10.8 GAUSS JORDAN METHOD OF INVERSE CcALc

The basis of Gauss-Jordan method is the observation that the
elementary operations which reduce a non-singular square matrix to
matrix and reduce the identity matrix to the inverse of the matrix,

calculation is done side by side in order to avoid any mistake in the p
1s shown below with an example.

Example 1: Use Gauss-Jordan method to find the inverse of
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Solution: We write the given matrix and the identity matrix side by side and
perform the row operations as shown
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Observe that:
(1) Every matrix can be reduced to the normal form by finite ]
clementary row and column operations.

(2) The rank of matrix is equal to rif the identity matrix in jtg NOrma| for,

of order r. M ig
Example 2: Reduce the following matrix to the (fully reduced) normal g,
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which is the fully reduced normal form to the given matrix. Hence, t
the given matrix is 3.




