= R)

—

operaﬂo Flags It does not affect any flag.
NO ‘
l"g'2 aic Ngllz . No operation
" 1;0 20thing e
m .4 addressing .
w rit“ode Imphed adt‘on of this instruction causes the CPU to do.nc‘tthmg. .
o H, The exe?'“) tion causes the CPU to do nothing. This .mstructmn. uses
Dl’”’amon o This m?;cr;ccycles and increments the instruction pointer to point to
three C . ' - .
instruction. : ‘
;he::’; lll:sed to increase the delay of a delay loop. :
o ItC . |
: chronisation
g9 External YT

T e
BIrupt orreset:. -
el R D A T T i e St IR
Mnemonic Halt processing Flags No flags are affected.
Operation o The HLT instruction will cause the 8086 to stop fetching and
- executing instructions. The 8086 enters into a halt state. To come
out of the halt state, there are 3 ways given below. .
(1) Interrupt signal on INTR pin (i) Interrupt signal on NMI pin
(iii) Reset signal on reset pin. i
o I§ may be used as an alternative to an endless software loop in
situations where a program must wait for an interrupt.
"nem _ : ; o ;
P:"t'?:l WM'I_' _ Flags - No flags are affected.
When this instruc

ra SO tion executes, the 8086 enters on idle condition in

Which it is doing no processing.

* The 8086 will stay in this idle state until 8086 TEST input pin is
. ade low or on interrupt signal is received on. the INTR or NMI
Mterrupt ping, : :

Microprocessors & Interfacing (MDU) 12-53 Addressing Modes and Instruction Set

executes.

ve It is used to syn

* Ifa valid interrupt occurs while the 8086 is in the idle state, the 8086 @
chronize the 8086 with external hardware. Such as
8087 math processor.

will return to idle state after the interrupt service procedure

_3:ESC;~ Escaps to extermal pracessor
ESC external - opcode, source.
Operation 'This instruction is used to
math co
L]

Mnemonic

pass instruction to a coprocessor, such as 8087

“processor which shares the address and data bus with on 8086,
The instruction for the Co-p

rocessor are represented by a 6 bit code
embedded in the escape instruction. . | T
* When the 8086 fetches on ESC instruction, the coprocessor decodes the
. instruction and carries out the action specified by the 6 bit code
- specified in the instruction. - , B
In most cases 8086 treats the ESC instruction as a NOP in some cases
8086 will access a data item in memory for co-processor.

Mnemonic LOCK g | _ _

Operation Many multiprocessor systems contain several microprocessors. Each
' microprocessor has its own local buses and memory. The individual
microprocessors are connected together by a shared system bus so that
each can access system resources such as disk drives or memory.

* Each microprocessor takes control of the system bus. Only when it
needs to access some resource. :

Lock prefix allows a microprocessor to make sure that another
processor does not take control of the system bus.

While it is in the middle of a critical instruction which uses the system

bus when an instruction with lock prefix executes the 8086 will assert

its bus lock signal output. This signal is connected to an external bus

controller, which then prevents any other processor from taking over
the system bus. '

Example LOCK XCHG SEMAPHORE, AL : The XCHG instruction requires two
bus accesses. The lock prefix prevents another processor from taking
control of system bus between two accesses. ; :

12.10

Program Transfer Group
8086/8088 provides you: - |
1) Unconditional CALL

% ' IMP CondltIOnal = o .
. Unconditional .
3) INT (Software interrupt) and many more.

——

|

Microprocessors & Intertacing (MDU)

12-54

Addressing Modes and Instruction Set

These instructions are also referred to as Branch mstmctlons
We have four subgroups under this :

¢ Unconditional transfers.
¢ Iteration control.

Conditional transfers. |
Interrupt relate instructions.

Instructions under these subgroups are listed as follows in Table 12.10.1.

Table 12.10.1 Program !ransfer instrucﬂons

CALL

RET

Call procodure
Return from procedure

LOOPE / LOOPZ
LOOPNE/LOOPNZ

Loop if equal/zero

Jump

JMP

S

:."'_‘; LAt o S X
i Eg?ﬁ -"F‘g ;

Loop if not equalfnot zero

Interrupt

JAJUNBE

JAE/UNB
JBIJNAE
JBE/UNA
JC
JENZ
JG/INLE
JGE/JNL
JUINGE
JLE/ING

JNC
JNE/UNZ
JNO
JNP/AJPO
JNS

JO
JP/JPE
JS

Jump if abova / not below or equal

Jump if below or equal / not above
Jump if carry '
Jump if equal / zero .
Jump if greater / not less nor equal
Jump if greater or equal / not less

Jump if less or equal / not greater
Jump if not carry

Jump if not equal / not zero

Jump if not overflow

Jump if not parity / parity odd
Jump if not sign \
Jump if overflow -

Jump if parity / parity even

Jump if sign

Jump if above or equal / not below
~ Jump if below / not above nor equal

Jump if less / not greater nor equal

Interrupt if overflow
Interrupt return

|
|
f

12.10.1 Unconditional Transfers

The unconditional transfer instructions may transfer control to a target instruction’
within the carrent code segment (intrasegment transfer) or to a different code segment
(intersegment transfer). The transfer is. made unconditionally any time the mstmctum is

E Microprocessors & Intertacing (MDU) 1290 Addressing Moges and) .
¢ NStrye .=
I - — u%n Sy ¢
S5 : SR R AR R e : 8
| A-CALL-Cail'a procedure -

Q. 'Describe execution of CALL instruction.

—=.

;% Mnemonic : CALL procedure :
55 Operation : This instruction is used to transfer Program contro] t, , Subron
procedure. There are two basic types of CALLS - NEAR Call g p 0 or ,

;¢ Near Call: Anearcallis acall to a procedurs which s i the sqrge - PAR Cay
% has the CALL instruction. It is also called as Intra segment ca]] S0, Whigy
5% (i) If the call to the subroutine or procedure with g 16-bit signed gigp,)
g 8086 will decrement the SP by 2 and push the IP contents onto t}q .t knt the
3 adds the signed 16 bit value of DISP of IP. The contents of CS are un&fh' Then
X Such a call is an intra segment direct call anged,
¥ e.g. DISP PROC NEAR: It indicates that DISP is the n
?’ * whichisin the same code segment. DISP is 16 bit signed dispﬁngn?md“m
3:?;. Addressing mode : Relative addressing mode '
e (i) If the CALL is to a subroutine is in the same segment and is addresseq 1, th
= contents of a 16-bit general register/memory. Then the 808G decroments thy g
by 2 and pushes the contents of IP onto the stack and th

. e - en the contents of
specified 16 bit register/memory location.

The registers can be BX, SI or DI to provide the new value of IP.
The memory location is addressed by
DI into IP. ;
The contents of CS remain unchanged. Such a call is called is an intra segment
indirect call. | -
e.g. : CALL Reg 16. : ' .
. Far Call : A far is a call to a procedure which is in a different segment from that
which contains the CALL instruction. Far calls are also called as intersegment calls.
(i) If the far call to a subroutine or procedure is with a signed displacement, the
8086 decrements SP by 2 and pushes the contents of CS onto the stack and
- moves the lower 16 bit value of the number like DISP in CALL DISP into CS.
The SP is again decremented by 2. The contents of IP are pushed onto the
stack. The IP is then loaded with the higher 16 bits i.e. MSB value of DISP.
; ~ Thus, as this instruction CALLS a subroutine in another code segment it IS &1
= intersegment direct call. o :
(ii) Ifthe CALL to a subroutine in another segment is addressed by the contents oF

3 ushes CS
{_. a 16 bit register then the 8086 decrements the SP by 2 and P

l contents onto the stack.
]

3

contents of 16 bit register such a5 BX, 8

. dressed by
The 'CS is then loaded with the contents of memory locations ad
[reg 16 + 2] and [reg 16 + 3] in DS. The IP 8
The SP is then again decremented by 2, IP is pu_shed' onto setcllwb;ta[c‘tg 16) and
. then loaded with contents of memory locations addres
(reg 16 + 1] in DS. : _

Operation

:s called as intersegment indirect call.

swh® 1 DWORD, PTR [reg16

RET optional ~POP = value

, Return fromnear procedure
POP from stack : IP
1f immediate operand is pfesent :
SP=SP+ operand '

+ Return from far procedure

POP from stack
1P
- CS
If immediate operand is present
SP=SP + operand
« The RET instruction will retum'execﬁtion from a procedure to the next
instruction after CALL instruction.

o If the procedure is a near procedure (i.e. in same code segmeﬁt as

CALL instruction), then the return will be done by replacing the P
with a word from the top of stack. This word from the top of stack is
the offset of the mnext instruction after CALL. The SP will be
incremented by 9. After return address is popped off the stack.

o If the procedure is a far procedure (in a different code segment), the
instruction pointer will be replaced by the word at the top of stack. The
SP will be incremented by 2. The CS is then replaced with a yond fm.m
new top of stack. After cS word is popped the SP will again
incremented by two. | . |

* ARET instruction can be followed by 8 number.

RET 2.

¢ In this case the SP will be incremented by additio

_the IP or IP and CS are popped off the stack. This fo:r: 9:1 wrir
increment the stack pointer UP over parameters passe |

procedure on the stack.

i U 12-56 P X =
dacing (V] — Addressing Modes and Instruction Set .

&
M gister ased as reg 16 are BX, SI, DI
e

——

et
T MILTUPIULESDUIS &« INterfacing (Muu)” 12-57 Addressing Modes and Instruction S
3. WP ~ g | o/
(Unconditional jump to specified destination)

Mnemonic JMP Flags No flags are affected.

Algorithm Always jump.

Operation ¢ This 'mstruci:ion will cause the 8086 to fetch its next instruction from

the location’ specified in the instruction rather than from next
location after JMP instruction.
There are two basic types of JMPs, near and far.

Near JMP is a jump where destination location is in the same code
segment only IP is changed to get destination location. It is known as
intrasegment JMP.

If the destination is in a segnmt with a different name from the
segment containing the JMP instruction, then both the IP and CS
contents will be changed to get the destination location. Such a JMP

The near and far JMPs are further described as elther du'ect or

indirect. If the destination address is specified within instruction. It
is a direct JMP, if the destination address is'contained in register or
memory location, the JMP is indirect, because 8086 has to access the
specified register or memory to get the destination address.

Example JMP WORD PTR [BX] '

o This instruction will replace IP with a word from memory location
pointed by BX in DS. ‘

¢ This is an indirect near JMP.

12.10.2 Conditional Transfers

Conditional transfer instructions are also referred as conditional jump instructions.

There are total 18 instructions. Refer Table, each test a different combinations of
flags, for a condition. If condition is true, then control is transferred to the target specified
in the instruction. If the condition is false, then control passes to the instruction that
follows the oonditiorial jump. - Very important point regarding these instructions is, all
conditional jumps are SHORT, that is, the target must be within the current code
- segment and within - 128 to + 127 bytes of the first byte of the next instruction. Since the
jump is made by adding the relative displacement of the target to the instruction pointer,

all conditional jumps are self relative and are appropriate for position independent
routines. These instructions does not affect any flag.

is far JMP. A far JMP is an Inter segment JMP. : . 4

J Microprocessors & Interracing (Muuv)

1£-90

"\UUOUBaulg WIVUITS Qi 11028 Ml WGL

The Instructions in this group are used to regulate the repe

JNC JUMP if not carry CF=0
JZ/JE JUMP if zero (or equal) ZF =1
JNZ/JNE | JUMP if not zero (or not equal) ZF=1 -
JPIJPE | JUMP if parity (or even parity) PF=1
JNP/JPO | JUMP if not parity (or odd parity) PF=0
JCXZ | JUMP if CX is zero CX = 0000H
JO JUMP if overflow OF=1
JNO JUMP if not overflow OF=0
JS JUMP if sign (- ve) |S=1
_| JNS JUMP if not sign (+ ve) -).8=0
JL/INGE | JUMP if less (i.e. either greater nor equal) |SF®&OF=1"
JNL/AJGE | JUMP if not less (i.e. either greater or equal) SFOOF =0
JLE/JNG | JUMP if less or equal (i.e. not greater) (SFOOF)+ZF=1|
JNLE/J G JUM'P if nelth_er less nor equal (1 e. greater) (SF ® OF) + ZF 0
JB/JNAE JUMP 1f below (1 e. ne:t.her above nor eqﬁa]) CF =1
JNB/JAE ‘J'UMP if not below (i.e. either above or equal) | CF = 0
JBE/JNA | JUMP if below or equal (i.e. not above). CF®ZF=1
JNBE/JA | JUMP if neither below nor equal (i.e. above) | CF @ ZF < 0
12.10.3 Iteration Control Instrﬁctl ons

tition of software loops.

B T o T O T T T R R e T

P R PP PP, DU Py S G [AL S P R T T

UL LTI Y LT T U

Like conditional transfers the iteration control instructions are self relative

transfer to targets that are within 128 to +127 bytes of themselves, i
transfers.

and may only
i.e. they are short

L

12-59 Addressing Modes a

% Microprocessors & Interfacing (MOU) W
1ILOOR
7 - Flags Nofla
i OOP short_label , 88 are gy,
34 s]EOOP : Jump to specified lable if Scteq,
' " CX # 0 after auto decrement
&]
& Algorithm CX=CX)
? o If CX < > 0 then jump
2 else no jump, continue L
ion This instruction is used to repeat a series of mnstructions somg nu
Opemflon times. The number of times the instruction sequence is to he ,.epe?:' of
_ loaded into CX. Each time loop executes CX is decremented by 1. .
o If CX # 0 execution will jump to destination specified by label.
If CX = 0 execution will go to the next instruction after loop.
Mnemor;ic * Loop while CX # 0 and ZF = 1 Flags No flags are affecteq
" LOOPE short-labeV/LOOPZ short-label.
& Algorithm CX=CX-1 ‘
- ' If (CX < > 0) and ZF = 1 then jump
else LI Bk
no jump, continue. | :
{ Operation o This istruction is used to repeat a group of instructions some number
L : . of times or until zero flag becomes zero, : -
‘,- - » Number of times of repetition is loaded in CX.
| 3 LOOPNZ LOPNE = Loop if o zero/ ot aqual
Mnemonic Loop while CX #0and ZF = (Flags No flags are affected.
; LOOPNZ shart-label or ~
LOOPNE short-label
Algorithm + CX =(Cx -
* if (CX<>0)and
else
. - 10 jump, continye
Operation

T

Mnemonlc INTO

M%ﬂ !

interfacing (MOY) 12'60

W/ Addressing Modes and Instruction Set

(04 instructions allow interrupt service routines to be 2
) e gt:::illlpt external hardware device. The effect of software ?zg‘:utﬁsz
g
éﬂﬁw
Nnemonic INT interrupt — type Flags IF=0and TF=0 .
No other flags are affected
Ngorithm ¢ Push to stack :
o flag register
o« CS
o IP
« IF=0,TF=0

+ Transfer control to interrupt procedure. |
Operation This instruction causes 8086 to call a far procedure. The term ‘type’ refers
number between 0 to 255 which identifies the interrupt.
When an 8086 executes an INT instruction, it will
(i Decrement SP by 2 and push flag register on stack.
(ii) - Decrement SP by 2 and push CS contents on stack.
(i) Decrement SP by 2 and push the IP after INT on stack.

(iv) Get a new value for IP from a memory address of 4 times t.he L

() Get new CS from memory address of 4 times the type specified It

instruction plus 2. e.g. For INT 8, new value of CS will be read ik
00022H. '
e.g INT35: New IP from 008C H,

New CS from:

(vi) Reset IF and TF

