11.5 LINEAR MAPPING

A linear mapping is a mapping between two vector spaces which preserve the linearity structure of the vector spaces. The formal definition goes as follows:

Definition: A mapping $\phi: V \to W$ from a vector space V to another vector space W is a mapping from V to W which satisfies the condition

$$\phi(\alpha x + \beta y) = \alpha \phi(x) + \beta \phi(y) \text{ for } x, y \in V, \alpha, \beta \in \mathbb{R}$$

or

(i)
$$\phi(\alpha + \beta) = \phi(\alpha) + \phi(\beta) = \text{for all } \alpha, \beta \in V \text{ and }$$

(ii)
$$\phi(c\alpha) = c\phi(\alpha)$$
 for all $c \in \mathbb{R}$ and $\alpha \in V$.

Example: Prove that the following mappings are linear:

(i)
$$\phi : \mathbb{R}^2 \to \mathbb{R}^2$$
 is defined by $\phi(x, y) = (2x + y, x - y)$.

(ii)
$$\phi: \mathbb{R}^2 \to \mathbb{R}^3$$
 is defined by $\phi(x, y) = (x + y, x - y, 2x)$.

(iii)
$$\phi: \mathbb{R}^3 \to \mathbb{R}^2$$
 is defined by $\phi(x, y, z) = (2x + y - z, x + y + z)$.

(iv)
$$\varphi : \mathbb{R}^3 \to \mathbb{R}$$
 is defined by $\varphi(x, y, z) = x + 2y + 3z$.

Solution: (i) Let
$$(x_1, y_1), (x_2, y_2) \in \mathbb{R}^2, \alpha, \beta \in \mathbb{R}$$
.

Then
$$\phi(\alpha(x_1, y_1) + \beta(x_2, y_2)) = \phi(\alpha x_1 + \beta x_2, \alpha y_1 + \beta y_2)$$

$$= (2(\alpha x_1 + \beta x_2) + \alpha y_1 + \beta y_2, \alpha x_1 + \beta x_2 - \alpha y_1 - \beta y_2)$$

$$= (2\alpha x_1 + 2\beta x_2 + \alpha y_1 + \beta y_2, \alpha x_1 + \beta x_2 - \alpha y_1 - \beta y_2)$$

$$= \alpha(2x_1 + y_1, x_1 - y_1) + \beta(2x_2 + y_2, x_2 - y_2)$$

$$= \alpha\phi(x_1, y_1) + \beta\phi(x_2, y_2)$$

Hence, ϕ is linear.

(ii) Let
$$(x_1, y_1), (x_2, y_2) \in \mathbb{R}^2, \alpha, \beta \in \mathbb{R}$$
.

Then
$$\phi(\alpha(x_1, y_1) + \beta(x_2, y_2)) = \phi(\alpha(x_1 + \beta x_2, \alpha y_1 + \beta y_2))$$

$$= (\alpha x_1 + \beta x_2 + \alpha y_1 + \beta y_2, \alpha(x_1 + \beta x_2 - \alpha y_1 - \beta y_2, 2\alpha(x_1 + 2\beta x_2))$$

$$= \alpha(x_1 + y_1, x_1 - y_1, 2x_1) + \beta(x_2 + y_2, x_2 - y_2, 2x_2)$$

$$= \alpha \phi(x_1, y_1) + \beta \phi(x_2, y_2)$$

Hence, ϕ is linear.

(iii) Let
$$(x_1, y_1 z_1), (x_2, y_2 z_2) \in \mathbb{R}^3, \alpha, \beta \in \mathbb{R}$$
.

Then
$$\phi(\alpha(x_1, y_1, z_1), + \beta(x_2, y_2, z_2)) = \phi(\alpha x_1 + \beta x_2, \alpha y_1 + \beta y_2, \alpha z_1 + \beta z_2)$$

 $= (2\alpha x_1 + 2\beta x_2 + \alpha y_1 + \beta y_2 - \alpha z_1 - \beta z_2, \alpha x_1 + \beta x_2 + \alpha y_1 + \beta y_2 + \alpha z_1 + \beta z_2)$
 $= \alpha(2x_1 + y_1 - z_1, x_1 + y_1 + z_1) + \beta(2x_2 + y_2 - z_2, x_2 + y_2 + z_2)$
 $= \alpha\phi(x_1, y_1, z_1) + \beta\phi(x_2, y_2, z_2)$

Hence, ϕ is linear.

The following result about linear mapping plays a crucial role in many derivations.

Theorem: The following are true about a linear mapping $\phi: V \to W$:

- (i) $\phi(\theta) = \theta'$ where θ and θ' are the null vectors of V and W respectively.
- (ii) $\phi(x+y) = \phi(x) + \phi(y)$. $\forall x, y \in V$

(iii)
$$\phi(\alpha x) = \alpha \phi(x)$$
. $\forall x, \in V, \alpha \in \mathbb{R}$

(iv)
$$\phi(x-y) = \phi(x) - \phi(y)$$
.

Proof: (i) Taking $\alpha = 1$, $\beta = -1$, y = x, we get

$$\phi(\alpha x + \beta y) = \alpha \phi(x) + \beta \phi(y)$$

or
$$\phi(x - y) = 1\phi(x) - 1\phi(x) = \phi(x) - \phi(x) = \theta'$$

or
$$\phi(\theta) = \theta'$$
.

(ii) Taking $\alpha = \beta = 1$, we get

$$\phi(x + y) = \phi(1x + 1y) = 1\phi(x) + 1\phi(y) = \phi(x) + \phi(y)$$

(iii) Taking $\alpha = 1$, $\beta = 0$, we get

$$\phi(\alpha x + 0y) = \alpha\phi(x) + 0 \phi(y)$$

or
$$\phi(\alpha x) = \alpha \phi(x)$$
.

(iv) Taking $\alpha = 1$, $\beta = -1$, we get

$$\phi(x-y) = \phi(1x+(-1)y) = 1\phi(x)+(-1)\phi(y) = \phi(x)-\phi(y).$$

Definition. The kernel of a linear mapping $\phi: V \to W$ is defined as the set of all those elements of V whose images are the null vector of W. This is denoted by ker ϕ or ϕ^{-1} $\{\theta'\}$.

Thus, ker
$$\phi = \{x \in V; \phi(x) = \theta'\}.$$

The image of a linear mapping $\phi: V \to W$, denoted by $\text{Im}(\phi)$ or $\phi(V)$ is defined as the set of images of all the elements of V.

Thus,
$$Im\phi = {\phi(x); x \in V}$$
.

Theorem: If $\phi: V \to W$ is a linear mapping, then

- (i) ker ϕ is a subspace of V.
- (ii) Im ϕ is a subspace of V.

Proof: (i) Let $x, y \in \ker \phi$, $\alpha, \beta \in \mathbb{R}$.

Then,
$$\phi(x) = \theta'$$
, $\phi(y) = \theta'$ and $\alpha x + \beta y \in V$.

Hence,
$$\phi(\alpha x + \beta y) = \alpha \phi(x) + \beta \phi(y)$$
 since ϕ is linear $= \alpha \theta' + \beta \theta' = \theta'$.

This implies $\alpha x + \beta y \in \ker \phi$. Thus $\ker \phi$ is a subspace of V.

(ii) Let $u, v \in \text{Im}(\phi)$, $\alpha, \beta \in \mathbb{R}$.

So, there exists $x, y \in V$ such that $u = \phi(x)$, $v = \phi(y)$.

$$\therefore \alpha x + \beta y \in V \text{ and } \alpha u + \beta v = \alpha \phi(x) + \beta \phi(y) = \phi(\alpha x + \beta y) \in \phi(V)$$

Hence, $\phi(V)$ i.e., Im(ϕ) is a subspace of W.

Remark: $\ker \phi \neq \phi$ since $\theta \in \ker \phi$.

Note: (i) ker ϕ is called the null space of ϕ and is denoted by $N(\phi)$.

(ii) $Im(\phi)$ is also called range of ϕ and is denoted by $R(\phi)$.

Theorem: Let $\phi: V \to W$ be a linear mapping, then, ϕ is injective if and only if ker $\phi = \{\theta\}$.

Proof: Let ϕ be injective. Since $\phi(\theta) = \theta'$ where $\theta \in V$ and $\theta' \in W$, then $\phi(\alpha) \neq \theta'$ for non-zero α in V.

So
$$\ker \phi = \{\theta\}.$$

Conversely, let ker $\phi = \{\theta\}$ and $\alpha, \beta \in V$ such that $\phi(\alpha) = \phi(\beta)$ in W.

Since
$$\phi(\alpha) = \phi(\beta) \Rightarrow \phi(\alpha) - \phi(\beta) = \theta'$$

 $\Rightarrow \phi(\alpha - \beta) = \theta'$ (: ϕ is linear).

This shows that $\alpha - \beta \in \ker \phi$ and since $\ker \phi = \{\theta\}$, then $\alpha = \beta$

$$\therefore \qquad \qquad \phi(\alpha) = \phi(\beta) \Rightarrow \alpha = \beta$$

Hence, ϕ is injective.

Note: Let $\phi: V \to W$ be a linear mapping and $\{\alpha_1, \alpha_2, ... \alpha_n\}$ be a basis of V, then $\phi(\alpha_1)$, $\phi(\alpha_2)$, $\phi(\alpha_n)$ generate $I_m(\phi)$.

Example 1: Let $\phi : \mathbb{R}^3 \to \mathbb{R}^3$ be defined by $\phi(x_1, x_2, x_3) = (x_1, x_2, 0)$ for $(x_1, x_2, x_3) \in \mathbb{R}^3$, then show that ϕ is linear mapping or linear transformation.

Solution: Let
$$\alpha = (x_1, x_2, x_3), \beta = (y_1, y_2, y_3) \in \mathbb{R}^3$$

$$\therefore \qquad \alpha + \beta = (x_1, x_2, x_3) + (y_1, y_2, y_3) = (x_1 + y_1, x_2 + y_2, x_3 + y_3)$$

Let $c \in \mathbb{R}$, then $c\alpha = (cx_1, cx_2, cx_3)$

From (1) and (2), we see that ϕ is linear mapping.

Example 2: Let $\phi : \mathbb{R}^3 \to \mathbb{R}^3$ be defined by $\phi(x_1, x_2, x_3) = (x_1 + 1, x_2 + 1, x_3 + 1)$, $(x_1, x_2, x_3) \in \mathbb{R}^3$, then show that ϕ is not a linear transformation.

Solution: Let $\alpha = (x_1, x_2, x_3), \beta = (y_1, y_2, z_3) \in \mathbb{R}^3$, then

$$\therefore \quad \alpha + \beta = (x_1 + y_1, x_2 + y_2, x_3 + y_3)$$

Hence, ϕ is not a linear transformation.

Example 3: Show that the transformation $\phi : \mathbb{R}^2 \to \mathbb{R}^3$ defined by $\phi(x, y) = (x - y, x + y, y)$ is a linear transformation.

Solution: Let
$$\alpha = (x_1, y_1), \beta = (x_2, y_2) \in \mathbb{R}^2$$
,

then
$$\phi(\alpha) = (x_1 - y_1, x_1 + y_1, y_1)$$

and $\phi(\beta) = (x_2 - y_2, x_2 + y_2, y_2)$...(1)

Let $a, b \in \mathbb{R}$, then $a\alpha + b\beta \in \mathbb{R}^2$

Hence, \$\phi\$ is a linear transformation.

Example 4: If $\phi: V_3 \to V_1$ and $\phi(x_1, x_2, x_3)$, $= x_1^2 + x_2^2 + x_3^2$ then show that ϕ is not a linear transformation.

Solution: Let
$$\alpha = (1, 0, 0), \beta = (-2, 0, 0) \in V_3$$
, then $\phi(\alpha) = 1$ and $\phi(\beta) = 4$

$$\alpha + \beta = (1, 0, 0) + (-2, 0, 0) = (-1, 0, 0)$$

$$\phi(\alpha + \beta) = (-1)^2 + 0^2 + 0^2 = 1 \neq \phi(\alpha) + \phi(\beta)$$

Hence, ϕ is not a linear transformation.

Example 5: Find ker ϕ and Im(ϕ) where

(i)
$$\phi: \mathbb{R}^3 \to \mathbb{R}^3$$
 is defined by $\phi(x, y, z) = (x, y, 0)$.

(ii)
$$\phi: \mathbb{R}^2 \to \mathbb{R}^2$$
 is defined by $\phi(x, y) = (x + y, x - y)$.

(iii)
$$\phi: \mathbb{R}^2 \to \mathbb{R}^3$$
 is defined by $\phi(x, y) = (y, x, x + y)$.

(iv)
$$\phi: \mathbb{R}^3 \to \mathbb{R}^2$$
 is defined by $\phi(x, y, z) = (x + z, y - z)$.

(v)
$$\phi: \mathbb{R}^3 \to \mathbb{R}^2$$
 is defined by $\phi(x, y, z) = (2x + y - z, x - y + 3z)$.

Solution: (i) To determine ker ϕ , we let $\phi(x, y, z) = \theta'$

and get
$$\phi(x, y, z) = (0, 0, 0)$$
 : $x = 0, y = 0$

Hence, $\ker \phi = \{(0, 0, z)\}\ i.e.$, the z-axis in \mathbb{R}^3 .

Since $x, y \in \mathbb{R}$, $\phi(\mathbb{R}^3) = \{(x, y, 0); x, y \in \mathbb{R}\} = \text{The } xy\text{-plane}.$

(ii) Let
$$\phi(x, y) = \theta' = (0, 0)$$
. Then $x + y = 0$ and $x - y = 0$.

So
$$x = y = 0$$
.

Hence, $\ker \phi = \{\theta'\}$.

To determine Im ϕ or $\phi(\mathbb{R}^2)$ here, we note if r_1 and r_2 are two arbitrary real numbers, then taking $\phi(x, y) = (r_1, r_2)$ we get

$$x + y = r_1, x - y = r_2$$

So
$$x = \frac{1}{2}(r_1 + r_2) \in \mathbb{R}, y = \frac{1}{2}(r_1 - r_2) \in \mathbb{R}.$$

Hence, there exists real numbers x and y so that

$$\phi(x, y) = (r_1, r_2)$$

This implies $\phi(\mathbb{R}^2) = \mathbb{R}^2$.

(iii) To obtain ker ϕ , we let $\phi(x, y) = \theta'$ and get y = 0, x = 0, x + y = 0.

Hence, solving, we get x = 0, y = 0.

Therefore, ker $\phi = \{\theta\}$ where $\theta = (0, 0)$.

Clearly, $\operatorname{Im}(\phi) \subseteq \mathbb{R}^2$.

(iv) To find ker ϕ , we write $\phi(x, y) = \theta'$ and get x + z = 0, y - z = 0

Hence, $\ker \varphi = \{(x, y, z) \in \mathbb{R}^3; x + z = 0, y - z = 0\}$ which is a straight line in \mathbb{R}^3 .

It is to be noted that all points on this straight line $\frac{x}{-1} = \frac{y}{1} = \frac{z}{1} = t$ i.e., x = -t, y = t, z = t, t parameters are mapped onto the null vector of \mathbb{R}^2 e.g., (-1, 1, 1), (2, 2, -2).

To obtain the Im(ϕ), we let $\phi(x, y, z) = (r_1, r_2)$ and get therefore $x + z = r_1$, $y - z = r_2$ which has infinitely many solutions.

Hence, for every point $(r_1, r_2) \in \mathbb{R}^2$ there is a point $(x, y, z) \in \mathbb{R}^3$ such that $\phi(x, y, z) = (r_1, r_2)$

This implies $Im(\phi) = \mathbb{R}^2$.

(v) As above, $\ker \phi = \{(x, y, z) \in \mathbb{R}^3, 2x + y - z = 0 = x - y + 3z\}$ which is a straight line in \mathbb{R}^3 and $\operatorname{Im}(\phi) = \mathbb{R}^2$.

Remark: A mapping of the type given in (i) is known as a projection. The mapping $\phi : \mathbb{R}^3 \to \mathbb{R}^2$ given by $\phi(x, y, z) = (x, 0, 0)$ is also a projection. If P is a projection, it is easy to observe that $P^2 = P$. In the case of the mapping $\phi(x, y, z) = (x, y, 0)$, observe that $\phi(x, y, z) = \phi(x, y, 0) = \phi(x, y, z)$, i.e., $\phi^2 = \phi$.

11.6 RANK AND NULLITY

If $\phi: V \to W$ is a linear mapping from a vector space V to the vector space W, then there are two important concepts associated with ϕ . These are rank and nullity defined as follows.

Definition: The rank of a linear mapping $\phi: V \to W$ is defined to be the dimension of Im(ϕ) and the nullity of ϕ is defined to be the demension of ker ϕ .