Microprocessors & Interfacing (MDU) 1227

Addr. Mode Implied Addressing mode

Operation AH - Lower byte of flag register
o This instruction copies the contents of AH reg;
o Itisincluded for 8085 compatibility.

* The OF, DF, IF and TF are not affecteq.

eremonlc PUSHF _ o Flags
Algorithm* Sp.- SP-2 _

. ... nowosimn:
s ’ ’ T R O AN D e 2 Wt Oy i

2 D Hx }a’" P g) AT AL ';:,‘.:‘.'.-.,.,a._{.'.-.{ "V _'.5_‘__

e icl bl LB SV AL T

o e
Ak
2

SS:[Sp) (top of sfack) = opefahd

Register Addressing mde .
Operation gp-, SP-2 '

R
oo da R vacy 1 o Rk

A

12-28 Addressing Modes and Instruction Set ;

3 M ﬁphcatio‘ e e 2
Multlp.y byte or word
unsigned

Multiply byte or word signed

| Integer multiply byte or wo -
ASCII ad)ust for lmﬂtlply

Table 12.7. 1: Arithnletlc instructions

il
tl

.;

Divide byts or word uns:gned
IDIV | Integer divide byte or

AAD | ASCII adjust for division
CBW | Convert byte to word

'CWD | Convert word to doubleword

Subtract byte or wOrd
Qubtract byte or word with borrow
Decrement byte or word by 1
Negate byte or word

(2's complement)

| Compare byte or word

ASCII adjust for subtraction
Decimal adjust for subtraction

We will study the subgroups one by one. -
12 7.1 Addition :

Mue
* ADD destination, source

Algo
Pithm « 4.
ation, ?;mﬂa_tion = destination + source
: Th‘?Stmaﬁon) « (destination) + (source)
18 i s
i mstruction s.d.ds a number from source to number from destination
puts the result to specified destination.

* Addressing Modes and Instruction Set Ry

Microprocessors & Interfacing (MDU) 12-29
L '
|
|
. 2 W) Source and destination both haveuto
; . |

Hnernorilc ADC destination, source. Flags Al_l flags are affected. '
Algoflthm destimitidn = destination + source + CY .«
Addr. Mode Register Immediate addressing mode:
Operation destination « destination + source + CY ‘
e This instructions adds destination operand contents, source operand contents and

carry flag and answer is stored back to destination operand. :
« The source and destination can be 8/16 bit register or memory location . The source

and 'destination can also be a 8/16 bit register or memory location and immediate .

data . ‘ :] . _
« The segment registers cannot be used . The memory uses DS as segment register .
e The addition of two memory locations along with carry is not possible .
o Itis easy to perform multiple- precision arithmetic by using ADC instruction. 4
Examples ' ' _
1. ADC ALBL - This instruction adds the contents of AL register with

jie. AL« AL + BL +CY BL register and contents of CY. : A
2. ADD BL, CL | o This instruction adds the data in register CL and BL.

BL « BL +CL Thgmsu]tisstomdinBLregister.ItcanbeSbit/leit

: instruction | :

3. ADD AX,'12048] e This instruction adds the data at memory locations

i.e. AX « AX + contents of whose offset in DS are [2048] and [2049] with data in AX
W_ register. The result is stored in the AX register.

Microprocessors & Interfacing (MDU) ' 12-30

Addressing Modes and Instruction Set

4. ADD [2048], _AX

* This instruction adds the data at memory locations
whose offset in DS are [2048] and [2049] with data in AL
register and AH register. »

5. ADD AL, 74 H * This instruction adds the immediate number 74 H with

ki_e__ AL« AL +74 the contents of AL register . The result is stored in AL.

Mnemonic INC Destination Flags ' All the flags except carry flag are
Algorithm destination = destination + 1 ' '
Addr. Mode Implied addressing mode
Operation destination « destination + 1
* This instruction adds 1 to the destination operand. -
* The operand may be a byte or word and is treated as an unsigned binary number.
* The destination operand may be a register or memory location.
Example INCCX . Add1tocontents of CX
- INCAL Add 1 to contents of AL register. .

RN G
afteraddition =

Mnemonic AAA Flags - AF and CF flags am-changad

Algorithm If lower nibble of AL > 9 or AF = 1 then: AL=AL +¢

AH=AH +1 . AF=1- CF=1
else: AF=0,CF=0 g

In both cases, clear the higher nibble of AL,
Addr. Mode Implied addressing mode

Operation ¢ Numerical data coming into a co

» while OF,

upper nibble of each. After addition, AAA mmgeer "8, °ff ‘8" in the
sure that the result is the correct unpacked BCD.

¢ The AAA instruction works only on AL register.

o If the lower nibble of AL regis

8 - Mnemonic DAA

= s e T
SR

ing MOdes ang
Example | Assume ; 2 X
am,
d AL=00110101 ASCHO5

BL=00111001 ASCH9

ADDAL BL
0- 01 1 01 0 3
+ 001 1 1 00 1
0110 11719¢ Result of
+ 9 1 1 0 addltmn '
. ImrathCD
AAA 000 o 0100
Carrv " . Clear higher © “~—x ——
| ‘ nibble |
' (04 H) » ResulthLvahd BCD,
(01 H)—+ResulthH The canry j;
stored in AH register]

AR R O N
- Decimal adjistment for addition

Flags It changes AF, CF, PF, ZF and SF.
IflowvrmbbleofAL:»Q or AF = 1 then, AL = AL+06H AF=1

Algorithm
- - IfAL>9FHorCF = 1 then, AL = AL+60H CF=1

Addr. Mode Implied addressing mode

Operation AL « Sum in adjusted to packed BCD format

* This instruction is used to make sure that the result of adding two Pad“’d BCD
numbers is adjusted to be g valid BCD number, -

* It operates ohly on AL register.

e Ifnumberj in the lower nibble
auxiliary carry flag is set add 6.

If the lower nibble of AL is greater than 9'or if the carry flag is set then add 60 H-

of AL register aﬁ:er addition is greater than 9 or if the

ﬁ

\ Microprocessors & Interfacing (MDU) = . 12-31 _Address;

|

ddresslng Modeg and lnstruction S
et

AL =59 H valid BCD, BL=34H vayq BCD
rab= .

je
4 ADDAGED . O W g o
1000 14,4,

AL = 8DH invalid BCD after addition of AL ang B[, .
DAA> 1000 11 ¢,
+0000 0119

1001 0011

| L
1.2 Subtraction

' I ruction Set
Microprocessors & Interfacing (MDU) 12-33 Addressing Modes and Instruction 5%
Microprocessors & Interta _

LT ‘ ot g g5 4 Y, |
1, 8UB < Subtract bijtd orWord”; .

Mnemonic SUB desﬁnation, source Flags ’gl;‘e g;fﬂs;ﬂ'm;m AP, CT, i
Algorithm ~ destination = destination — source

Addr. Mode -

Operation | destination « destination — source 5

. . d
* This instruction subtracts a number from source with number from destination an _ .
puts result in destination location. :)

¢ Both the operands iie. source and destination, cannot be memory -bc_ationhs. I

Examples_ _ g s o _ _
1. SUB BL, CL . 'This instruction subtracts the contents of CL register from ’
BL « BL-CL BL and result is stored in BL. -
- 2. SUB AX,, [2048] AX « AX - contents of memory location . - :
: - ~ ¢ This instruction subtracts the data at memory lo'cat;m.la T
whose offset in DS are [2048] and [2049] with data in '
AX register.) : T ik
: - - ¢ The result is stored in the AX register. i
3. SUB [2048], AX [2048] « [2048] - AL, [2049] « [2049] - AH

* This instruction subtracts the data at memory locations
whose offset in DS are [2048] and [2049] with data in AL
- register and AH register. :
* The result is stored at memory locations whose offset in
: _ DS are [2048) and [2049] i.e. (25188 H and 25 189 H).
4. SUB COST, 14 H. * This instruction will subtract the immediate Data 14 H
COST « COST-14 H with contents of memory location COST whose offset is

(Cost : is a memory given in the instruction [i.e. memory location 28354 H)
location]- - ¢ Result of subtraction is stored at COST
5. SUBAL,24H * This instruction subtracts th
AL« AL - 24 : with the contents of AL regi
Al
The type of both the op'e_rands should match i.
" Destination | Source”
Register
Register
Memory
Accumulator
Register
Memory

I—

Microprocessors & Interfacing (MDU)

\m,..-

B W . o > 2 » s P . |
(VT ; - AR AT
S G e R f - g o L e [Y
VEA LR) Ak g R &
S &1 B LT TN s

Mnemonic SBB destination, source Fla_gn SF flag is not

affected.
Algorithm Destination = destination — source — CY
Addr. Mode Reglater addressing mode.

Operation Destination - source - CY

¢ This instruction subtracts source and carry flag (i.e. Borrow) from destination.

o The source and destination can be 816 bit register or memory location . The source

and destination can also be a 8/16 bit reg1ster or mexmry locatxon and mmnedxate
data. - :

The segment registers cannot be used . The memory uses DS as segment reglster
The result is stored in destination.

Both the source and destination may be words or bytea

They can be signed or unsigned binary numbers.

It can be used to write routines that subtract the numbers longer t.han 16 bits i.e.
double words ,quad words etc.

Example SBB AL, BL AL « AL -BL-CY

o This instruction subtracts contents of BL and CY from AL.
¢ The result is atored in AL.

“Mnemonic DEC destination _
Algorithm destination = destination - 1
Addr. Mode Register Addressing mode
Operation destination « destination - 1
* This instruction subtracts 1 from the destination word or byte.

* The destination can be a register or a memory location. ,
* This instruction cannot be used to decrement the eontents of segment negisters.
- Example DECAL AL=AL-1

¢ This instruction subtracts 1 from the contents of CL and reault 18 stored in CL.

Flags CF is not affected

Hnemonlc: AAS ' .Flags It updates AF CF but OF, PF,

‘ - SFandZFamleft
Algorithm Iflower nibble of AL > 9or AF = 1 then: - undem&d
! AL=AL-06H AH=AH-1 'AFa1 gp.,
else AF=0 CF =0

In both cases clear the high nibble of AL
Addr. Mode Implied addresamg mode

'.‘--‘
Y

- Microprocessors & Interfacing (MLUU) _ w

¥ Operation ¢ Thenumber0to9 are represe 30-

&8 The 8086 allows us to subtract g, ASC g,

: Efi . digits without masking 3" ;1 UPper nibp)q foo o8 for b,

1 \ * The AAS instruction jg used to Mmake Sure tha.t Ny
_- }r . It works only on the A, register. .. Vi N
L 1001 =39 H = Ascpy

Let BL = 0011 0101 = 35 H = ASCp 5

i e 4

. SUBAL py
. DAS

o the AL register
= 10000119 - gg gy, AL =0010 1111 = 2F H, CF =0
H = 0101 0111 = 5

i i = 1 5 mr
BCD Lower nibble of result is F H'oliiogtf:ife
~ than 9 g0 DAS subtracts 0000

AL = 0010 1001 =29 H BCD

mﬂlple
go A

| Nnemonic

Kgorithm
Mdr, Mode
%emtion

0000 0000 10 =
i 1

Destination — source

r

, Flags All flags are affected.
and and add 1 to inverted operand '
mode |
. replaces the number 1§ 2 des
aumber
be a register 0
ruction forms the 2's complement by
indicated destination from zero.

pyte B the
i . the sign of 2 signed word or byte.
containing — 28 or a word containing y

d and sets Overflow flag.

tination with 2's

+ memory location.
subtracting the original

1's complemeht of
00A3 H '

nt will be,
1111 1111 0101 1100 «

2’s complement of 3
number

- FF5DH « contents of AX after execution

RO o
1111 1111 0101 1101 «

OF, SF 7F and PF, CF are
ing to the result

CMP destination, source.
- updated according.

Register addressing mode ' .

« This instruction compares & word/byte fro
from destination. The
byte or word from the

compari
destination byte or-

d in either of the
. unchanged, only are B
immediate

e The _result s not store
. dTistmation and source Te
e source ma .) % an
" number. y be feG?St'?r. - memory Jocation OF
*_The destin ' o

word.

be a o

[——

atl
{"?—-?"‘f EEY S [_— -
oy TR L A D o =) N

on

Y

urce > destination | 1 .| 90 ion requ!
‘ porrow, 80.CE nl
uired

Source < destination | 0 0o |0

oo
_ L20urce = destination

e e s Tl B ‘!,‘i;

eLroLa T

ot

tCL_,osttGmCwathbytémBH_ 5 _

i 1111 1011 — z,ammlemtofme ;
result i.e. result of '
comparison of BH and

s - CL registers

T L

on used with conditional Jump instructions.
berand st b6 in registe.

Aty

4. MUL = Mutiply byte or word unsigned -

inémonic . MULsource | Flags () AF,PF, SF, ZF are undefined.
Mnemonic | : () CF and OF will both be 0,
When operand is a byte AX:AL*op?md_ nh
Algquthm When operand is aword (DX : AX) = AX 1- op?rand
'Addr. Mode Register addressing mod_e. ‘ ; 'y ',
. i | is instruction multiplies an unsigned byte from source with an
Operation, . '111‘1;: g:::d g pdiohar ow mﬁgned B e i
with an unsigned word in AX. | . .
° When a byte is multiplied by contents of AL, !;h_e result is stored in ‘
AX. The. MSB of result is stored in AH register and the LSB of
: t is stored in the AL register. = - _
resul‘ :; word is multiplied by contents of AX, _th.e product can be
) ?h‘:ie word . The MSB of multiplication is stored in DX and LSB in
ou . : 2 _ i 2 .
i - g - . T
. :;r:m can be a register or memory location. -
° Yy

JE—

Microprocessors & Interfacing (MDU) 12-38 . Addressing Modes and Instruction Set "%

o This instruction cannot be used to multiply immediate data. If we
want to multiply immediate data. Then that immediate data has to
be stored into some valid register and then multiplied with byte or .

word in AL or AX
Example DX:AX =CX * AX : Result of multiplication MSB will be stored in DX
MUL CX register and the LSB will be stored in AX register. _
-2, IMUL = Multiply byte or word signed
Mnemonic IMUL source | ' Flags AF, PF, SF and ZF are undefined.

| Algorithm When operand is a byte - AX = AL * operand e
‘When operand is a word — (DS : AX)=AX * qperand
Addr. Mode Register Addressing mode s
Operation Byte operands - AX « AL * source T
Word operands — (DS : AX) « AX * source = . - :
e This instruction multiplies a signed byte from some source and a
signed byte in AL, or a signed word from some' source and a signed
word in AX. ' ‘ i
o The source can be register or memory location. " .
o When a signed byte is multiplied by AL a signed result will be put in
o When a signed word is multiplied by AX, the MSB 16-bits are put in
DX and LSB 16-bits are put in AX. - .
e If the magnitude of product does not require all bits of the
destination, the unused bits are filled with copies of the sign bit .

o To multiply a signed byte by a signed word it is necess
‘ :) _ ary to move
signed byte into lower byte of word and fill the upper byte ‘of word
with copies of sign bit. This can be done by CBW instruction.

o If the upper byte of 16 bit result or upper word of 32 bit result

contains only copies of sign bit (all 0’s or'all 1’ o

| o If the upper byte of 16 bit result or upper word of 32 b'tl
r contains part of the product then the CF and OF will both be ;ei‘: u

Example Let AL = 69 decimal = 0100 0101 = 45H
IMUL BL BL = 14 decimal = 00001110 =0EH"

IMUL BL 45H « Contents of AL register
x OEH « Contents of BL register

03CEH « Result of multiplication AX = 03CEH
MSB = 0, Positive result magnitude in true form. .. SF = CF = OF = 1

Microprocessors & Interfacing (MDU) 12-39

‘;~ " 0 o "-".1“]‘ ‘T.- o

s 2. AAM - Integer multiply byte of ;

:f AAM Flags It updateg PF, S and

3 Mnemonic . and OF arg Jop, sl ﬁnZ; The & ”
.'l Algorithm AH = Quotient of AL/10 AL = remainder of AL/10

i Addr. Mode Implied addressing mode |

ration ¢ Numerical data coming into a co g
Ope keyboard is usually in ASCI code. The Numberg (, A
represented by ASCII codes 30 Ht 39 H.

* Before multiplying. two ASCII d
- need to be masked. This]

¢ Itisused after mylt
Example ' gt AL-_—>00000101=unpac'ked BCD 5

BH - 0000 1001 = unpacked BCD 9
MUL BH : bAL"'BI:'[_—»RésultinAXmg‘ister
AX = 0000 0000 00161101 = 002D H
AAM AX . 0000010000000101=0405 H
Which is unpacked BCD for 45
12.7.4 Division Instruction '

b
b
t
b
B

D Divids byts Srword neigned |

| Mnemonic ppy source Flags All flags are undefined . :
§ Let AX = 37D7 H = 14,296 decims
BH = 97H = 151 dom'mgl

Nnemonic
Ngorithm

Addr, Mode
Operation

Nl
et in AL=ECH - Fomsind®

qisabyte’ ,
quotient) AH = remainder (Modulus)
: AX = (DS: AX) / operand (Quotient)

When operand 18 byte . '
AL= AX/operand AH = remainder (modulus)
When operand is 2 word : 3 .

X = remainder (modulus)

AXs(DX:AX)/operand
Register Addressing mode
Byte division : ‘
AL « quotient of DS : AX) / source
AH « remainder of DS: AX)/ .501}1'09
Word division : _
AX « quotient of DS :-AX) / source
iy - sinder of (DS : AX)/ 80U
{ m;“?“ction performs tW0 operation -
2: D‘.‘“‘de a B‘Egned word by 8 gigned byte =
o ivide a signed double word by 2 gigned WO
o gngvﬂifd divided by & gingle byte

= 03ABH BL =00 p3 H

in Aﬁ=27H

. Microprocessors & Interfacing (MDU) 12-41 Mdras-iﬂw"ws—d'

Mnemonic
Algorithm

Addr. Mode

Operation

Example

_ Mnemonic
Algorithm

Addr. Mode
opemtion

Example

ARGt o didtion

Flags (i) The PF, SF and ZF are affec
(ii) AF, CF and OF are undefine

AL=(AH*10)+AL AH=0
AL « 10* (AH) + AL AH « 0
Implied Addressing mode
o It converts two unpacked BCD digits in AH
binary number in AL. This adjustment must be
the two unpacked BCD digits in AX, by an unp
After the division, _
AL - unpacked BCD quotient
AH — unpacked BCD remainder
AX = 0607H unpacked This instruction will perform following
BCD for 67 decimal operation. ™
CL = 09 H, now adjust to (AH¥* 10 = 06 * 10 = (60)sucma = 3CH
binary using AAD. (AH) * 10 + (AL) = (60)10 + (Tho

ted.
d after AAD.

and AL to the equivalent
made before dividing
acked BCD byte.

AAD =3CH+7H=43H
DIVCL AL=43Hand AH=00H
: . AX (New) = 0043 H
Divide AX by unpacked BCD in CL

! Quotient AL=07H unpacked BCD
' Remainder AH=04 H unpacked BCD

CBW Flags No flags are affected.
IfMSB bitof AL=1 then AH =255 (FFH)

else AH=0

Implied Addressing mode

ThisinstmctionoopiesthesignbitinALtoallt.hebitsinAH.AHis
| then said to be a sign extension of AL.
o \ This operation must be done before a signed byte in AL can be
divided by another signed byte with IDIV instruction.

AX = 00ACH CBW

=—163decimal Convert signed byte in AL to signed word in AX.
Result :1111 1111 1010 0011
‘ =~ 163 decimal .

