llllllCHfAP\TER......
49

Assembly Language
Programming

~ P

13.1 Introduction to Assembly Language

 Reasons for leaming the assembiy language

__-__—-—-'-h-.
Microprocessor chip designers create a basic set of instructions for every Processor

they design. These are really simplistic instructions that take baby steps as compareq

with high-level languages such as C++. .]

* Each instruction has a code so that the instruction decoder can decode them in orge;
to energize the proper circuits to execute the function using the registers of the

processor. These are referred to as operation code (OPCODE). “Machine code is the
instruction set that machine understands”. -

* Machine language is the only language understood directly by the CPU i our
~ . computers. |
* Humans, however, understand words, so each machine code is given an "English"
- equivalent. These instructions in text form are called Mnemonic.
* Assembly language is a mmemonic representation of machine code.
Assembly language is not just a simple mapping of numbers to words. It also

contains many high-level-language type constructs to make data definition and

* program structuring easier.

* There is a one-to-one correlation between assembly language instructions and the
* machine code. : Ry '

The assembly language is learnt for the following reasons :
(1) It helps to learn about the internal architecture of the computer. The more you us
the assembly language th

e more know] i architecture.
@ 80 as to make use of the edge you gain about the

: here
ing in hiok 1o Puter. This is useful under the circumstances ¥

t, .
Programming in high Jeye] language is difficult or even impossible.

Most of the times g hj _ . 25008
does not yielq meﬂm;ﬁ?r:evel language program written for the above applicatio”

- ing is
always a better solution, d performance. Sq use of assembly level programminé 4
(4). The high leye] '

(3)

13-2

W ming Methodology

i - grammers do not write large programs using 'the assembly
4 anE“age't » write short, specific Iroutines' and subroutines in the assembly

: th;e nain long program using the high level language and call the smaller
broutines written in assembly language as and when required.
age subroutines can be written to handle operations which are not

bly 1anguage
. i::lahle in the higher level language.

i pevelopment of an Assembly Language Program

ols used for development _ :
| The development of asse bly language program needs following tools :
: + Assembler o Linker o Loader

; + Debuggerand ¢ Emulator |

| Some of these tools are used for program development, some for the program
| wation and the remaining are useful for testing the asserbly language program.

| 1321 Steps for Developing an Assembly Language Program .

' Develupmg an assembly language program is a four step process. The steps are as
follows : bl _

@ To specify the source code as per the assembly language definition.

(i)~ Assemble the program to create the object code.

(1'u} Link the program to create an executable code.

) Test and debug the program.

' %F‘g" 132.1 shows the steps involved in

%¢ program. |

Vescription |

. ?’“’fe’ Fig. 13.2.1 to understand ti-ne program development steps. '

I—

developing and executing an assembly

o . I' I am i ant the program
to doﬁift step is to analyse what the program i to do and how we W

Then y

D, I8ing an editor create the source file for IprO.gT am.

Yo
.| The , : ot
' Second step is to assemble this source file. .

€ assembler indicates errors then use the

“S%emble this source file,

;o
: : uage Prognlmmlnﬂ i
Microprocessors & Interfacing (MDU) 13-3 Assembly Languag . e
Step 3 : @ 1] ,'.
¢ If the program consists of several modules, Define problem
then use the linker to join them into one . o
large Ob]ect module. - ; Create source file o ASM .
® If the system needs to locate a program in . with editor '
order to specify its location in the memory 1
then use the locator.

| Assembler the file :Eg{.'

At this stage the program is ready for
loading into the memory and run.
Step 4: -

If the developed program does not interact
with any external hardware other than .
that connected directly to the system then «EXE '

use debugger for running‘and debugging ' *MAP

your program. i
If the program is supposed to work
with the external hardware system
such a microprocessor based
instrument then use emulator to
run and debug the program.

| Load debugger |

| Run test the program |

|Run test the program | . |
]

Fig. 13.2.1
13.3 Assembly Language Program Development Tools

In this section we will go into the details of some of the assembly language program
development tools. : _ :

13.3.1 Editor -
¥ \
- An editor is basically a software (i.e. a program). , '
It helps the user to create a file that contains the assembly language statements.
The examples of editors used for the assembly language programs are Wordstar,
Edit, WordPad, Notepad ete. ' :

- The job of the editor is to store the ASCII codes for the letters and numbers in the
successive RAM locations. ' '
As the typing of program is over, this file
This file is cailed as the “source file” and
The source file is then processed using

is stored on a floppy or hard disk.
an ASM extension is given to it.
an assembler.

13-8

Assemb‘y Lan gua ' ,
| ge Progra ! Micro
. —glaMming

interfacing & i

ot and Assembler Directives v
2 P,-oﬂl'a'“ . structure of general assembler program for 80813, | © e
13".ﬁ;st ot :;] gee emnbler program atructure for 8086 is shown in Figs. 1342 (a) and ‘

any four oS
Q What are different fypes of assembler dnrectwes') Explain any T
at are di
directives. = viz. =
Assembly language consists of t#0 type of statemen L i
1) Executable statements e : ecuwd (8 e pmeessor. .
These are the statements ey
E.mﬂtruct.mn set of 8086)(as seel in the chap 2 m’eﬂm& et
IR (e that direct the gsserbler %0 g the asse
_ says uw tix?isem;ier to do. @m are eﬂ'ectlve ly duri® uble.
) ts 18 th ey mach mne ex:rnecu Iy i gen

" The speciality of these st& tatemen ol bt

of a program but they do not genzr:ectwes sl
' We can divide the assembler G ives
purpose directives and o special

" Microprocessors & Interfacing (MDU) 13-9 Assembly Language Programming

They are classified into the following categories based on the functions performed by

“them.
3 [o Simplified segment directives . e Data allocation directives @
o Segment directives e Macros related directives :
o Code label directives e Scope directives
Listing control directives Miscellaneous directives

Fig. 13.5.1 : Assembly directives

4. .CODE - :
This assembler directive mdxcates the begmnmg of the code segment Its
o format is as follows :
& . CODE [name]
' 'The name in this format is optional.

For tiny, small and compact models the segment name is - TEXT always.

-« The medium and .large. memory models use more than one code. segmenta
which can be dlStlngulBhed by name.

2. .DATA
~ This directive indicates the beg'mnmg of the data segment
3. .MODEL
This directive is used for selecting a standard memory model for the assembly
~ language program.
Each memory model has various limitation dependmg on the maximum space
available for code and data.
/’l'he general format for defining the Model du'ectwe is a8 follows
. MODEL [memory model] :
e The memory model is chosen based on the user’a requirement by referring to
Table 13.5.1.
Table 13.5 1

PO R SR T O 17 A o T, TR AT SRR AR TR

(" i r“ [Al A e T
.-’ ;uu“u r"f } : "-iillnu !u’s:t vi. l \\-‘-"nll LS
LA 2 e ¢ L K Dt pm e s i e e P 3

Small 0nntandofmze<=64 0neot'me<=64m::|gg s
Kbytes

Mediuml Code segment may be of any number | One of size < = 64 Kbytes
and any size.

n
o]
i

[/ Microprocessors & Interfacing (MDU) 13-10 . Assembly Language Programrnmg

E Cbmpact One of size < = 64 Kbytes Data segment of any number and
any size. |
Large | Any number, any size .| Any number, any size.
| Huge | Any number, any size Any number, any size.

¢ The size of a memory model can be anything from small to huge. g
e The tiny model is meant for the . COM programs because they have their coda
data and stack in only one 64 kB segment of memory.

‘ e On the other hand the flat model is the biggest which defines one area upto
' 4 GB for code and data. ’
e The small model is useful for the student level programs because for this modali
the assembler assumes that the addresses are within a span of 64 kB and’
hence generates 16 kB offset addresses. _ . %
o ¢ In the compact model, the assembler can use 32 bit addresses. So the execution’
time for this model is longer. '

e The huge model contains variables such as arrays which need a larger BPN‘-B_
than 64 kB. .

4. STACK

" This directive is used for defining the stack. Its fomt is as follows :
. STACK [size] '
o The size of the stack is 1024 bytes by default but tlns size can be ovelndden

e We can omit the . stackcommandlfthe stacksegmentm nottobeusedm
program.
Example of the stack directive is
" .STACK 100

Which reserves 100 bytes for the stack segment :
5. EQU-Equate . e me g pe= == T
| Itlsusedtogweanamei.osomevalueorsymholmthepmg'ram.
e Each time when the assembler finds that name in the it
} thai name with the value assigned to that r variable . Clhaxa replaoes;
}_ "~ . e Its format is [name] EQU initial valye. : ‘ ; |
| .~ eg: FACTORIAL EQU O05H. . . | .
e This statement is written during the beginning of the program
and whenever’
| now FACTORIAL appears in an instruction or anothe di
| s r mctwe the assembler\!
e The advantage of using EQU in this manner is that if FAGTORIAL
several times in a program and the value has to be changed, all thatlsh::eii
change the EQU statement and reassemble the program.
* The assembler with automaticall
M- matically put the new value each time it finds thi

6. Byte [DB] i . E
This directive deﬁnes_ the byte type variable.

1

|

_ﬁ

A

10,

Sty

: Microprocessors & Interfacing (MDU) " 13-11 Assembly Language ng"amming j
E ' ‘\\

"o Itis also useful to set one or more storage locations aside.

_s~ The format of this directive is as follows :
[name] DB initial value
* The initial value can be a numerical value (8 - bit long) or more than one § byt
numeric values. |

~ e Itcan be a constant expréssion, or a string constant or even a question marj
e The initial value can be g signed or unsigned number. Its range is from, _ 128

to + 127 if unsigned and 0 to 255 if it is unsigned.
Define Word or Word [DW]

*~ The DW directive defines items that are one word (two bytes) in length,
* For unsigned numeric data the range of values is 0 to 65, 535
* For signed data the range of values is - 32, 768 to + 32, 767.
o Its format is
[name] DW initial value.
- eg List DW . 2534
Define Double Word or DWORD [DD]

* . It defines the data items that are a double word (four bytes) in length.
» It creates storage for 32 bit double words. The format is '
[name] DD initial value.
-e.g. BUFF DD ~?

Deﬂ_n -Quad Word or QWORD [DQ]

o~ This directive is used to tell the assembler to declare variable 4 words in length
- .or to reserve 4 words of storage in memory..

* It may define one or more constants, each with a maximum of 8 bytes or

'16 Hex digits.
o , Its format is :
.~ [name] DQ initial value, [initial value],
e.g. Num DQ 1234567898765432H.
Define Ten Bytes or TBYTE [pT]

It is used to define the datg itemns that are 10 bytes long.

/ Its format is

[name] DT initial value, [initial value].
g unpack DT 1234567890 ' :
* Unlike the other data directives with store hexadecimal numbers, DT will
directly store the data in decimal form,
ORG-Originate

The ORG directive allows us to set the location counter to any desired value at
_ any point in the program '

* The location counter s automatically set to 0000H when the assembler reads a
segment.

¥ Its format is ORG expression.
eg ORG 500H » Set the location counter to 500 H.

S N

b Wi e

——p -
e = > &

13-12 Assembly Language Programming

& |nter|'ﬂ
o2 curre
’ ed t0 represent the cur nt value of LC.
the next available byte location where assembler can put a

is us
A $ ‘s m‘pfesents

rIbe code bytﬁ s
in ORG statements to inform the assembler to make change

ata Of
) Iocation counter relative to its current value.
in Increments the location counter by 50 from its ;

$+ 50)
e.g ORG ; current value.

*“SSUME . active 18 used for telling the assembler the name of the logical segment
¢ hich should Pe used. -
The format of the assume directive is as follows,
/ ASSUME segment register : segment-name :
The gegment register can be CS, DS, SS and ES.
ample of Assume directive is as follows,

, DS : Data, SS: Stack::

gign upto 4 segment registers in any sequence.

statement can as

In this example, DS : Data means that the assembler is to associate the name
of data segment with DS register : :
gimilarly CS Code tells the assembler to associate the name of code segment
with CS register and so on

END - :

As is placed at the end of a source and it acts as the last statement of a
prog-rarn- . . . | oyl . . ;
This is because the END directive terminates the entire program.

- The assembler will neglect any statement after an END directive.
1 The format of END Idirective is as follows : |
END

SEGMENT and ENDS E . o
The SEGMENT directive i8 used to indicate the start of a logical statement.
ENDS directive is used with the segment directive.
ENDS directive indicates the end of the segment.
Its format is . ' -
name SEGMENT . Begin Segment -
name ENDS . . End Segment.
e.g.: DATA SEGMEN |
DATA ENDS.

" GRoup e o
is directive collects the segments of the same under o?g?n ‘e segment
It does it ped will resid® ™’ |
it so that the segments that are grov

usually data segment. S ' :
Its format is

[name] GROUP Seg-name, _[geg-naxm] |
) G 1, SEG 2.

®¢ :NAME GROUP

\=

Mlcroprooessors & |nterfacing (MDU) 13-13

Assembly Language Programming
16. MACRO AND ENDM_ v |

_ The macros in the programs can be defined by MACRO directive.
*. The ENDM directive is used along with the Macro directive. :
. ENDM defines the end of macro. | |
s Its format is
DISP MACRO
; Statements insiue the Macro
ENDM |

' 47. ALIGN

/ This directive will tell the assembler to align the next mstnmtlon on an
address which corresponds to the given value.

S - Such an alignment will allow the progessor to access words and double words.
| A.LIGN number

' C This number should be 2, 4. 8, 16 ... i.e it should
"+ beapowerof2.
The example of Ahgn directive are ALIGN 2.and ALIGN 4.

ALIGN 2 is used for starting the data segment on a word boundary whereas
' ALIGN 4 will start the data segment on a double boundary word._
18. EVEN (Align on Even Memory Address)

/‘It tells the assembler to increment its location counter if reqmred so that the
next defined data item is aligned on an even storage boundary.

/c/ The 8086 can read a word from memory in one bus cycle if the word is at an
_ even address.

If the word starts at an odd address, the microprocessor must do two read

cycles to get 2 bytes of the word. In the first cycle it will read the LSB and in
the second it will read MSB

Therefore, a series of even words can be read more qmckly if they are at an
even address. -

e.g. : EVEN TABLE DB 10 DUP (0O) ; It declares an array named

_ . TABLE of 10 bytes which are
| ' ;' starting from an evenaddress.
LABEL |

/ﬂus directive assigns name to the current value of the Location Counter.

The LABEL directive must be followed by a term whlch specifies the type
associated with that symbolic name.

If label is going to be used as the destination fora;unm or call, then the
IABELmustbespeclﬁedastypenearortypeFar

If the label is going to be used to reference a data 1beth, t.hen the label must be
specified as type byte, word or double word.

e.g. : STACK SEGMENT

DW 50 DUP (O) . Set aside 50 words for stack. .
STACK_TOP LABEL WORD ; Give a symbolic name to next location

. after the last word in stack STACK ENDS

I—

Microprocessors & Interfacing (MDU) 13-14

20. PROC-Procedure

Assembly Language Programming '

5 2 This directive is used to indicate the start of a procedure |
g The procedures are of two types NEAR and FAR,
7 If the procedure is within the same aegmant then the label NEAR should be
given after procedure.
o Ifthe procedure is in another module then the label FAR should be given after
 procedure.
/ ~ Its format is [procedure-name] ’ :
PROC NEAR. o
21. EXTRN

v

It indicates that the names or labels that follow t.he EXTRN directive are in -
some other assembly module.

eg :EXTRN DISP: FAR.

The statement tells the assembler that DISP is a label of type far in another
assembly module.

To call a proeedure that is in a program module assembled at a different time
from that which contains the CALL mstruct:lon the assembler has to be told
that the procedure is external. . -

The assembler will then put information in the ob;ect code file so that linker
can connect the two modules together.

The names or labels that are external in one module must be declared pubhc

with the PUBLIC dxmctwe in the module where they are deﬁned.
Its format is

eg.: Pmcedure_ﬂereSegrmnt_
EXTRN FACT . FAR
XTRN SUM : . NEAR.

—

- Procedure_HereEnds.
22. PUBLIC

/

This makes the two variables Multip
modules.

23. PAGE i

~

~ the maximum number of
/ The format of this direc

It informs the assembler and linker that the 1dent1ﬁed v

ariables in a program
are to be referenced by other modules hnked with the current one.
Its format is :

PUBLIC variable, [v anable]

The variable can be a number (up to two bytes) or a label ora symbol
e.g. PUBLIC MULTIPLIER, DIVISOR.

lier and Dmsor avaﬂable to other assembly

This directive is used to s

pécify the maximum number of lines on a Page and
characters on a line.

tive is as follows :
PAGE [length), [width)

L+ Number of charactem on a line.
Number of lines on a page

B |

K

i

e . :

Mcroprooessors & Interfacing (MDU) 13-15 Assembly Language Progra

e MmMin

B - ' oy T

g ¢ The example is PAGE 55, 102 which shows that the, there are 55 In

4 page and 102 characters per line. °8 per
o The number of lines per page typically range from 10 to 255 anqg the ny

\ characters per line will range from 60 to 132. mber of

24. TITLE

» ‘It helps the user fo_f controlling the format of listing of an assembleq Program

'» Itis used to give a title to program and print the title on the second line of each
page of the program. | i

» The maximum number of characters ailowed as a title is 60.
- The format of this assembler directive is as follows,

& 5 TITLE Text
+ 25. INCLUDE :
™ e~ This directive is used to tell the assembler to insert a block of source code from
: the named file into the current source module. This shortens the source code,
¥ e _~Ttsformatis -
o INCLUDE path : file name.
26. NAME

This directive assigns a specific name to each assembly module when programs
consisting of several modules are written. '

27. DUP Operator

Whenever we want to allocate space for a table or an array the DUP directive

can be used. The DUP operator it will be used after a storage allocation
directive like (DB, DW, DQ, DT, DD). >t

-+ With DUP, we can repeat one or more values while assigning the storage
values .

B Its format is

[name] Data-Type Number DUP (value).

e.g : List DB 20 DUP (0] ; A list of 20 bytes, where each byte is zero.

' A DUP operator may be nested.

e.g.- LIST 1 DB 4 DUP (4 DUP [0]. 3 DUP [X"]) ; The assembler assigns the values

' A6 o Y in memory here as follows,
00, 00, 00, 00, x, x, x
00, 00, 00, 00, x, x, x
00, 00, 00, 00, x, x, x
00, 00, 00, 00, x, x, x
28. GLOBAL - Declare Symbols as PUBLIC or EXTRN

o 'This directive can be used instead of PUBLIC directive or instead EXTRN
directive.

e For aname or variable defined in the current module, the GLOBAL directive 13
used to make the variable available to all other modules.
o Itsformat is] ¢ it can
e.g. : GLOBALFACTOR ; it makes the variable FACTOR public so tha g
: : . be accessed from all other modules that are lin

___'-‘

13-16 Assembly Language Programming'

. it tells assembler that variable FACTOR of
. type word which is in another assembly module
y Or EXTRN.)

G H I . . . | - ..
a {tis &0 perator mbler to find the number of elements in a named data item
¢ Jyinforms e a:;earray- et A R '
© peastiTER o is always stored in Hexy the 8086
el = | ’ .
: Its fOY;‘%t\;de; LENGTH STRING ; Loads the Length of string in CX.
eg . - i .
. OFFSET : T | s
! : or. gl » . 4
] ﬁ ‘;;:n?::;e assembler to determine the offset or displacement ofg_name@._
L] 'tem I .) 4 i |
(Ilftz;y also determine the offset of a procedure from the start of the segment;

which contains 1t . £ .‘ '

o Itsformatis: . - - =
e_g.o-. MOV AX, OFFSET NUM ; It will load the offset of NUM in the AX

= ; register.

4. ENDP-End Procedure L
« This directive is used along with the name of the procedure to indicate the e
" of procedure ' - ' -
o ENDP defines the end of procedure. = 3
e.g: FACTPROCFAR ; Start procedure named FACT and informs the
; assembler that the procedure is FAR.

Body of Procedure .
FACTENDP ;End of Procedure FACT.
2. PTR-Pointer C i
* The pointer is an operator. - ‘
: It is used to assign a specific type to a variable or to a label.
gels necessary to do this in any instruction where the type of operand is
ar. : , _
&g () INC [AX)

The assembler does not know whether to increment the
o ; pointed by BX or increment the word pointed to by BX.
- INE glfﬁculty could be avoided by using PTR directive.
NG YTE PTR [BX] -: it increments byte pointed to by [BX]
WORD PTR [BX]

it increments word pointed to by [BX].

G
eg %) The PTR operator can be used to override the declared type of variable.

The ai(:m DB 23, 45, 10, 56.

MOV 4y, 8 to the array WORDS will be in terms of bytes.
i) Do, & PTR WORDS i

instmgc -mdlmt jump instruction, PTR could be used JMP [BX]. Thi

tion does not tell the assembler whether to code the instruction for

