, c_1 + c_2, c_1 + c_2 + c_3) = (0, 0, 0, 0)$$

This gives $c_2 + c_3 = 0$, $c_1 + c_3 = 0$, $c_1 + c_3 = 0$ and $c_1 + c_2 + c_3 = 0$

The solution is $c_1 = c_2 = c_3 = 0$.

This proves that $\{\phi(\epsilon_1), \phi(\epsilon_2), \{\phi(\epsilon_3)\}\$ is linearly independent set. Im (ϕ) is a linear span of the vectors $\phi(\epsilon_1), \phi(\epsilon_2), \phi(\epsilon_3)$ where $\{\alpha_1, \alpha_2, \alpha_3\}$ is the basis of \mathbb{R}^3 .

Since $\{\varepsilon_1, \varepsilon_2, \varepsilon_3\}$ is a basis of \mathbb{R}^3 .

$$\lim(\phi) = L\{\phi(\epsilon_1), \phi(\epsilon_2), \phi(\epsilon_3)\}$$

$$= L\{(0, 1, 1, 1), (1, 0, 1, 1), (1, 1, 0, 1)\}$$

Since the set $\{\phi(\varepsilon_1), \phi(\varepsilon_2), \phi(\varepsilon_3)\}$ is linearly independent set.

The dimension of Imp is 3.

Example 3: Prove that the linear mapping $\phi: \mathbb{R}^3 \to \mathbb{R}^3$ defined by

$$\phi(x, y, z) = (x + y, y + z, z + x) \in \mathbb{R}^3$$
 is one-to-one and onto.

Solution: Now, $\ker \phi = \{(x, y, z) \in \mathbb{R}^3 : \phi(x, y, z) = (0, 0, 0)\}$

Let $(x, y, z) \in \ker \phi$, then $\phi(x, y, z) = (0, 0, 0)$

or
$$(x+y, y+z, z+x) = (0, 0, 0)$$

This gives x + y = 0, y + z = 0, z + x = 0

The solution is x = y = z = 0.

: ker $\phi = \{\theta\}$ and hence ϕ is one-to-one.

The standard basis of \mathbb{R}^3 is $\{(1,0,0),(0,1,0),(0,0,1)\}$

Now,
$$\phi(1,0,0) = (1+0,0+0,0+1) = (1,0,1)$$

$$\phi(0,1,0) = (0+1,1+0,0+0) = (1,1,0)$$

$$\phi(0,0,1) = (0+0,0+1,1+0) = (0,1,1)$$

Im(ϕ)is the linear span of the vectors $\phi(1, 0, 0)$, $\phi(0, 1, 0)$, $\phi(0, 0, 1)$

$$\therefore \quad \text{Im}(\phi) = L\{(1,0,1), (1,1,0), (0,1,1)\}$$

Then, we shall prove that the set $\{(1, 0, 1), (1, 1, 0), (0, 1, 1)\}$ is linearly independent.

Let us consider the relation $c_1(1,0,1) + c_2(1,1,0) + c_3(0,1,1) = (0,0,0)$ where $c_1, c_2, c_3 \in \mathbb{R}$.

$$\therefore (c_1 + c_2, c_2 + c_3, c_1 + c_3) = (0, 0, 0)$$

This gives $c_1 + c_2 = 0$, $c_2 + c_3 = 0$, $c_1 + c_3 = 0$.

The solution is $c_1 = c_2 = c_3 = 0$.

Hence, the set $\{(1, 0, 1), (1, 1, 0), (0, 1, 1)\}$ is linearly independent set.

$$: Im(\phi) = \mathbb{R}^3.$$

and therefore, φ is an onto mapping.

Example 4: Determine the linear mapping $\phi : \mathbb{R}^3 \to \mathbb{R}^2$ which maps the basis vectors (1, 0, 0), (0, 1, 0), (0, 0, 1) of \mathbb{R}^3 to the vectors (1, 1), (2, 3), (-1, 2) respectively. Find $\phi(1, 2, 0)$.

Solution: Let $\xi = (x, y, z)$ be an arbitrary vector of \mathbb{R}^3

$$\xi = (x, y, z) = x(1, 0, 0) + y(0, 1, 0) + z(0, 0, 1)$$

Since ϕ is a linear, $\phi(\xi) = x \phi(1, 0, 0) + y \phi(0, 1, 0) + z \phi(0, 0, 1)$

$$= x (1, 1) + y (2, 3) + z (-1, 2)$$
$$= (x + 2y - z, x + 3y + 2z)$$

 \therefore ϕ is defined by $\phi(x, y, z) = (x + 2y - z, x + 3y + 2z), (x, y, z) \in \mathbb{R}^3$

$$\Rightarrow \phi(1,2,0) = (1+4-0,1+6+0) = (5,7).$$

Example 5: Determine the linear mapping $\phi : \mathbb{R}^3 \to \mathbb{R}^2$ which maps the basis vectors (1, 0, 0), (0, 1, 0), (0, 0, 1) of \mathbb{R}^3 to the vectors (1, 1), (2, 3), (3, 2) respectively. Find ker ϕ and Im (ϕ) .

Solution: Let $\xi = (x, y, z)$ be an arbitrary vector of \mathbb{R}^3

$$\xi = (x, y, z) = x(1, 0, 0) + y(0, 1, 0) + z(0, 0, 1)$$

Since ϕ is linear, then $\phi(\xi) = x\phi(1, 0, 0) + y\phi(0, 1, 0) + z\phi(0, 0, 1)$

$$= x (1, 1) + y(2, 3) + z(3, 2)$$
$$= (x + 2y + 3z, x + 3y + 2z)$$

 \therefore ϕ is defined by $\phi(x, y, z) = (x + 2y + 3z, x + 3y + 2z), (x, y, z) \in \mathbb{R}^3$.

Now,
$$\ker \phi = \{(x, y, z) \in \mathbb{R}^3 : \phi(x, y, z) = (0, 0)\}$$

Let
$$\alpha = (x, y, z) \in \ker \phi$$
, then $\phi(\alpha) = \theta$

This gives x + 2y + 3z = 0

$$x + 3y + 2z = 0$$

By the cross-multiplication, we get $\frac{x}{4-9} = \frac{y}{3-2} = \frac{z}{3-2}$ i.e. $\frac{x}{-5} = \frac{y}{1} = \frac{z}{1}$ = k (say)

$$x = -5k, y = k, z = k$$

$$(x, y, z) = k(-5, 1, 1)$$
 where $k \in \mathbb{R}$.

$$\ker \phi = L(\alpha)$$
 where $\alpha = (-5, 1, 1)$

Im(ϕ) is linear span of the vectors $\phi(\alpha_1)$, $\phi(\alpha_2)$, $\phi(\alpha_3)$ where $\{\alpha_1, \alpha_2, \alpha_3\}$ is any basis of \mathbb{R}^3 .

Since $\{(1,0,0),(0,1,0),(0,0,1) \text{ is a basis of } Im(\phi)=L\{(1,1),(2,3),(3,2)\}.$

Example 6: Determine the linear mapping $\phi : \mathbb{R}^3 \to \mathbb{R}^3$ which maps the basis vectors (0, 1, 1), (1, 0, 1), (1, 1, 0) of \mathbb{R}^3 to (1, 1, 1), (1, 1, 1), (1, 1, 1) respectively. Verify that dim (ker ϕ) + dim (im ϕ) = 3

Solution: Let $\xi = (x, y, z)$ be an arbitrary vector of the domain set \mathbb{R}^3 .

Let
$$\xi = c_1(0, 1, 1) + c_2(1, 0, 1) + c_3(1, 1, 0)$$
 where $c_1, c_2, c_3 \in \mathbb{R}$

or
$$(x,y,z) = (c_2 + c_3, c_1 + c_3, c_1 + c_2)$$

$$c_2 + c_3 = x, c_1 + c_3 = y, c_1 + c_2 = z$$

$$\therefore (2c_1 + c_2 + c_3) - (c_2 + c_3) = y + z - x \Rightarrow c_1 = \frac{y + z - x}{2}$$

$$\therefore c_2 = \frac{z+x-y}{2}, c_3 = \frac{x+y-z}{2}$$

Since ϕ is linear, then

$$\begin{array}{ll}
\vdots & \phi(\xi) = c_1 \phi(0, 1, 1) + c_2 \phi(1, 0, 1) + c_3 \phi(1, 1, 0) \\
&= c_1 (1, 1, 1) + c_2 (1, 1, 1) + c_3 (1, 1, 1) \\
&= (c_1 + c_2 + c_3, c_1 + c_2 + c_3, c_1 + c_2 + c_3) \\
&= \left(\frac{x + y + z}{2}, \frac{x + y + z}{2}, \frac{x + y + z}{2}\right)
\end{array}$$

Hence, ϕ is defined by $\phi(x, y, z) = \left(\frac{x+y+z}{2}, \frac{x+y+z}{2}, \frac{x+y+z}{2}\right)$,

 $(x, y, z) \in \mathbb{R}$.

Now,
$$\ker \phi = \{(x, y, z) \in \mathbb{R}^3 : \phi(x, y, z) = \theta\}$$

Let $(x, y, z) \in \ker \phi$, then $\phi(x, y, z) = \theta$

i.e.,
$$\left(\frac{x+y+z}{2}, \frac{x+y+z}{2}, \frac{x+y+z}{2}\right) = (0, 0, 0)$$

$$\therefore x+y+z=0$$

Let
$$y = c$$
, $z = d$, then $x = -c - d$

$$\therefore (x, y, z) = (c, d, -c - d) = c(1, 0, -1) + d(0, 1, -1) \text{ where } c, d \in \mathbb{R}.$$

Hence, $\ker \phi = L\{(1,0,-1),(0,1,-1)\}$

Let us consider the relation $c_1(1, 0, -1) + c_2(0, 1, -1) = (0, 0, 0), c_1, c_2 \in \mathbb{R}$.

or
$$(c_1, c_2, -c_1 - c_2) = (0, 0, 0) \Rightarrow c_1 = c_2 = 0$$

Hence, $\{(1,0,-1),(0,1,-1)\}$ is a linearly independent set.

So
$$\dim \ker \phi = 2$$

Im(ϕ) is a linear span of the vectors $\phi(\alpha)$, $\phi(\beta)$, $\phi(\gamma)$ where $\{\alpha, \beta, \gamma\}$ is any basis of the domain space \mathbb{R}^3 .

Since (0, 1, 1), (1, 0, 1), (1, 1, 0) is a basis of \mathbb{R}^3 , $Im(\phi) = L\{(1, 1, 1)\}$

$$\therefore$$
 dim Im(ϕ) = 1

:.
$$\dim \ker \phi + \dim \operatorname{Im}(\phi) = 2 + 1 = 3$$
 (verified).

Example 7: Determine the linear mapping $\phi : \mathbb{R}^3 \to \mathbb{R}^3$ which maps the basis vectors (0, 1, 1), (1, 0, 1), (1, 1, 0) of \mathbb{R}^3 to the vectors (2, 0, 0), (0, 2, 0), (0, 0, 2) respectively. Find ker ϕ and Im(ϕ). Verify that dim (ker ϕ) + dim im $\phi = 3$.

Solution: Let $\xi = (x, y, z)$ be an arbitrary vector in \mathbb{R}^3 .

Let
$$\xi = c_1(0, 1, 1) + c_2(1, 0, 1) + c_3(1, 1, 0)$$
 where $c_1, c_2, c_3 \in \mathbb{R}$

or
$$(x, y, z) = (c_2 + c_3, c_1 + c_3, c_1 + c_2)$$

$$\therefore c_2 + c_3 = x, c_1 + c_3 = y, c_1 + c_2 = z$$

$$\therefore c_1 = \frac{x+z-x}{2}, c_2 = \frac{x+z-y}{2} c_3 = \frac{x+z-z}{2}$$

Since ϕ is linear, then

$$\begin{aligned} \phi(\xi) &= c_1 \, \phi(0, 1, 1) + c_2 \, \phi(1, 0, 1) + c_3 \, \phi(1, 1, 0) \\ &= c_1 \, (2, 0, 0) + c_2 \, (0, 2, 0) + c_3 \, (0, 0, 2) \\ &= (2c_1, 2c_2, 2c_3) \\ &= (y + z - x, x + z - y, x + y - z) \end{aligned}$$

 \therefore ϕ is defined by $\phi(x, y, z) = (y + z - x, x + z - y, x + y - z), (x, y, z) \in \mathbb{R}^3$

Now
$$\ker \phi = \{(x, y, z) \in \mathbb{R}^3 : \phi(x, y, z) = \theta\}$$

Let
$$(x, y, z) \in \ker \phi$$
, then $\phi(x, y, z) = \theta$

or
$$(y+z-x, x+z-y, x+y-z) = (0, 0, 0)$$

$$y+z-x=0, x+z-y=0, x+y-z=0$$

This gives the solution x = y = z = 0

Hence,
$$\ker \phi = \{\theta\}$$
 and $\dim (\ker \phi) = 0$

Im ϕ is a linear span of the vectors $\phi(\alpha_1)$, $\phi(\alpha_2)$, $\phi(\alpha_3)$ where $\{\alpha_1, \alpha_2, \alpha_3\}$ is any basis of the domain \mathbb{R}^3 .

Since $\{(0, 1, 1), (1, 0, 1), (1, 1, 0)\}$ is a basis of \mathbb{R}^3 , then

$$Im\phi = L\{(2,0,0), (0,2,0)(0,0,2)\}$$

Since the set of vectors $\{(2,0,0),(0,2,0),(0,0,2)\}$ is linearly independent.

$$\therefore \qquad \dim \operatorname{Im} \phi = 3$$

Hence, dim $(\ker \phi)$ + dim $(\operatorname{Im} \phi)$ = 0 + 3 = 3.