11.5 LINEAR MAPPING

A linear mapping is a mapping between two vector spaces which prese
linearity structure of the vector spaces. The formal definition goes as ft

Definition: A mapping ¢ : V' — W from a vector space ¥ to anothe
space W is a mapping from ¥ to W which satisfies the condition

¢ (ox + By ) = ab(x) + Bo(y) forx, y e V, 0, P eR



y
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or
(1) & (o +B)= () + (B) = for all o, B e Vand
(i) & (ca)=cd(o)forallceRanda e V.
Example: Prove that the following mappings are linear:
() ¢:R*— R%is defined by ¢ (x, y) = (2x + y, x - y).
(@) ¢: R? - R3 is defined byd(x, y)=(x+y,x—-y, 2x).
iii) ¢ : R’ — R is defined by ¢ (x, y,z) = (2x + y -z, x + y + 2).
(iv) ¢: R > R is defined by ¢ (x,y,z)=x+2y+3z
Solution: (i) Let (x;, y)), (x,, y,) €R?, a, B € R.
Then ¢(c (xl, yl) + B(xp yz) = ¢(0r.xl 4= sz, oy, + ﬂyz)
= (2o, + Px,) + oy, + By,, ox, + sz“ ay, - By,)
- (2(1.):[ ¢ ?-sz +oy, + BJ’za o, + sz— oy, - B.Vg)
= (x(le Y X ‘)’1) + B(sz + ¥ xz‘}’z)
= adx;, y,) + Bolxy, )
Hence, ¢ is linea;.
(i) Let (x, 3,), (x5, 7,) €R%, o, e R.
Then ¢(x (x,, y;) + B(x,, ¥,) = 00 x; + Bx,, oy, + By,)
= (o, + Bx, + oy, + By,, 00 x; + P, — o) — By, 200 x) + 2fx,)
= 0xy +yy, xp =y 26)) + Bl + 3y, X -0y, 26)
= ad(x,, y,) + Pd(x,, y,)
Hence, ¢ is linear,
(iii) Let (x,, y; 2)), (X5, ¥, 2,) € R o, B e R.
Then d(ouxy, vy, z)), + Blxy, ¥5, 25) = Blow, + B x,, ap, + By, az, + B;'z)
= (2000, + 2x, + oy + By, - 02y — Bz, oy + ey + oy + Py + oz + i)
=02y +y 2z, 0y Yyt ) H PG -ty )
= 0(x;, vy 2)) + BOxy, v 2))
Hence, ¢ is linear.
The following result about linear mapping plays a crucial role in many
derivations.
Theorem: The following are true about a linear mapping ¢ : V' — W:
(i) () =0 where 8 and 0’ are the null vectors of ¥and W respectively.
(i) o(x +y)=0(x) +00). VxyelV
(iii) ¢(0ux) = ou(x). Vx,e V,aeR
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(iv) 0 (x - ») = o) - 6().
Proof: (i) Taking o= 1, p =1,y =x, We get

oax + By)= ad(x) + Po)
or O —») = 10(x) - 16(x) = ¢ (x) — (x) = 0’
or o(0)=90".
(i) Taking o =P =1, we get

8x + ) = 0(1x + 1) = 1009 + 16() = 9(x) + 60)
(i) Takinga=1,B=0, we get

o(ox + 0y) = 0d(x) + 0 0()
or d(ox) = ad(x).
(iv) Takingo=1,B=-1, we get

o(x — ) = o(1x + (1)) = 16() + (-1)¢ ) = 0(x) — 0(»).

Definition. The kernel of a linear mapping ¢ : ¥ — Wis defined as the set of
all those elements of ¥ whose images are the null vector of W. This is denoted

by ker ¢ or ¢! {6'}.
‘Thus, ker ¢ = {x € V; 0(x) =0}

The image of a linear mapping ¢ : V' — W, denoted by Im(¢) or ¢(¥) is
defined as the set of images of all the elements of V.

Thus, Im¢ = {¢(x); x € V}.
Theorem: If ¢ : ¥ — W is a linear mapping, then
(i) ker ¢ is a subspace of V.
(ii) Im¢ is a subspace of V.
Proof: (i) Let x,y e ker¢, 0, € R.
Then, ¢(x) =6, ¢(y) =0 andax + Py e V.
Hence, ¢(ox + By) = ad(x) + Bd(y) since ¢ is linear
: =00 + B0 =0
This implies o + By € ker ¢. Thus ker ¢ is a subspace of V.
(if) Letu,ve Im(9), o, B € R.
So, there exists x, y € V such that u = ¢ (x), v = ¢ ().
Sox+Pye Vand om + By = b (x) + Pd () = dox + By) € &(F)
Hence, ¢ (V) i.e.,, Im(¢) is a subspace of W.
Remark: ker ¢ # ¢ since 0 € ker d.
Note: (i) ker ¢ is called the null space of ¢ and is denoted by N(®).
(i7) Im(9) is also called range of ¢ and is denoted by R(¢) .
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;lt:lll(:r;l'f{ é«;t ¢ : V— Wbe a linear mapping, then, ¢ is injective if and only
Proof: Let ¢ be injective. Since ¢ (6) =0’ where @ ¢ Vand & W, then ¢
(o) # 0’ for non-zero o in ¥,

So ker ¢ = {0}.
Conversely, let ker ¢ = {8} and o, B € ¥ such that ¢ (o) = ¢(B) in W.

Since ¢ (W) =0 (B) =0 () -0 (B) =0

. =S¢ (a-pP)=0 (" ¢ is linear).

This shows that o. — B € ker ¢ and since ker ¢ = {6}, then ot = B
% d(W=0PB)=a=p

Hence, ¢ is injective. '
Note: Let ¢ : V' — W be a linear mapping and {o,, ou,, ... @, ) be a basis of ¥,
then ¢ (@), ¢ (@), .... ¢ (o) generate I_(¢). |
Example 1: Let ¢ : R? - R3be defined by ¢(x;, x,, x3) = (x}, x,, 0) for
(x}, Xy, X3) € R, then show that ¢ is linear mapping or linear transformation.
Solution: Let o = (x;, x,, X3), B= (v, yp, 3) € R

o+ B = (x5 Xy, %3) T 05 Vs ¥3) = (%) T 21, Xy + yg, X3 ;)
¢(o + B) =T (xl TV Xt Yy, 0) = (xp X5, 0) + (ypyj’ 0)

= o(a) + o(B) (D
Let ¢ € R, thenca= (cx,, cx,, cx3) )
d(ca) = (cx, x5, 0) = c(x}, x5, 0) = co(o) 4462

From (1) and (2), we see that ¢ is linear mapping.
Example 2; Let ¢ : R> — R? be defined by §(x;, x,, x3) = (x; + 1, X, + 1, x3 + 1),
(X1, Xy, X3) € R3, then show that ¢ is not a linear transformation.
Solution: Let o = (x, Xy, X3), B = (v}, V2 zZ;) € R3, then
o+tPB =0 ty,xtyyX +33)
oo+ B) =0yt Lxtyt 1, x;+y;3+ 1)
=(xt+1, xt L, x,+1)+ Vs Y25 ¥3)
# o) + 9(B)
Hence, ¢ is not a linear transformation.
Example 3: Show that the transformation ¢ : R? — R? defined by 0(x, y) =
(x—y, x +y, ) is a linear transformation.

2
Solution: Let o = (x;, 1) B= (x5 € R,



and OB) = (xy- ¥y X3+ Vo 1)) AN
Leta. be R, then ao. + bB € R’ |
- 0 (a0 + BP) = O[(ax,, ay,) + (bxy, by,y)] = ax, + bx,, ay, + by,) i
= (ax, + bx,-ay, - by, ax, + bx, + ay, + by,, ay, + by,
= (alx, ~ ) + b (xy— yy), alx) + y)) + Mxy + 3,). ay, + b)';r
= a(x, — yp, X+ ¥ y) H 0 =y X+ v, 3)
= at(a) + bd(B), by (1)
Hence, ¢ is a linear transformation.

Example 4: 1f¢ : V; - ¥, and ¢ (x}. X, X3), = x2 + x3 + x3 then show that
¢ is not a linear u'ansformauon

Solution: Let a =(1,0,0), B=(-2,0,0) € V;, then ¢(c) = |
and ¢(B) =4
a+p=(1,0,00+(-2,0,00=(-1,0,0)
ola + B) = (-1)* + 07 + 07 = 1 # () + O(P)
Hence, ¢ is not a linear transformation.
Example 5: Find ker ¢ and Im(¢) where
(i) &:R> — R? is defined by ¢(x, y, z) = (x, », 0).
(i) ¢: R2 — R? is defined by ¢(x, y) = (x + y, x = ¥).
(iii) ¢ :R*> — R is defined by 0(x, y) = (¥, x, x +y).
(iv) 0 R® — R? is defined by ¢(x, y, 2) =(x +2z,y~2).
(v) ¢:R> - R?is defined by 0(x, y,z) = (v + y ~ 2z, x ~ ¥ + 32).
Solution: (/) To determine ker ¢, we let @(x, y, z) = 8’
and get O(x, y,2)=(0,0,0) . x=0,y=0
Hence,  ker ¢ = {(0, 0, 2)} i.e., the z-axis in K.
Since x, y € R, & R’) [(x, 5, 0); x, y € R} = The xy-plane.

then  o(0) = (x, - ¥ % * -"n-.":’}

(i) Let Olx, y) =6 =(0,0). Thenx +y=0and x -~y = 0.
So x=y=(),
Hence,  ker ¢ = {6'}.

To determine Imé or §(IR*) here, we note if r, and r, are two arbitran real
numbers, then taking ¢(x, y) - (r 1 Fy) We gel

x -1 J.l = ]' X _‘J an I‘—,
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= 1
So x"i("l*"’z)e R,y=§("1—f‘2)€ R.

Hence, there exists real numbers x and y so that
0, ¥) = (), 1)
This implies ¢(R2) = R2.
(iii) To obtain ker ¢, we let ¢(x, y) = ©’ and get
»=0, x=0,x ry=0.
Hence, solving, we get x =0, y = 0. ¥
Therefore, ker ¢ = {0} where 6 = (0, 0).

Clearly, Im(¢) S R.
(iv) To find ker ¢, we write @ (x, y) = 8’ and get
x+z=0,y—z=0
Hence, ker @ = {(x,,z) € R* x+2=0,y—z=0} which is a straight line in R,

It is to be noted that all points on this straight line }—:-{-z% =1

ie,x=—1y=t z=t tparameters are mapped onto the null vector of R?
eg,(-1,1,1),(2,2,-2).
- To obtain the Im(¢), we let ¢(x, y, z) = (r,, r,) and get therefore x + z = s
y -z =r, which has infinitely many solutions. ,
Hence, for every point (r,, 7,) € R? there is a point (x, y, z) € R> such that
0(x, y, 2) = (r}, ry) :
This implies Im(¢)= R2.
(v) Asabove, ker¢= {(x,y,2)€ R3, 2x +y—z=0=x—y+ 3z} which is
a straight line in R> and Im(¢) = R?.
Remark: A mapping of the type given in (i) is known as a projection. The
mapping ¢ : R3 — R? given by ¢(x, y, z) = (x, 0, 0) is also a projection. If P is
a projection, it is easy to observe that P? = P. In the case of the mapping
0(x, ¥, z) = (x, y, 0), observe that ¢{¢(x, y, 2)} = ¢(x, », 0) = (x, y, 0) = ¢(x, y,
2), ie., §*= 0.

11.6 RANK AND NULLITY

If$ : ¥ — W is a linear mapping from a vector space ¥ to the vector space W,
then there are two important concepts associated with ¢. These are rank and

nullity defined as follows.

Definition: The rank of a linear mapping ¢ : V' — W is deﬁngd to !Je the
dimension of Im(¢) and the nullity of ¢ is defined to be the demension of ker ¢.



