2. Road, ROMTAK

- 4
E_BM&PHOIOSTM CHAPTER3 @ @

—— e

80x86 INSTRUCTIONS

31 INTRODUCTION

The machine language program code is the only code that can be executed by the processor. The assembly
language code is one of the most primitive forms, in which program can be coded. The assembly language code
has to be processed by the assembler to generate machine language code. There are two types of statements in

- assembly language. First, the instructions, which are translated to the machine code by the assembler, and

second, the directives, which direct the assembler during the assembly process for which no machine code is
genenlted. ' ' . '

Assembly language programming is much easier than machine langusge programming. An instruction in
the assembly language is represented by character strings called mnemonics (eg: ADD, SUB, JMP, etc.). The -
80x86 processor provides an exhaustive set of instructions to support assembly language programming to
perform input, psecessing, and output operations known as the Instruction Set. . - . ¢

The i of 80x86 processor are classified into the following six functional groups.

1. Data er Instructions ' *
2. Arithmefic and Logical Instructions

3. Branch Instructions = -

4. Processor Control Instructions

5. String Operation Instructions
6. Protection Control Instructions

3.2 ASSEMBLEﬁ INSTRUCTION FORMAT

The genera! format of an assembly language instruction is .

Label: Mnemonic Operand, Operand ' ; Comment
where each part of the instruction is separated by space(s) and every instruction starts on a new line. A label
fo[lowedby:colon(:)kmidmﬁﬁuﬁmkasignedﬁeddmsofdieﬁmbmdmmgﬁonumem
of occurrence. The use of a label with the instruction is optional. If it is present, the label name can be used in
branch instruction to branch to the labeled instruction. If label is not present, then colon (:) should not to be
ummmmmmmmumumwﬁwm.memwofopm
MthhmMWuhdeMmmmmhplﬁ
(zero), one, two, or three operands. Ifdweltem«mmopmmeyshouldbemtedbyn
comma (,). The comment field is for commenting the program which generally describes the logical operations

 performed by the instruction. A comment must start with the character semicolon (;). The comment field is

optional and is completely Ignoted by the assembler.

Example:
NEXTNUM

ADD AX, AMOUNT ; Add AMOUNT to the register AX
1 write code as required by the program
LOOP NEXTNUM :

4s

st

46 Microprocessor x86 'Progranmhg

In the above statements, the symbol NEXTNUM is.a label, AMOUNT is a-variable; and-symbols ADD and * _
LOOP are mnemonics of the instructions. All the i!:fmmaﬁon followed by the character semicolon (;) are the - 4
comments. Assembler generates machine code for only ADD and LOOP instructions including the instructions -
within the loop. : Hao gt

Following are the conventions used in describing the instructions.

Convention Meaning

src source

dest destination .
reg register .
r’m - register or a memory location -
riml6 16 bit register or a word meimory location
immed] 6 immediate 16 bit number | . :
addr address of a memory location - S §
reg8 Tbitregister - .
regl6 16-bit register i
src8 source of type 8-bit l
srcl6. source of type 16-bit ' '
mem16 16-bit memory location P AN
MOD modulus or a remainder
- logical NOT operation
& logical AND operation
| logical OR operation ° :
a logical EX-OR (exclusive OR) operation
< assignment operation ; ; i
* ot equal

3.3 DATA TRANSFER INSTRUCTIONS 79

. ;

The 80x86 processor supports a variety of instructions for transfer of 'medmg. a value .d.dmg.s
mtore.gi_stm..memorylocaions_umhm!nwhkh&e%&u%h&:r&nm‘ |
ment instruction, depends on the addressing modes and can be in any one of the following forms,

Register 10 a register |

Immediate operand to a register
Immediate operand to the memory
Memory to a register ’
Register to a memory —
l::gmut;aww(umgcs)
emory to a segment register (ing CS
Segient i o & oo (exchuding Cs)
R&siﬂ,um.nuown m——tes e -

e o o 8% o o o o o

e ndns :
— s e e

not refer 1o] 8 & memory location

o hs e i'e.cmmofmewmww;mwmmmhhmmmymmhoﬁhe
Dauumsl‘eruuwumdomuffuulln

XCHG, PUSH, POP, IN ouT e

MOV dest , src Transfer data fm;m regis_tcr!mdno

-'tm Lot

.o -

. dest'€src _ fmemory,

i Description: o g ;
mhmuﬁonMOthlnsfer_ubneonwordo daufromthcsoureetomcdeﬂinaﬁm.m =
.‘wuamdylonﬁononnhmedhlenumbu.Thed&lﬁmﬁonapbe'Wﬂ.:um be
tion. Both the source and destination cannot refer to memory locations in the same instruction, ne;‘;""yloq.
thenhedlu-lype,i.e..eimerofthetypebmortypcwmd_) _%21'
'Flagsiﬁ'"""'k'ﬂ'ciﬁ'e“’""'_"' S el .

Examples: : _ . .
MOV AX, CX ' i copy contents of CX to AX
MOV AH, AL) i COpy contents of AL to AH
_NOV DS, AX . ¢ Copy contents of AX to DS
MOV AX, 100H °

copy immediate value 100N to AXx

MOV BX, [S30BH) CopY 16-bit.data from the wemory locatiop S30BK

to BX register

COpy 8-bit contents of memory location Pointed
to by the address:stored in

BX,to DL
i cCopy contents of SS to BP .

MOV DL, [BX)

MOV BP, sS

XCHG : Exchange

Syntax: : ,
XCHG dest , src . Exchange the contents of the source and destination
dest € ‘src .
'lbeinwuuionXCHGm(nﬁmm)mcmtemofawmmuammwthmemof
a destination

e Flags Affected: None e
T e The nmbol AMOUNT.used i the explanation of the following examples in this chapte s considecsd
A5 amay of type word with size 100 as follows, .
: AMOUNT 100 dup(0)
. XCHG Ax, cx ; exchange the contents of AX and CX (ax)
XCHG AL, AMOUNT (BY) : exchange (8-bit) AL and memory AMOUNT poet
XCHG Ax, AMOUNT [BX) : exchange !{16-bit) AX and memory AMOUNT
(XCHG BL, AH ! i exchange BL and AH
XCHG SEMAPHORE, BX . '+ exchange SEMAPHORE with BX
, ' —
-.‘—Lk

