Vector Space Theory

The notion of vector space is of prime importance in mathematics, not only

because it has a beautiful structure but also because it leads itself to lhe
development of very many methods of solving basic problems of mathematic
Though vector spaces have innumerable properties, we restrict our discussiong
to only a fundamental few here but before we come to these we begin with the

definition of a vector space.

11.1 BASIC NOTIONS ( v, )"
Definition: A vector space (also called a linear space) over R is a non-
empty set endowed with two operations viz. addition and scalar multiplication
(also called exterior product) which satisfy the follqwingTonditions:.
(1) x+ye Vforallx,ye V [Closure property of addition)
(2) x+y)+tz=x+(y+2z)forallx,y,ze V
Mesre e)ﬁd’ [Associative property of addition)

V13) Hﬂ,e Vsuchﬂ13£9+x x+9 xforeveryxe V
[Idenmy property of addition]

\46} For every x € V, there exists —x € V such that
s+ (=x)=0=(-x)+x [Inverse property of addition)

(5) 5+ y=y +xforallx,ye V ,,,‘ [Commutative property of addition)

) axe Vioralloe R,allxe V
[Closure property of scalar multiplic ation)

(7) edx +y) = ox + oy for every o € R, every x, y € V.
[Scalar distributive proper ol

(8) (0 + Bpx=ax + Br forevery o, p ¢ R, every x € ¥
[Vector distributive property}

(9) alfx) = (of)x forall o, e B, xe V. [Scalar vector associative proper ol
410) 1 ¥=xforallxe Vv (Scalar identity pmpe-rf_i'|
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The set R of all real numbers is usually referred to as the scalar field of ¥
and the elements of V are called vectors.

" Note that a vector space ¥ may consist of only one element {6}. Such a
vector space is called a rivial vector space.

Example 1: The set R is a vector space over R: .

B

This is clear as all the ten conditions follow easily for R.

Remark: The set R is also a scalar field. Thus a real number can be treated
as a vector as well, ’ R

Examp}e 2 The set ]Rz is a vector space over R where addition and scalar
multiplication are defined on R? as follows

G ) +(x, yp) =(x + xzd,“y] ot J’z-)
Of(xla ) = (axy, ayy)

where (x, y,), (x5, ¥,) € R?
ae R

Clearly, the closure properties of addition and scalar multiplication follow
directly from the definition.

For associativity of addition, we observe for x5, ¥1)s (%3, 19), (X3, ¥3) € RZ.
{Gpy)t G ¥} + 0, 3) = (0 + x5, ¥ + 1) + (3, 33)
= ({x + x5} + x5, (¥, 35} +33)
=0+ {5ttty )
since R is associative w.r.t. +
=Lyt (gt xg, 0, + )
= (xp y) {0, ») + (x5, ¥3)}-

Since (0, 0) € R? and (xp, ¥)) +(0, 0) = (xy, ¥)) = (0, 0) + (x;, ¥)), the
identity property of addition follows. Note 0 = (0, 0) here.

For (x,, y,) € R?, we have (- x;, —¥,) e R? satisfying
(xp, ¥p) + (= x5 = yy) =(0,0).
Hence, the inverse property of addition follows.
For the commutative property of addition, we note
(), y)) + (33, ¥9) = () ¥ X0 ¥ 00)
=0 tx, 1Y) since R is commutative w.r.t, 4

= (X, y) + (X, 1)),

Next, let o € R, f € R, then
Ot{(x,, ¥+ (%, }:2)} = ox, * Xy ) ty,)

y
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= (o, + 0y, Oy + ow,)
= (oux,, 0py) + (0, O9))
= 0UX,s »wt 0Ux, V)
Hence, the scalar distributive property follows.
Again, (@ + B) (x,ly) = (fo+ Blxy, {0+ Blyy)
= (o, + Bx,, o + By
= (o}, 0}}’1) + (B.xp Byl) . a(x],yl) + B(x],yl)
Thus, the vector distributivity follows.
Finally, a{B(x;, ¥} = ouPx;, Byy) = (oufPx;}, afBy;})
~ ({oB}x,, {0B}y,) since o, B, x,, y, € R
= (ap) (x5 )
and 1(x, ) = (xpyl)-
Hence, R? is a vector space over R. i

Example 3: The set R” is a vector space over R when » 2 1.

That R and R? are vector spaces has been proved in examples 1 and 2. That
IR is a vector space can be proved similarly. We prove here the general case.

Letx,y,ze€ R"and x = (x}, X5, ey %), ¥ = (V15 Vs +0s V)s 2= (215 235 -y Z,);

and leta, B € R.
Then by definition
X +y =(x1sx23 erns xn) e (yla'st ---:J’,,) = (xl +ypx2 +y25 LT ) xn +yn) € Rn‘
Ox = 0%y, Xys o005 X)) = (00X, 0Ky, 005 OX,) '€ R é

So the closure properties follow.

The associative and commutative properties follow from the respective
properties of R.

The element 8 = (0,0, ..., 0) € R is the additive identity of R.
Then element — x = (- x|, - X,, ..., — x,) € R" is the additive inverse of R.

Furthcr) a(x+y)=a(xl +y19x2+y2’ 0--’xn+yn)

= (o + o), ax, + oy, ..., OX, + O,)
= (ml, ax2, ssng U..xn) + (ayl’ ayz, . {Iy”)

= oUx,, Xy vy X,) + QUY s Vos oo }’,,)
" =0 + oy,

(o + B = (a0 + B) (%40 Xag00 X))
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= (0x; + Px;, o, + Py, ..., 0, + Px,)
= (0w, oury, ..., 0x,) + (Bx;, Bx,, ..., Px,) = 0x + Py.
Thus scalar distributivity and vector distributivity follow.
Fi'mlly’ (I(Bx) = a(Bxh sz’ ) an) e (C(Bxl, (Xﬁx2_, eriy ann)
= (af) 5, B e x,) = ofx.
and Lx = 1(x;, x5, ..., Xo) = (X0 5 o).
Hence, R" is a vector space over R.

Example 4: The set R[x] of all polynomials in a real variable x with real
coefficients 1S a vector space over R,

To see the above one should note first that the sum of any two such
polynomials is also a polynomial with real coefficients and the product of such
a polynomial and a real number is also a polynomial of the same time. These
observations had to the closure properties of addition and scalar multiplication.
The associativity and commutativity of addition of polynomials are obvious.
The constant 0 is a polynomial of degre zero, which plays the role of additive
identity. The additive inverse of a polynomial is a polynomial with coefficients
negative of the coefficients of the polynomial. The scalar and vector distributive
properties follow easily since

(o + B) f1x) = 0.fx) + B /(x) where f{x) is a polynomial, ¢, B € R and a( f(x)
+g(x)) = o f(x) + o.g(x) where f(x) and g(x) are two polynomials in x and o
€ R. Clearly 1 f(x) = f(x).

Hence, R[x] is a vector space over R.

Example 5: Let M . (R) denote all m x n-matrices with real entries. Then
M, . . (R)is a vector space over R.

Since the sum of two m x n-matrices is again and m X n-matrix, the closure
property of addition follows. If an m x n-matrix, is multiplied by a real number,
then the product is also an m x n-matrix. This proves the closure property of
scalar multiplication. The associativity and commutativity of addition follow from
the corresponding properties of real numbers, The m * n-matrices with all entries
zero is the additive identity and the m x n matrix with all entries negative of the
entries of an m x n matrix plays the role of its inverse. The scalar vector
associativity, the scalar distributivity and the vector distributivity follow easily.

The multiplication of an m x n matrix by the real numbers gives the same
matrix,

Thus M, , . (R) is a vector space over R.

The following result is an immediate consequence of the definition.
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Theorem: The following are true for a vector space V.

(i) ox=0 VxeV

(i) a0=0 VoaeR

@i) a(-x)=-ax VaeRxelV |

(V) ax-y)=ox-oy VoeRx,yeV

) (@-Bx=ox-Px Vo, feR,xe V.
Proof: (i) We know

ox = (o + o)x = ox t+ ox.
e ox =0, by cancellation property
(i7) Again,

B +6)=06
or af + 08 = 08, by scalar distributivity
0.0 =0, by cancellation property.
(iif) Now, -

ofx +(-x)} =a6=6

or ox + o(— x) =0 by scalar distributivity.
or -—ox+{ox+o(-x)} =-ox+8
or {-ox+ox}tof—x)=—0x
or 0+ o(—x) =—o0x
or of—x) =—0ox

(iv) Here we see
a(x - y) = afx + (- )}
= o + a(-y)
= o — oy, by (iii)
(v) Finally, (o — B)x + Bx = {(@— ) + B}x = ox.
Hence, (ot = B)x = ox — Px.

11.2 SUBSPACE

Subspaces of vector spaces play important role in the development of vector
space theory. We begin with its definition.
Definition: A subset S of a vector space ¥ over R is called a (vector) subspace
of Vif § is a vector space with respect to the same operations of addition and
scalarmultiplication.

Since many of the properties of a vector space are transmitted automatically
to its subsets, to verify whether a subset of a vector space is a subspace, W¢

need not verify all the ten conditions. Indeed we need to verify only two closure
properties which can be merged into one single condition. Thus we get
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Theorem: A subset S of a vector space ¥ over R is a subspace 1f and only if
afﬂf__-iforallmﬁe R,x,y € S
Proof: 'If part:

Takingo=P=1,x,y¢ S,weseex+ye S.

So S has the closure property of addition.

Ifx,y,z€ S,thenx, y, z e Valso and hence (x + y) + z=x + (v + z) and
x+ty=ytx

Thus, the associative and commutative properties of addition follow in .

Takingx € S, wesee Ix—1xe S(herea=1, f =-1).

i.e.,8 € S. Thus, the identity property of addition is proved.

Again, ifx € §,thenox~1xe S(herea=0,B=-1).

i.e.,—x € S. The inverse property thus follows.

Next,0, Ppe R,xe€ S, thenxe ValsoasSc V.

Hence, aBx) = (af)x. This proves scalar vector associativity.

Further, if o, B € R, x € §, then x € V also.

Therefore, (0. + B)x = ox + Bx. This proves vector distributivity.

If ae R,x,ye Sthenx,ye Vandso

ofx +y) = ox + oy. !

This proves scalar distributivity. |

Finally, x € S implies x € ¥ and hence

1x =x, which proves the scalar identity property.

Thus S is a vector space over R.

‘Only-if part: = *

Let S be a subspace of Vand leta, Be R, x,y € S.

Then by the closure property of scalar multiplication o x € S, By € S. By
the closure property of addition we then getox + By e S.
Corollary 1: If o}, @, ..., 0, € R and x|, x,, ..., X, € § then &) x; + &, x,
t.t+tax €S
Corollary 2: If x # 9 x € V,then S= {ox; o € R} is a subspace of V.

Corollary 3: IfxI #0, x2¢9 ,x #0allin ¥, then §= {0, x| + 0tyx, +
tax;o,a,..,0 € R}isa subspace of V.
Corollary 4: The necessary and sufficient conditions for a non-empty subset
S of a vector space ¥ over R to be a subspace of V are
(i) xe S, ye §S=xt)yE€ S
(i) ae R,xe S=axe S
A result that follows directly from the above is the following:
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Theorem: If S, and S, are two subspaces of a vector space ¥, then
(D) § NS, is a subspace of V.
(i) S, + 8, is a subspace of V where §; + 5, = {x+y; x & S;ye S} i
(it7) §, U §, need not be a subspace of V.
Proof: (i) Leta, Be R, x,y € §; NS,
Then " x,ye S andx,y€ S,
So ox+Pye S andox +Pye S,
ox+fye 5 NS,
This implies §; N S, is a subspace of V.
(@) Leto, Be R, x, +y, € §,+85,, X, €8 +8,
Then ox, +y) + Bty + )
= {ox; +ay,} + {Bx, + By,}, by scalar distributivity
= {oz_ycl +Px,} + {oy, + By,}, by commutativity of addition
=5, +5, &
Since axl +Px, € S, and oy, + By, € S,.
Hence, S, + S, is a subspace of V.
(iti) Consider S, = {(x, 0); x € R} and §; = {a(}, 1); ae R}
Clearly S| and S, are two subspaces of RZ.
Now, (1,0) € S, (1, 1) € S, but (1, 0) + (1, =z, DzS,US

.
Since S U 8§, consists of elements either of elements whose 2nd coordinate f .'

is 2er0 or of elements whose both coordinates are equal.

Thus the closure property of addition having falled S,VS, cannot be a
(vector) subspace of R?, i

Theorem: Let V be a vector space over K.

. (i) If x be a non-zero vector of ¥ and o, Be R, then o =Px = o= B

(u) Ifx,y € V and a be a non-zero value of R, then ax = ay = x = .
Proof: (/) Here o.x = Bx

A ox - Pfx =8
or (a-PBx=9
Since x # 0, then -B=0=qa=,
(1) Here ax = ay
ax - ay =

or a(x - y) =
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Since x#0, thenx-y=0= x=y.

Note: Field: Field is a algebraic structure with respect to the two anthmetlc
operation addition (+) and multiplication (-).

Example 1: Let S be a subsgt of IR} defined by S= {(x,y,z) e R®:x=y=0},
then show that S is a subspace of R3.

Solution: Let & = (0, 0,z,) and B = (0, 0, z,) where z,,2,€ R, thena, B e §.
Leta, b€ R, thenco+dB=a(0,0,2,) + 50, 0,2,) =(0,0,az,) + (0,0, b 2,)
=(0,0,az; +bz)) e § (v az; + bz, € R) A

Hence, S is a subspace of R3.

Example 2: Let S be a subset of R? defined by S={x,y,z)e R : %+ 2 .
= y?}, then show that S is not a subspace of R Pt

Solution: Let o = (xl,y,, z))€ Sand § = (xz,yz, z,) € S, then
ﬁ*Z’iﬂ% and x3 + 23 =y
Now o + B = (x) Yzt (IZ, Y2 2,) = (x; t X0 Y1 T V5 21+ 2y)
since (x, +";%:2’)2_+ E _+J.=:_Z?E;not be equal to (y, + yz)z, hence
(oe+ B) may not belong to S.
For example, let o.= (4, 5, 5 é) and B = (-4, 5, 3), then
a+p=(, 10,0¢ 5 (- 0%+ 0% # 10%) :
Hence, S is not a subspacc of R3
Example 3: Let S be a subset of R> defined by S = {(x, s z)e R3: xtytz
=2}, then show that S is not a subspace of R>.
Solution: Let o = (x;, ¥, z)) € § and P = (x,, ,, 2,) € S, then
x,+ty,tz,=2 andx, +y,+z,=2
SOt PB=(p Y Z) (Y 2) = (X F X ¥t V2 +2) £ S
because (x; +x,) + (v, +¥,) + (2; +25) = () ¥, +2)) + (x, + y, + 2,)
=2+2=4#2
Hence, S is not a subspace of R3.
Example 4: Let S be a subset of R? defined by S= {(x,y,0) € R*:x,p,€ R},
then show that S is a subspace of R3. :
Solution: Let o = (x;, y,, 0) € Sand p=(x,, ), 0) € Swhere x,, x;,y,, », € R.
Let a, b € R, then ao. + bB = a(x, ¥}, 0) + b(xy, y5, 0)
= (ax,, ay), 0) + (bxy, by,, 0)
= (ax, + bx,, ay, + byz, 0)e §
(s ax, + by, € R and ax, + by, € R)

: E "B
Hence, § is a subspace of R”. l
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Example 5: Show that S = {(x, y, z) € R”: x — 3y + 4z = 0} is a subspace of R?,
Solution: Let a = (x;, ¥, z;) € §and B = (x5, ¥;, 2;) € S, then
x;— 3y + 4z, anndx243y2+4zz=0 +(1)
Let a, b € R, then ao + bP = a(x;, ¥y, 21) T b(xp, 15, 2,)
L= (ax, + bxy, ayy't by,, az) + bz,)
Now, (ax, + bx,) —3(ay, + by,) + 4(az; + bz,)
= (ax, — 3ay, + 4az)) + (bx, - 3by, + 4bz,)
=a(x, -3y, +4z) + b(x, — 3y, +4z,)
=aq.0+b.0, by(l)
=0
ao. + bp e S
Hence, S is a subspace of RA.
Example 6: Show that S= {(x, y,2) € R? cx+y—z=0and x -2y +z=0}
is a subspace of R°. i
Solution: Let 0.=(x, y,z) € Sand B =(a, b, ¢) € S, then
x+y~—z=0,x—2y+z=03uda+‘b—"c=0,a—2b+c=0 wil )
Letp, g € R, then po.+gB=p(x, y,2) +q(a, b, &) = (px + qa, py + gb.pz +qc)
Now (px + ga) + (py + gb) — (pz + gc)
=(px+py—pz)+(qa+gb-qc)=plx+y-z)+qla+b-c
=p.0+q.0by (1)
=0
and (px + ga) - 2(py + gb) + (pz + qc)
= (px - 2py + pz) + (ga - 2gb + qc)
=p(x-2y+z)+qg@al2b+c)=p.0+q.0, (by(l)
=()
potqBe S
Hence, S is a subspace of R?,
Efamplc 7: Show that S = {(x, y,z) € R? : ax + by + ¢z = 0} is a subspace of
R where g, b, c € R. '
Solution: Let o = (X, ¥1,2)) € Sand B = (30 ¥yr 2,) € S, then
ax, + by, + ¢zy = 0 and ax, + by, + ¢z, =0
Letp, g € R, then po + ¢ff = PG Yy 2) gy, Var 2,)

(1)
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= (ox, + qx), py, + vy, pz, + g2,)

| Now a(px, + gx,) + b(P}’1 tqy,) + c(pz, + 4z,)

= (apx, + bpy, + cpz)) + (agx, + bqy, + cgz,)

=plax; + by, +cz)) + gax, + by, + cz,) = p.0 + 4.0 (by (1))
=0

po.+ gB € S. Hence, S is a subspace of R,

Example 8: Show that S = {(x, y,z) € R} :xy =z} isnot a subspace of R>.
Solution: Let &= (x, y,,z,) € Sand B = (X5, ¥5, z,) € §, then
XYy =2, and x, y, = zy
Leta, b € R, then ao + B = (ax| + bx,, ay, + by,, az, + bz,)

Since (ax, + bx,) (ay, + by,) may not equal to az, + bz,, hence, aa. + bp
“ may not belong to S.

For example, o= (1,2,2),=(3,1,3)and a= b= 1, then

ao+bB=1(1,2,2)+1(3,1,3)=(4,3,5) ¢ Sbecause 4 . 3 #5.
Hence, S is not a subspace of R>.

Example 9: Prove that the union of two subspaces of V'is not, in general, a
subspace of V. \

Solution: Let us consider the two subspaces S and T of the vector space R’
where §= {(x,y,2) € R’:y=0,z50} and T= {(r,5,2) € R® : x =z =0}.

Leta=(1,0,0)e SandB=(0,1,0) e T, thenoc+ B =(1, 1, 0)

atBfe SUT (at+tPe Sandoa+pe T
Here oeSuTandfe SUTbuto+Pe SUT
Hence, S U T is not a subspace of R3.

Example 10: Let ¥ be a vector space over R and o € V, then prove that
S = {aa : a € R} is a subspace of V.
Solution: Let o = @, then S= {0} and § is a subspace of V.
Let o # 0, then S is a non-empty subsetof V' (' o€ V)

LetBe Sand ye S, then f = a, o and y=a, o where @ and a, are some
scalar.

“Bty=(a,+ta)oeS(ataeR)
Let ¢ be a scalar in R, then ¢p = c(a; @) = (ca)) x € S (' ca; € R)
“ByeS=p+ye Sandce R,peS=>cPes

Hence, § is a subspace of V.

F R R,

S e e

e T ok == U
FORE e ey Y e

i ST
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Note: This subspace is generated by the vector @, and o is called the generator
of this subspace.

Example 11: Show that S = {[i :J eRpyup:x +y=0} is a subspace of
R, , 5

a b
Solution: Let 4 = (x y] eR,, ,and B~ [c d) eR,,thenx+y=(
z w

at+b=0
Let p, g € R, then

Lo a b =(px+qa py+qb)
pA+qB—p[Z w)+q(c d) pz+qgc pw+qd =R
( (px+qa)+(y+gb)=px+y)+ql@a+b)=p.0+q.0=0)
Hence, S is a subspace of R, , ,.

Linear Combination: Let ¥ be a vector space over R and let o, o,
o, € V, then a vector B in ¥ is said to be a linear combination of the vectors

o, O, ... &, if B can be expressed as

=@ to,+ ..t 0 for some scalars ¢, ¢, ..., c, € R

Example: Let ¥ be a real vector space and o, B, Y€ V, then 20+ B+ vy, 00+
4B+3y,0.00+ 2B + 3,000+ 2B +0.7, 0o+ 0B + 0y, ..., are linear combinations

of o, B, v.

Theorem: Let ¥ be vector space over R and let S be a non-empty finite -
subset of V. Then the set W of all linear combinations of the vectors in S forms
a subspace of ¥ and it is smallest subspace containing the set S. "'

Proof: Let §= {a;, 00y, ... a0, }, then W= {c,0,; + ¢, 0, + ... + €, 0, 1 €[, Cps 0
c, € R}.

. W is a non-empty subset of V, since o, € W.
Letq=rl oy tro+.+r o € I*Vz:1;171d§=$10t1 8,0, .. t5,00 € W
where Fis Ty s 1, € Rand s, 8ps s 5, € R
O+ = (o 7,0+ ot 7, 0) + (5,04 + Sy + ot ST
=(ry 8oy +(ry + $9)0y + . + (1, + 5,0, € W |
(v r+s;eR fori= 1,2, )
Let a € R, then qot = a(rioy +ry0, + ..+ r0)
= (ar))a, + (ary)o, + ... + (ar)o, € W
(v ar,e R, i= 1, 2, w0

N
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no,Be Wo0+Be Wandpe R,oe W= poe W
Hence, W is a subspace of J/.
Let U be any subspace of containing the set §.
Let§e W, then & = x o+ xyq) + .. + x,0, for some x, € R
Since U is a subspace and x,q,, x,0,,, ... x,0, € U, then
xo, + X0, + ... txo e U
SeW=tevu
; WcU
This proves that W is the smallest subspace containing S.
Linear Span: The smallest subspace containing a finite set S of a vector
space V' is said to be the linear span of § and it s denoted by L(S).
L(S) is generated (or spanned) by the set S and S is said to be the set of
generators of L(S).
Note: Let §= {a,;, oc,, ..., o }, then L(S) is the set of all linear combinations
of the vectors o, o, ..., Q.

Theorem: Let S and 7 be two non-empty finite subset of a vector space ¥
over R and S c T, then L(S) c L(7).

Proof: Let S = {a, o,, ..., 1, } and € € L(S), then

6=+ r0y + ... + r,o for some scalars rneRi=12 .,n
aIeS:nxleT (¢ 8l .
o, € L(T)

L(T) is a subspace of V, r € Randa, € L(T) = "oy € L(T)

Similarly, r, 0, € L(D), ..., r,0, € L(T)
Since L(T) is a subspace of ¥, then Foy 0t e L(T)

& e L(T)
Ce LS =Ee LT
Hence, L(S) c L(T).

Result: Let S and 7 be two non-empty finite subsets of a vector space V over
R and each element of T'is a linear combination of the elements of S, then L(7)

< L(S).
Example I:Ifaa=(4,3,5), B =(0,1,3),y=(2, 1, 1), 0=(4,2,2)in RJ. then
Prove that

() o is a linear combination of B and y.

(i) B is not a linear combination of yand &.
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Solution: (i) Let o. = cP + dy wherec,de R
4,3,5)=c(0,1,3)+d2,1,1)=(0, ¢, 3c) + (2d, d, d)
=(2d,c+d,3c+d)
4=2d,3=c+d and 3c+d=5
d=2, ¢=3-d=3-2=1,
=B + 2y, hence o is the linear combination of § and y.
(if) Let B=ay + bd wherea,be R
0,1,3)=a(2, 1, 1)+ b(4, 2, 2) = (2a, a, a) + (4b, 2b, 2b)
=(2a+4b,a+2b,a+ 2b)
2a+4b=0, at+2b=1 and a+2b=3.

The equations are inconsistent. Hence, B cannot be expressed as ay +
for real a, b.

. B is not a linear combination of y and . __
Example 2: Find the subspace of R? spanned by the vectors o = (1, 2, 3
B=(3,1,0). Examine ify = (2, 1, 3), 8= (- 1, 3, 6) are in the subspace.
Solution: Now L{a, B} is the set of vectors {cat + P : ¢, d e R}

If ye L{a, B}, then there exists real numbers ¢, 4 such that

¥=@2,1,3)=ca+dB=c(1,2,3)+d3,1,0)=(c+3d,2¢c +d,3c+0f

or (2,1,3)=(c+3d,2¢c +d,3c+0)

L ct+3d=2,2c+d=1,3¢c=3

[* 3c=3=c=1,2¢c+d=1

=d=1-2c=1-2=-1and c=2-3d=2+3=5%1]

These equations are inconsistent and so Y is not in L{c, B}.

If 8 € L{c, B}, then there exists real numbers ¢, d such that
d=ca+dB or (~1,3,6)=(c+3d,2c +d, 3c)
-1=¢+3d,3=2c+d 3¢c=6

Solving these equations, we getc =2, d=— |

The equations are consistent.

v 0=21,2,3)-13, 1;0) ‘. 8e Lia, B}.

“Example 3: Let S = {a, B, v}, T= {oe B, o+ B, B +7} be subsets ofa ‘ ._
vector space V. Show that L(S) = L(7). L

Solution: Since S and T are finite subsets of ¥ and each element of {-
linear combination of the vectors of §, then L(7) < L(S).
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Agan %=0+0.B+0.(@+p)+0@+7)
B=0.0+B+0(c+B)+ 0 +7)
Y=0.o:—|3+0(a+|3)+(|3+y)

This shows that each element of S is a linear combination of the elements of
T and therefore L(S) c L(7).

L(T) © I(S) and L(S) < L(T) 4

I(S) = L(D). 4
Example 4: Express (-1, 2, 4) as a linear combination of o = -1,2,0),
B=(0,-1, 1) and Y= (3, -4, 2) in the vector V5 of real numbers.

Solution: Let (- 1,2,4) =a(-1,2,0)+ 50,1, 1) +¢(3,-4,2) fora, b,
ce R

=(~a,2a,0)+(0,- b, b) + (3¢, - 4c, 2¢)
=(-a+t+3c,2a—b—4c, b+ 2c)

—a+3c=-1
" 2a—b—4dc=2

b+2c=4
Solving these equations by Cramer's rule, we get a=4,b=2andc= 1.
-1,2,4)=4(-1,2,0)+20,-1,1)+1(3,- 4, 2). ]

Example 5: Examine if the set § is a subspace of the vector space R, , , where

Zra’-a . g -b).
S = {[C d] Gszz.det[c d) —0}

4
Solution: Let 4 = [a b] € S and B = (j i ) € §, then det4 = 0 and 4
detB=0

NOW,A-PB:(‘; b)_}_[x }’Jz(a"’"x b+y)

d zZ W c+z d+w

at+x b+y
A+ B may not belong to § because det (4 + B) = det (c i “] may

not be equal to zero.

12
For example, let 4 = [:],, g) ,B= G‘ 4) € SwheredetA4=0,detB=0.

} 5 (3' 12]:(4 14)
Now A+B“—:[3 6 + | 4 4 10
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But det(4+B)=40-56=-16%0

Hence, S is not a subspace of R, , ».




